Pankova O, Korzh O. Significance of plasma relaxin-2 levels in patients with primary hypertension and type 2 diabetes mellitus.
Wien Med Wochenschr 2024;
174:161-172. [PMID:
38451351 DOI:
10.1007/s10354-024-01035-x]
[Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2023] [Accepted: 02/06/2024] [Indexed: 03/08/2024]
Abstract
BACKGROUND
This study aimed to evaluate plasma relaxin‑2 (RLN-2) levels in patients with arterial hypertension (AH) and their relationships with clinical and laboratory parameters.
METHODS
The study involved 106 hypertensive patients, including 55 with type 2 diabetes mellitus (T2DM), and 30 control subjects. Plasma RLN-2 levels were measured using an enzyme-linked immunosorbent assay kit.
RESULTS
RLN-2 levels were reduced in patients with AH compared to healthy volunteers (p < 0.001), and hypertensive patients with T2DM had lower RLN-2 levels than those without impaired glucose metabolism (p < 0.001). RLN‑2 was negatively correlated with systolic blood pressure (SBP) (p < 0.001) and anthropometric parameters such as body mass index (BMI; p = 0.027), neck (p = 0.045) and waist (p = 0.003) circumferences, and waist-to-hip ratio (p = 0.011). RLN‑2 also had inverse associations with uric acid levels (p = 0.019) and lipid profile parameters, particularly triglycerides (p < 0.001) and non-HDL-C/HDL‑C (p < 0.001), and a positive relationship with HDL‑C (p < 0.001). RLN‑2 was negatively associated with glucose (p < 0.001), insulin (p = 0.043), HbA1c (p < 0.001), and HOMA-IR index (p < 0.001). Univariate binary logistic regression identified RLN‑2 as a significant predictor of impaired glucose metabolism (p < 0.001).
CONCLUSIONS
Decreased RLN-2 levels in patients with AH and T2DM and established relationships of RLN‑2 with SBP and parameters of glucose metabolism and lipid profile suggest a diagnostic role of RLN‑2 as a biomarker for AH with T2DM.
Collapse