1
|
Rito B, Matos L, Proença DN, Morais PV. Kinetics of inactivation of bacteria responsible for infections in hospitals using UV-LED. Heliyon 2024; 10:e30738. [PMID: 38765034 PMCID: PMC11096922 DOI: 10.1016/j.heliyon.2024.e30738] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Revised: 04/30/2024] [Accepted: 05/03/2024] [Indexed: 05/21/2024] Open
Abstract
Controlling the microbial load in the environment is crucial to prevent the spread of organisms. The continuous spread of nosocomial infections in hospital facilities and the emergence of the coronavirus (COVID-19) highlighted the importance of disinfection processes in health safety. This work aimed to evaluate the effectiveness of LED-based disinfection lamps on bacteria from the ESKAPEE group and virus phage in vitro inactivation to be applied in hospital environments and health facilities disinfection. This study evaluated the effect of different UV wavelengths (275 nm, 280 nm (UVC), 310 nm (UVB) and 340 nm (UVA)) on the disinfection process of various microbial indicators including E. coli, S. aureus, P. aeruginosa, B. subtilis and Bacteriophage lambda DSM 4499. Exposure time (5 min-30 min), exposure distance (0.25 m and 0.5 m) and surface materials (glass, steel, and polished wood) were evaluated on the disinfection efficiency. Furthermore, the study determined the recovery capacity of each species after UV damage. UVC-LED lamps could inactivate 99.99 % of microbial indicators after 20 min exposures at a 0.5 m distance. The exposure time needed to completely inactivate E. coli, S. aureus, P. aeruginosa, B. subtilis and Bacteriophage lambda DSM 4499 can be decreased by reducing the exposure distance. UVB-LED and UVA-LED lamps were not able to promote a log reduction of 4 and were not effective on B. subtilis or bacteriophage lambda DSM 4499 inactivation. Thus, only UVC-LED lamps were tested on the decontamination of different surface materials, which was successful. P. aeruginosa showed the ability to recover from UV damage, but its inactivation rate remains 99.99 %, and spores from B. subtilis were not completely inactivated. Nevertheless, the inactivation rate of these indicators remained at 99.99 % with 24 h incubation after UVC irradiation. UVC-LED lamps emitting 280 nm were the most indicated to disinfect surfaces from microorganisms usually found in hospital environments.
Collapse
Affiliation(s)
- Beatriz Rito
- University of Coimbra, Centre for Mechanical Engineering, Materials and Processes, ARISE, Department of Life Sciences, Calcada Martim de Freitas, 3000-456, Coimbra, Portugal
| | - Leonor Matos
- University of Coimbra, Centre for Mechanical Engineering, Materials and Processes, ARISE, Department of Life Sciences, Calcada Martim de Freitas, 3000-456, Coimbra, Portugal
| | - Diogo N. Proença
- University of Coimbra, Centre for Mechanical Engineering, Materials and Processes, ARISE, Department of Life Sciences, Calcada Martim de Freitas, 3000-456, Coimbra, Portugal
| | - Paula V. Morais
- University of Coimbra, Centre for Mechanical Engineering, Materials and Processes, ARISE, Department of Life Sciences, Calcada Martim de Freitas, 3000-456, Coimbra, Portugal
| |
Collapse
|
2
|
Wu Y, Guo P, Luo D, Deng J, Yao H, Sun W. Feasibility analysis of inactivating influenza A(H1N1) virus using UVC robot in classroom environment. Heliyon 2024; 10:e29540. [PMID: 38681599 PMCID: PMC11046110 DOI: 10.1016/j.heliyon.2024.e29540] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Revised: 04/06/2024] [Accepted: 04/09/2024] [Indexed: 05/01/2024] Open
Abstract
Background Starting from 2009, H1N1 has been one of the respiratory diseases that afflict the global population. Concurrently, due to the influence of COVID-19, it has become widely accepted that preventing the virus's spread necessitates personal protection measures and disinfection in public spaces. Experiments This study conducted two experiments. In the classroom experiment, six UVC dose test points were calibrated to test whether the UVC dose at each testing point met the standards for inactivating IAVs and the time required to meet the standards. In the simulated classroom experiment, seven square slides made of IAVs were placed. After 10 min of robot movement, irradiated sterile square slides were made into suspension and injected into chicken embryos. Cultivate chicken embryos and conduct IAVs testing. Results Classroom experiment has shown that 5 testing points can meet the standards for inactivating IAVs(3 mJ/cm2), with a required time of 80 min, 40 min, 15 min, 5 min and 10 min. The UVC dose for testing points that do not meet the standards in 80 min is only 0.5 mJ/cm2. The simulation classroom experiment outcomes revealed that 99.99 % of IAVs were deactivated. Furthermore, this study established both a desktop control group and a chair arm control group, both of which yielded identical results, indicating an inactivation logarithm of IAVs≥4log. Conclusion The study presented that IAVs on the surface of an object can be effectively and rapidly deactivated at an irradiation density of 1.8 mW/cm2. Meanwhile, the study provides evidence of the feasibility of using the GXU robot to inactivate IAVs in a classroom environment.
Collapse
Affiliation(s)
- Yizhen Wu
- Research Center for Optoelectronic Materials and Devices, Guangxi Key Laboratory for the Relativistic Astrophysics, School of Physical Science & Technology, Guangxi University, Nanning 530004, China
| | - Peiyao Guo
- Research Center for Optoelectronic Materials and Devices, Guangxi Key Laboratory for the Relativistic Astrophysics, School of Physical Science & Technology, Guangxi University, Nanning 530004, China
| | - Dekun Luo
- Research Center for Optoelectronic Materials and Devices, Guangxi Key Laboratory for the Relativistic Astrophysics, School of Physical Science & Technology, Guangxi University, Nanning 530004, China
| | - Jianyu Deng
- Research Center for Optoelectronic Materials and Devices, Guangxi Key Laboratory for the Relativistic Astrophysics, School of Physical Science & Technology, Guangxi University, Nanning 530004, China
| | - Huilu Yao
- Research Center for Optoelectronic Materials and Devices, Guangxi Key Laboratory for the Relativistic Astrophysics, School of Physical Science & Technology, Guangxi University, Nanning 530004, China
| | - Wenhong Sun
- Research Center for Optoelectronic Materials and Devices, Guangxi Key Laboratory for the Relativistic Astrophysics, School of Physical Science & Technology, Guangxi University, Nanning 530004, China
- MOE Key Laboratory of New Processing Technology for Nonferrous Metals and Materials, Guangxi Key Laboratory of Processing for Non-ferrous Metals and Featured Materials, Nanning 530004 Guangxi, China
- Third Generation Semiconductor Industry Research Institute, Guangxi University, Nanning 530004, China
| |
Collapse
|
3
|
Sousa M, Oliveira IM, Correia L, Gomes IB, Sousa CA, Braga DFO, Simões M. Far-UV-C irradiation promotes synergistic bactericidal action against adhered cells of Escherichia coli and Staphylococcus epidermidis. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 917:170352. [PMID: 38286293 DOI: 10.1016/j.scitotenv.2024.170352] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Revised: 01/17/2024] [Accepted: 01/20/2024] [Indexed: 01/31/2024]
Abstract
The contamination of indoor areas is a global health problem that can cause the dispersion of infectious diseases. In that sense, it is urgent to find new strategies applying a lower concentration of the traditional chemicals used for cleaning and disinfection. Ultraviolet radiation (UV), in particular far-UV-C (200-225 nm), has emerged as a successful, powerful, easy-to-apply, and inexpensive approach for bacterial eradication that still requires scientific assessment. This study investigated new strategies for disinfection based on far-UV-C (222 nm) combined with chlorine and mechanical cleaning, providing an innovative solution using low doses. The bactericidal activity of far-UV-C (222 nm) was tested at an intensity of irradiation from 78.4 μW/cm2 to 597.7 μW/cm2 (for 1 min) against Escherichia coli and Staphylococcus epidermidis adhered on polystyrene microtiter plates. It was further tested in combination with mechanical cleaning (ultrasounds for 1 min) and free chlorine (0.1, 0.5, and 1 mg/L for 5 min). The triple combination consisting of mechanical cleaning + free chlorine (0.5 mg/L) + far-UV-C (54 mJ/cm2) was tested against cells adhered to materials found in hospital settings and other public spaces: polyvinyl chloride (PVC), stainless steel (SS), and polyetheretherketone (PEEK). Disinfection with far-UV-C (54 mJ/cm2) and free chlorine at 0.5 mg/L for 5 min allowed a total reduction of culturable E. coli cells and a logarithmic reduction of 2.98 ± 0.03 for S. epidermidis. The triple combination of far-UV-C, free chlorine, and mechanical cleaning resulted in a total reduction of culturable cells for both adhered bacteria. Bacterial adhesion to PVC, SS, and PEEK occurred at distinct extents and influenced the bactericidal activity of the triple combination, with logarithmic reductions of up to three. The overall results highlight that, based on culturability assessment, far-UV-C (54 mJ/cm2) with chlorine (0.5 mg/L; 5 min) and mechanical cleaning (1 min) as an efficient disinfection strategy using mild conditions. The combination of culturability and viability assessment of disinfection is recommended to detect regrowth events and increase the effectiveness in microbial growth control.
Collapse
Affiliation(s)
- M Sousa
- LEPABE-Laboratory for Process Engineering, Environment, Biotechnology and Energy, Faculty of Engineering, Department of Chemical Engineering, University of Porto, 4200-465 Porto, Portugal; ALiCE-Associate Laboratory in Chemical Engineering, Faculty of Engineering, University of Porto, 4200-465 Porto, Portugal
| | - I M Oliveira
- LEPABE-Laboratory for Process Engineering, Environment, Biotechnology and Energy, Faculty of Engineering, Department of Chemical Engineering, University of Porto, 4200-465 Porto, Portugal; ALiCE-Associate Laboratory in Chemical Engineering, Faculty of Engineering, University of Porto, 4200-465 Porto, Portugal
| | - L Correia
- SpinnerDynamics, Lda., Rua da Junta de Freguesia 194, 4540-322 Escariz, Arouca, Portugal
| | - I B Gomes
- LEPABE-Laboratory for Process Engineering, Environment, Biotechnology and Energy, Faculty of Engineering, Department of Chemical Engineering, University of Porto, 4200-465 Porto, Portugal; ALiCE-Associate Laboratory in Chemical Engineering, Faculty of Engineering, University of Porto, 4200-465 Porto, Portugal
| | - C A Sousa
- LEPABE-Laboratory for Process Engineering, Environment, Biotechnology and Energy, Faculty of Engineering, Department of Chemical Engineering, University of Porto, 4200-465 Porto, Portugal; ALiCE-Associate Laboratory in Chemical Engineering, Faculty of Engineering, University of Porto, 4200-465 Porto, Portugal
| | - D F O Braga
- SpinnerDynamics, Lda., Rua da Junta de Freguesia 194, 4540-322 Escariz, Arouca, Portugal
| | - M Simões
- LEPABE-Laboratory for Process Engineering, Environment, Biotechnology and Energy, Faculty of Engineering, Department of Chemical Engineering, University of Porto, 4200-465 Porto, Portugal; ALiCE-Associate Laboratory in Chemical Engineering, Faculty of Engineering, University of Porto, 4200-465 Porto, Portugal.
| |
Collapse
|