1
|
Alawfi MS, Alzahrani DA, Albokhari EJ. Complete plastome genomes of three medicinal heliotropiaceae species: comparative analyses and phylogenetic relationships. BMC PLANT BIOLOGY 2024; 24:654. [PMID: 38987665 PMCID: PMC11234707 DOI: 10.1186/s12870-024-05388-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/29/2023] [Accepted: 07/05/2024] [Indexed: 07/12/2024]
Abstract
BACKGROUND Heliotropiaceae is a family of the order Boraginales and has over 450 species. The members of the family Heliotropiaceae have been widely reported to be used in traditional medicine Over time, the classification of Heliotropiaceae has remained uncertain and has moved from family to subfamily, or conversely. RESULTS In the present study, we sequenced, analyzed, and compared the complete plastomes of Euploca strigosa, Heliotropium arbainense, and Heliotropium longiflorum with the genomes of related taxa. The lengths of the plastomes of E. strigosa, H. arbainense, and H. longiflorum were 155,174 bp, 154,709 bp, and 154,496 bp, respectively. Each plastome consisted of 114 genes: 80 protein-coding genes, 4 ribosomal RNA genes, and 30 transfer RNA genes. The long repeats analysis indicated that reverse, palindromic, complement and forward repeats were all found in the three plastomes. The simple repeats analysis showed that the plastomes of E. strigosa, H. arbainense, and H. longiflorum contained 158, 165, and 151 microsatellites, respectively. The phylogenetic analysis confirmed two major clades in the Boraginales: clade I comprised Boraginaceae, while clade II included Heliotropiaceae, Ehretiaceae, Lennoaceae, and Cordiaceae. Inside the family Heliotropiaceae, E. strigosa is nested within the Heliotropium genus. CONCLUSIONS This study expands our knowledge of the evolutionary relationships within Heliotropiaceae and offers useful genetic resources.
Collapse
Affiliation(s)
- Mohammad S Alawfi
- Department of Biology, College of Sciences, King Khalid University, Abha, Saudi Arabia.
- Department of Biological Sciences, Faculty of Sciences, King Abdulaziz University, Jeddah, Saudi Arabia.
| | - Dhafer A Alzahrani
- Department of Biological Sciences, Faculty of Sciences, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Enas J Albokhari
- Department of Biological Sciences, Faculty of Applied Sciences, Umm Al-Qura University, Makkah, Saudi Arabia
| |
Collapse
|
2
|
Wei Z, Chen F, Ding H, Liu W, Yang B, Geng J, Chen S, Guo S. Comparative Analysis of Six Chloroplast Genomes in Chenopodium and Its Related Genera ( Amaranthaceae): New Insights into Phylogenetic Relationships and the Development of Species-Specific Molecular Markers. Genes (Basel) 2023; 14:2183. [PMID: 38137004 PMCID: PMC10743295 DOI: 10.3390/genes14122183] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 11/27/2023] [Accepted: 12/04/2023] [Indexed: 12/24/2023] Open
Abstract
Species within the genus Chenopodium hold significant research interest due to their nutritional richness and salt tolerance. However, the morphological similarities among closely related species and a dearth of genomic resources have impeded their comprehensive study and utilization. In the present research, we conduct the sequencing and assembly of chloroplast (cp) genomes from six Chenopodium and related species, five of which were sequenced for the first time. These genomes ranged in length from 151,850 to 152,215 base pairs, showcased typical quadripartite structures, and encoded 85 protein-coding genes (PCGs), 1 pseudogene, 37 tRNA genes, and 8 rRNA genes. Compared with the previously published sequences of related species, these cp genomes are relatively conservative, but there are also some interspecific differences, such as inversion and IR region contraction. We discerned 929 simple sequence repeats (SSRs) and a series of highly variable regions across 16 related species, predominantly situated in the intergenic spacer (IGS) region and introns. The phylogenetic evaluations revealed that Chenopodium is more closely related to genera such as Atriplex, Beta, Dysphania, and Oxybase than to other members of the Amaranthaceae family. These lineages shared a common ancestor approximately 60.80 million years ago, after which they diverged into distinct genera. Based on InDels and SNPs between species, we designed 12 pairs of primers for species identification, and experiments confirmed that they could completely distinguish 10 related species.
Collapse
Affiliation(s)
- Zixiang Wei
- College of Life Sciences, Yantai University, Yantai 264005, China; (Z.W.); (F.C.); (H.D.); (W.L.); (B.Y.); (J.G.)
| | - Fangjun Chen
- College of Life Sciences, Yantai University, Yantai 264005, China; (Z.W.); (F.C.); (H.D.); (W.L.); (B.Y.); (J.G.)
| | - Hongxia Ding
- College of Life Sciences, Yantai University, Yantai 264005, China; (Z.W.); (F.C.); (H.D.); (W.L.); (B.Y.); (J.G.)
| | - Wenli Liu
- College of Life Sciences, Yantai University, Yantai 264005, China; (Z.W.); (F.C.); (H.D.); (W.L.); (B.Y.); (J.G.)
| | - Bo Yang
- College of Life Sciences, Yantai University, Yantai 264005, China; (Z.W.); (F.C.); (H.D.); (W.L.); (B.Y.); (J.G.)
| | - Jiahui Geng
- College of Life Sciences, Yantai University, Yantai 264005, China; (Z.W.); (F.C.); (H.D.); (W.L.); (B.Y.); (J.G.)
| | - Shihua Chen
- College of Life Sciences, Yantai University, Yantai 264005, China; (Z.W.); (F.C.); (H.D.); (W.L.); (B.Y.); (J.G.)
| | - Shanli Guo
- College of Grassland Science, Qingdao Agricultural University, Qingdao 266109, China
| |
Collapse
|
3
|
Yan R, Geng Y, Jia Y, Xiang C, Zhou X, Hu G. Comparative analyses of Linderniaceae plastomes, with implications for its phylogeny and evolution. FRONTIERS IN PLANT SCIENCE 2023; 14:1265641. [PMID: 37828930 PMCID: PMC10565954 DOI: 10.3389/fpls.2023.1265641] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/23/2023] [Accepted: 09/01/2023] [Indexed: 10/14/2023]
Abstract
Introduction The recently established Linderniaceae, separated from the traditionally defined Scrophulariaceae, is a taxonomically complicated family. Although previous phylogenetic studies based on a few short DNA markers have made great contributions to the taxonomy of Linderniaceae, limited sampling and low resolution of the phylogenetic tree have failed to resolve controversies between some generic circumscriptions. The plastid genome exhibits a powerful ability to solve phylogenetic relationships ranging from shallow to deep taxonomic levels. To date, no plastid phylogenomic studies have been carried out in Linderniaceae. Methods In this study, we newly sequenced 26 plastid genomes of Linderniaceae, including eight genera and 25 species, to explore the phylogenetic relationships and genome evolution of the family through plastid phylogenomic and comparative genomic analyses. Results The plastid genome size of Linderniaceae ranged from 152,386 bp to 154,402 bp, exhibiting a typical quartile structure. All plastomes encoded 114 unique genes, comprising 80 protein-coding genes, 30 tRNA genes, and four rRNA genes. The inverted repeat regions were more conserved compared with the single-copy regions. A total of 1803 microsatellites and 1909 long sequence repeats were identified, and five hypervariable regions (petN-psbM, rps16-trnQ, rpl32-trnL, rpl32, and ycf1) were screened out. Most protein-coding genes were relatively conserved, with only the ycf2 gene found under positive selection in a few species. Phylogenomic analyses confirmed that Linderniaceae was a distinctive lineage and revealed that the presently circumscribed Vandellia and Torenia were non-monophyletic. Discussion Comparative analyses showed the Linderniaceae plastomes were highly conservative in terms of structure, gene order, and gene content. Combining morphological and molecular evidence, we supported the newly established Yamazakia separating from Vandellia and the monotypic Picria as a separate genus. These findings provide further evidence to recognize the phylogenetic relationships among Linderniaceae and new insights into the evolution of the plastid genomes.
Collapse
Affiliation(s)
- Rongrong Yan
- Key Laboratory of Plant Resource Conservation and Germplasm Innovation in Mountainous Region (Ministry of Education), Guizhou University, Guiyang, Guizhou, China
- College of Life Sciences, Guizhou University, Guiyang, Guizhou, China
| | - Yanfei Geng
- College of Tea Science, Guizhou University, Guiyang, Guizhou, China
| | - Yuhuan Jia
- Key Laboratory of Plant Resource Conservation and Germplasm Innovation in Mountainous Region (Ministry of Education), Guizhou University, Guiyang, Guizhou, China
- College of Life Sciences, Guizhou University, Guiyang, Guizhou, China
| | - Chunlei Xiang
- Key Laboratory for Plant Diversity and Biogeography of East Asia, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, Yunnan, China
| | - Xinxin Zhou
- South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, Guangdong, China
| | - Guoxiong Hu
- Key Laboratory of Plant Resource Conservation and Germplasm Innovation in Mountainous Region (Ministry of Education), Guizhou University, Guiyang, Guizhou, China
- College of Life Sciences, Guizhou University, Guiyang, Guizhou, China
| |
Collapse
|
4
|
Juramurodov I, Makhmudjanov D, Yusupov Z, Tojibaev K. First comparative analysis of complete chloroplast genomes among six Hedysarum (Fabaceae) species. FRONTIERS IN PLANT SCIENCE 2023; 14:1211247. [PMID: 37662153 PMCID: PMC10473476 DOI: 10.3389/fpls.2023.1211247] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Accepted: 07/20/2023] [Indexed: 09/05/2023]
Abstract
Hedysarum is one of the largest genera in the Fabaceae family, mainly distributed in the Northern Hemisphere. Despite numerous molecular studies on the genus Hedysarum, there is still a lack of research aimed at defining the specific characteristics of the chloroplast genome (cp genome) of the genus. Furthermore, the interrelationships between sections in the genus based on the cp genome have not yet been studied. In this study, comprehensive analyses of the complete cp genomes of six Hedysarum species, corresponding to sections Multicaulia, Hedysarum, and Stracheya were conducted. The complete cp genomes of H. drobovii, H. flavescens, and H. lehmannianum were sequenced for this study. The cp genomes of six Hedysarum species showed high similarity with regard to genome size (except for H. taipeicum), gene sequences, and gene classes, as well as the lacking IR region. The whole cp genomes of the six species were found to contain 110 genes ranging from 121,176 bp to 126,738 bp in length, including 76 protein-coding genes, 4 rRNA genes, and 30 tRNA genes. In addition, chloroplast SSRs and repetitive sequence regions were reported for each species. The six Hedysarum species shared 7 common SSRs and exhibited 14 unique SSRs. As well, three highly variable genes (clpP, accD, and atpF) with high Pi values were detected among protein-coding genes. Furthermore, we conducted phylogenetic analyses using the complete cp genomes and 76 protein-coding genes of 14 legume species, including the seven Hedysarum species. The results showed that the Hedysarum species form a monophyletic clade closely related to the genera Onobrychis and Alhagi. Furthermore, both of our phylogenetic reconstructions showed that section Stracheya is more closely related to section Hedysarum than to section Multicaulia. This study is the first comprehensive work to investigate the genome characteristics of the genus Hedysarum, which provides useful genetic information for further research on the genus, including evolutionary studies, phylogenetic relationships, population genetics, and species identification.
Collapse
Affiliation(s)
- Inom Juramurodov
- Key Laboratory for Plant Diversity and Biogeography of East Asia, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, Yunnan, China
- Yunnan International Joint Laboratory for Biodiversity of Central Asia, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, Yunnan, China
- Flora of Uzbekistan Laboratory, Institute of Botany of the Academy of Sciences of the Republic of Uzbekistan, Tashkent, Uzbekistan
- University of Chinese Academy of Sciences, Beijing, China
| | - Dilmurod Makhmudjanov
- Key Laboratory for Plant Diversity and Biogeography of East Asia, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, Yunnan, China
- Yunnan International Joint Laboratory for Biodiversity of Central Asia, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, Yunnan, China
- Flora of Uzbekistan Laboratory, Institute of Botany of the Academy of Sciences of the Republic of Uzbekistan, Tashkent, Uzbekistan
- University of Chinese Academy of Sciences, Beijing, China
| | - Ziyoviddin Yusupov
- International Joint Lab for Molecular Phylogeny and Biogeography, Institute of Botany, Academy Sciences of Uzbekistan, Tashkent, Uzbekistan
| | - Komiljon Tojibaev
- Yunnan International Joint Laboratory for Biodiversity of Central Asia, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, Yunnan, China
- Flora of Uzbekistan Laboratory, Institute of Botany of the Academy of Sciences of the Republic of Uzbekistan, Tashkent, Uzbekistan
| |
Collapse
|