1
|
Murphy TE, Rees BB. Diverse responses of hypoxia-inducible factor alpha mRNA abundance in fish exposed to low oxygen: the importance of reporting methods. Front Physiol 2024; 15:1496226. [PMID: 39429981 PMCID: PMC11486919 DOI: 10.3389/fphys.2024.1496226] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2024] [Accepted: 09/20/2024] [Indexed: 10/22/2024] Open
Abstract
Low dissolved oxygen (hypoxia) poses significant challenges to aquatic ecosystems, affecting the behavior, reproduction, and survival of aquatic organisms. Some fishes respond to hypoxia by changes in gene expression, which may be regulated by the hypoxia inducible factor (HIF) family of transcription factors. HIF abundance and activity depends upon the post-translational modification of the alpha protein subunit, although several studies indicate that HIFA mRNA abundance increases in tissues of fishes exposed to hypoxia. This study reviewed reports of laboratory exposures of adult ray-finned fishes to hypoxia and used generalized linear mixed effects models to examine the influence of HIFA gene, tissue sampled, and exposure conditions in explaining the diversity of responses seen in HIFA mRNA abundance. The frequency of hypoxia-induced increases in HIFA mRNA was poorly explained by gene, tissue, or the severity of the hypoxic exposure. Rather, the frequency of reported increases was strongly related to the extent to which studies adhered to guidelines for documenting quantitative real-time PCR methods: the frequency of hypoxia-induced increases in HIFA mRNA decreased sharply in studies with more thorough description of experimental design. Future research should (a) adhere to stringent reporting of experimental design, (b) address the relative paucity of data on HIF2A and HIF3A, and (c) determine levels of HIF alpha protein subunits. By following these recommendations, it is hoped that a more complete understanding will be gained of the role of the HIF family of transcription factors in the response of fish to hypoxia.
Collapse
Affiliation(s)
| | - Bernard B. Rees
- Department of Biological Sciences, University of New Orleans, New Orleans, LA, United States
| |
Collapse
|
2
|
Babin CH, Leiva FP, Verberk WCEP, Rees BB. Evolution of Key Oxygen-Sensing Genes Is Associated with Hypoxia Tolerance in Fishes. Genome Biol Evol 2024; 16:evae183. [PMID: 39165136 PMCID: PMC11370800 DOI: 10.1093/gbe/evae183] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Revised: 08/05/2024] [Accepted: 08/14/2024] [Indexed: 08/22/2024] Open
Abstract
Low dissolved oxygen (hypoxia) is recognized as a major threat to aquatic ecosystems worldwide. Because oxygen is paramount for the energy metabolism of animals, understanding the functional and genetic drivers of whole-animal hypoxia tolerance is critical to predicting the impacts of aquatic hypoxia. In this study, we investigate the molecular evolution of key genes involved in the detection of and response to hypoxia in ray-finned fishes: the prolyl hydroxylase domain (PHD)-hypoxia-inducible factor (HIF) oxygen-sensing system, also known as the EGLN (egg-laying nine)-HIF oxygen-sensing system. We searched fish genomes for HIFA and EGLN genes, discovered new paralogs from both gene families, and analyzed protein-coding sites under positive selection. The physicochemical properties of these positively selected amino acid sites were summarized using linear discriminants for each gene. We employed phylogenetic generalized least squares to assess the relationship between these linear discriminants for each HIFA and EGLN and hypoxia tolerance as reflected by the critical oxygen tension (Pcrit) of the corresponding species. Our results demonstrate that Pcrit in ray-finned fishes correlates with the physicochemical variation of positively selected sites in specific HIFA and EGLN genes. For HIF2A, two linear discriminants captured more than 90% of the physicochemical variation of these sites and explained between 20% and 39% of the variation in Pcrit. Thus, variation in HIF2A among fishes may contribute to their capacity to cope with aquatic hypoxia, similar to its proposed role in conferring tolerance to high-altitude hypoxia in certain lineages of terrestrial vertebrates.
Collapse
Affiliation(s)
- Courtney H Babin
- Department of Biological Sciences, University of New Orleans, New Orleans, LA 70148, USA
| | - Félix P Leiva
- Alfred Wegener Institute, Helmholtz Centre for Polar and Marine Research, Bremerhaven 27570, Germany
| | - Wilco C E P Verberk
- Department of Animal Ecology and Physiology, Radboud University Nijmegen, Nijmegen, The Netherlands
| | - Bernard B Rees
- Department of Biological Sciences, University of New Orleans, New Orleans, LA 70148, USA
| |
Collapse
|
3
|
Xiao J, Wang WX. Linking HIF oxygen-sensing system diversity to hypoxia fitness in Eleutheronema: Molecular characterization and transcriptional response to hypoxia exposure. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 909:168646. [PMID: 37977389 DOI: 10.1016/j.scitotenv.2023.168646] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Revised: 11/08/2023] [Accepted: 11/15/2023] [Indexed: 11/19/2023]
Abstract
Hypoxia is a mounting environmental problem affecting coastal waters globally, posing severe consequences for biodiversity and marine life. Metazoans respond to hypoxia stress via the hypoxia-inducible factor (HIF) pathway, but few studies have addressed the gene diversity of the functionally important HIF-pathway. Understanding whether functional diversity exists in the HIF-pathway is a key first step in identifying genes that may impact hypoxia fitness. Here, we leveraged whole-genome resequencing data and bioinformatics tools to identify the key members of the HIF-pathway (HIFα/β, EGLN, and VHL) and genetic diversity in the threatened Eleutheronema. Phylogenetic analysis revealed that teleost-specific duplicates of epas1 (epas1a/b) were followed by the loss of one of each hif1α and hif1αl in Eleutheronema species. Strong collinearity and similarity of gene characteristics suggested the functional conservation of the HIF-pathway during Eleutheronema evolution. Purifying selection was the major theme in HIF-pathway evolution, leading to a reduction in genetic diversity. Substantially low nucleotide diversity of the HIF-pathway was observed among populations, which might indicate the loss of hypoxia fitness in Eleutheronema. Additionally, the normoxic presence of the HIF-pathway differed among tissues and was species-dependent, indicating their diverse roles during development. Significant regulation of HIF-pathway expression levels was observed across tissues under hypoxic conditions, suggesting critical roles in the hypoxia stress response. Moreover, variant molecular characters suggested different roles in response to hypoxia of the HIF-pathway, which were reflected in the different expression patterns across tissues. Our present study provides novel insights into the interplay between gene diversity within the HIF-pathway and hypoxia fitness in threatened Eleutheronema. We highlighted the importance of HIF-pathway-mediated transcriptional regulation in response to hypoxia stress, which provided valuable information for the genetic mechanisms underlying hypoxia adaptation in fish. The bioinformatic methods developed here have broad applications for other species.
Collapse
Affiliation(s)
- Jie Xiao
- School of Energy and Environment and State Key Laboratory of Marine Pollution, City University of Hong Kong, Kowloon, Hong Kong, China; Research Centre for the Oceans and Human Health, City University of Hong Kong Shenzhen Research Institute, Shenzhen 518057, China
| | - Wen-Xiong Wang
- School of Energy and Environment and State Key Laboratory of Marine Pollution, City University of Hong Kong, Kowloon, Hong Kong, China; Research Centre for the Oceans and Human Health, City University of Hong Kong Shenzhen Research Institute, Shenzhen 518057, China.
| |
Collapse
|
4
|
Murphy TE, Harris JC, Rees BB. Hypoxia-inducible factor 1 alpha protein increases without changes in mRNA during acute hypoxic exposure of the Gulf killifish, Fundulus grandis. Biol Open 2023; 12:bio060167. [PMID: 38116983 PMCID: PMC10805151 DOI: 10.1242/bio.060167] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Accepted: 10/23/2023] [Indexed: 12/21/2023] Open
Abstract
The hypoxia inducible factor 1 (HIF1) is a central regulator of the molecular responses of animals to low oxygen. While the hypoxia-responsiveness of HIF1 is generally attributed to the stabilization of the alpha protein subunit (HIF1α) at low oxygen, several studies on fish report increased tissue levels of HIF1A mRNA during hypoxia, suggesting transcriptional regulation. In the current study, HIF1α protein and HIF1A mRNA were determined in parallel in tissues of Gulf killifish, Fundulus grandis, exposed to short-term hypoxia (24 h at 1 mg O2 l-1). HIF1α protein was higher in brain, ovary, and skeletal muscle from fish exposed to hypoxia compared with normoxic controls by 6 h, and it remained elevated in brain and ovary at 24 h. In contrast, HIF1A mRNA levels were unaffected by hypoxia in any tissue. Moreover, HIF1α protein and HIF1A mRNA levels in the same tissues were not correlated with one another during either normoxia or hypoxia. Hence, an increase in HIF1α protein does not depend upon an increase in HIF1A mRNA during acute exposure to low oxygen in this species. The results support the widely accepted mechanism of post-translational protein stabilization, rather than new transcription, during the initial response of fish to hypoxia.
Collapse
Affiliation(s)
- Taylor E. Murphy
- Department of Biological Sciences, University of New Orleans, New Orleans, LA, 70148, USA
| | - Jasmine C. Harris
- Department of Biological Sciences, University of New Orleans, New Orleans, LA, 70148, USA
| | - Bernard B. Rees
- Department of Biological Sciences, University of New Orleans, New Orleans, LA, 70148, USA
| |
Collapse
|
5
|
Devereaux MEM, Chiasson S, Brennan KF, Pamenter ME. The glutamatergic drive to breathe is reduced in severe but not moderate hypoxia in Damaraland mole-rats. J Exp Biol 2023; 226:jeb246185. [PMID: 37589556 PMCID: PMC10565110 DOI: 10.1242/jeb.246185] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Accepted: 08/07/2023] [Indexed: 08/18/2023]
Abstract
Damaraland mole-rats (Fukomys damarensis) are a hypoxia-tolerant fossorial species that exhibit a robust hypoxic metabolic response (HMR) and blunted hypoxic ventilatory response (HVR). Whereas the HVR of most adult mammals is mediated by increased excitatory glutamatergic signalling, naked mole-rats, which are closely related to Damaraland mole-rats, do not utilize this pathway. Given their phylogenetic relationship and similar lifestyles, we hypothesized that the signalling mechanisms underlying physiological responses to acute hypoxia in Damaraland mole-rats are like those of naked mole-rats. To test this, we used pharmacological antagonists of glutamatergic α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptors (AMPARs) and N-methyl-d-aspartate receptors (NMDARs), combined with plethysmography, respirometry and thermal RFID chips, to non-invasively evaluate the role of excitatory AMPAR and NMDAR signalling in mediating ventilatory, metabolic and thermoregulatory responses, respectively, to 1 h of 5 or 7% O2. We found that AMPAR or NMDAR antagonism have minimal impacts on the HMR or hypoxia-mediated changes in thermoregulation. Conversely, the 'blunted' HVR of Damaraland mole-rats is reduced by either AMPAR or NMDAR antagonism such that the onset of the HVR occurs in less severe hypoxia. In more severe hypoxia, antagonists have no impact, suggesting that these receptors are already inhibited. Together, these findings indicate that the glutamatergic drive to breathe decreases in Damaraland mole-rats exposed to severe hypoxia. These findings differ from other adult mammals, in which the glutamatergic drive to breathe increases with hypoxia.
Collapse
Affiliation(s)
| | - Sarah Chiasson
- Department of Biology, University of Ottawa, Ottawa, ON K1N 6N5, Canada
| | - Kate F. Brennan
- Department of Biology, University of Ottawa, Ottawa, ON K1N 6N5, Canada
| | - Matthew E. Pamenter
- Department of Biology, University of Ottawa, Ottawa, ON K1N 6N5, Canada
- University of Ottawa Brain and Mind Research Institute, Ottawa, ON K1H 8M5, Canada
| |
Collapse
|
6
|
Joyce W, Warwicker J, Shiels HA, Perry SF. Evolution and divergence of teleost adrenergic receptors: why sometimes 'the drugs don't work' in fish. J Exp Biol 2023; 226:jeb245859. [PMID: 37823524 DOI: 10.1242/jeb.245859] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/13/2023]
Abstract
Adrenaline and noradrenaline, released as hormones and/or neurotransmitters, exert diverse physiological functions in vertebrates, and teleost fishes are widely used as model organisms to study adrenergic regulation; however, such investigations often rely on receptor subtype-specific pharmacological agents (agonists and antagonists; see Glossary) developed and validated in mammals. Meanwhile, evolutionary (phylogenetic and comparative genomic) studies have begun to unravel the diversification of adrenergic receptors (ARs) and reveal that whole-genome duplications and pseudogenization events in fishes results in notable distinctions from mammals in their genomic repertoire of ARs, while lineage-specific gene losses within teleosts have generated significant interspecific variability. In this Review, we visit the evolutionary history of ARs (including α1-, α2- and β-ARs) to highlight the prominent interspecific differences in teleosts, as well as between teleosts and other vertebrates. We also show that structural modelling of teleost ARs predicts differences in ligand binding affinity compared with mammalian orthologs. To emphasize the difficulty of studying the roles of different AR subtypes in fish, we collate examples from the literature of fish ARs behaving atypically compared with standard mammalian pharmacology. Thereafter, we focus on specific case studies of the liver, heart and red blood cells, where our understanding of AR expression has benefited from combining pharmacological approaches with molecular genetics. Finally, we briefly discuss the ongoing advances in 'omics' technologies that, alongside classical pharmacology, will provide abundant opportunities to further explore adrenergic signalling in teleosts.
Collapse
Affiliation(s)
- William Joyce
- Department of Biology - Zoophysiology, Aarhus University, 8000 Aarhus C, Denmark
| | - Jim Warwicker
- Division of Molecular and Cellular Function, Faculty of Biology, Medicine and Health, Manchester Institute of Biotechnology, The University of Manchester, Manchester, M1 7DN, UK
| | - Holly A Shiels
- Division of Cardiovascular Sciences, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, M13 9PL, UK
| | - Steve F Perry
- Department of Biology, University of Ottawa, 30 Marie Curie, Ottawa, ON, Canada, K1N 6N5
| |
Collapse
|