1
|
Todisco V, Fridolfsson E, Axén C, Dahlgren E, Ejsmond MJ, Hauber MM, Hindar K, Tibblin P, Zöttl M, Söderberg L, Hylander S. Thiamin dynamics during the adult life cycle of Atlantic salmon (Salmo salar). JOURNAL OF FISH BIOLOGY 2024; 104:807-824. [PMID: 37823583 DOI: 10.1111/jfb.15584] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Academic Contribution Register] [Received: 05/20/2023] [Revised: 09/05/2023] [Accepted: 10/06/2023] [Indexed: 10/13/2023]
Abstract
Thiamin is an essential water-soluble B vitamin known for its wide range of metabolic functions and antioxidant properties. Over the past decades, reproductive failures induced by thiamin deficiency have been observed in several salmonid species worldwide, but it is unclear why this micronutrient deficiency arises. Few studies have compared thiamin concentrations in systems of salmonid populations with or without documented thiamin deficiency. Moreover, it is not well known whether and how thiamin concentration changes during the marine feeding phase and the spawning migration. Therefore, samples of Atlantic salmon (Salmo salar) were collected when actively feeding in the open Baltic Sea, after the sea migration to natal rivers, after river migration, and during the spawning period. To compare populations of Baltic salmon with systems without documented thiamin deficiency, a population of landlocked salmon located in Lake Vänern (Sweden) was sampled as well as salmon from Norwegian rivers draining into the North Atlantic Ocean. Results showed the highest mean thiamin concentrations in Lake Vänern salmon, followed by North Atlantic, and the lowest in Baltic populations. Therefore, salmon in the Baltic Sea seem to be consistently more constrained by thiamin than those in other systems. Condition factor and body length had little to no effect on thiamin concentrations in all systems, suggesting that there is no relation between the body condition of salmon and thiamin deficiency. In our large spatiotemporal comparison of salmon populations, thiamin concentrations declined toward spawning in all studied systems, suggesting that the reduction in thiamin concentration arises as a natural consequence of starvation rather than to be related to thiamin deficiency in the system. These results suggest that factors affecting accumulation during the marine feeding phase are key for understanding the thiamin deficiency in salmonids.
Collapse
Affiliation(s)
- Vittoria Todisco
- Centre for Ecology and Evolution in Microbial Model Systems (EEMiS), Linnaeus University, Kalmar, Sweden
| | - Emil Fridolfsson
- Centre for Ecology and Evolution in Microbial Model Systems (EEMiS), Linnaeus University, Kalmar, Sweden
| | - Charlotte Axén
- Section for Fish, National Veterinary Institute (SVA), Uppsala, Sweden
| | - Elin Dahlgren
- Institution of Aquatic Resources, Swedish University of Agricultural Sciences (SLU), Uppsala, Sweden
| | - Maciej J Ejsmond
- Centre for Ecology and Evolution in Microbial Model Systems (EEMiS), Linnaeus University, Kalmar, Sweden
- Institute of Environmental Science, Jagiellonian University, Cracow, Poland
| | - Marc M Hauber
- Centre for Ecology and Evolution in Microbial Model Systems (EEMiS), Linnaeus University, Kalmar, Sweden
| | - Kjetil Hindar
- Norwegian Institute for Nature Research (NINA), Trondheim, Norway
| | - Petter Tibblin
- Centre for Ecology and Evolution in Microbial Model Systems (EEMiS), Linnaeus University, Kalmar, Sweden
| | - Markus Zöttl
- Centre for Ecology and Evolution in Microbial Model Systems (EEMiS), Linnaeus University, Kalmar, Sweden
| | - Linda Söderberg
- Institution of Aquatic Resources, Swedish University of Agricultural Sciences (SLU), Uppsala, Sweden
| | - Samuel Hylander
- Centre for Ecology and Evolution in Microbial Model Systems (EEMiS), Linnaeus University, Kalmar, Sweden
| |
Collapse
|
2
|
Suffridge CP, Shannon KC, Matthews H, Johnson RC, Jeffres C, Mantua N, Ward AE, Holmes E, Kindopp J, Aidoo M, Colwell FS. Connecting thiamine availability to the microbial community composition in Chinook salmon spawning habitats of the Sacramento River basin. Appl Environ Microbiol 2024; 90:e0176023. [PMID: 38084986 PMCID: PMC10807462 DOI: 10.1128/aem.01760-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 10/05/2023] [Accepted: 10/27/2023] [Indexed: 01/25/2024] Open
Abstract
Thiamine deficiency complex (TDC) is a major emerging threat to global populations of culturally and economically important populations of salmonids. Salmonid eggs and embryos can assimilate exogenous thiamine, and evidence suggests that microbial communities in benthic environments can produce substantial amounts of thiamine. We therefore hypothesize that natural dissolved pools of thiamine exist in the surface water and hyporheic zones of riverine habitats where salmonids with TDC migrate, spawn, and begin their lives. To examine the relationship between dissolved thiamine-related compounds (dTRCs) and their microbial source, we determined the concentrations of these metabolites and the compositions of microbial communities in surface and hyporheic waters of the Sacramento River, California and its tributaries. Here we determine that all dTRCs are present in femto-picomolar concentrations in a range of critically important salmon spawning habitats. We observed that thiamine concentrations in the Sacramento River system are orders of magnitude lower than those of marine waters, indicating substantial differences in thiamine cycling between these two environments. Our data suggest that the hyporheic zone is likely the source of thiamine to the overlying surface water. Temporal variations in dTRC concentrations were observed where the highest concentrations existed when Chinook salmon were actively spawning. Significant correlations were seen between the richness of microbial taxa and dTRC concentrations, particularly in the hyporheic zone, which would influence the conditions where embryonic salmon incubate. Together, these results indicate a connection between microbial communities in freshwater habitats and the availability of thiamine to spawning TDC-impacted California Central Valley Chinook salmon.IMPORTANCEPacific salmon are keystone species with considerable economic importance and immeasurable cultural significance to Pacific Northwest indigenous peoples. Thiamine deficiency complex has recently been diagnosed as an emerging threat to the health and stability of multiple populations of salmonids ranging from California to Alaska. Microbial biosynthesis is the major source of thiamine in marine and aquatic environments. Despite this importance, the concentrations of thiamine and the identities of the microbial communities that cycle it are largely unknown. Here we investigate microbial communities and their relationship to thiamine in Chinook salmon spawning habitats in California's Sacramento River system to gain an understanding of how thiamine availability impacts salmonids suffering from thiamine deficiency complex.
Collapse
Affiliation(s)
| | - Kelly C. Shannon
- Department of Microbiology, Oregon State University, Corvallis, Oregon, USA
| | - H. Matthews
- Department of Microbiology, Oregon State University, Corvallis, Oregon, USA
| | - R. C. Johnson
- Fisheries Ecology Division, NOAA Fisheries, Southwest Fisheries Science Center, Santa Cruz, California, USA
- University of California, Center for Watershed Sciences, Davis, California, USA
| | - C. Jeffres
- University of California, Center for Watershed Sciences, Davis, California, USA
| | - N. Mantua
- Fisheries Ecology Division, NOAA Fisheries, Southwest Fisheries Science Center, Santa Cruz, California, USA
| | - A. E. Ward
- University of California, Center for Watershed Sciences, Davis, California, USA
| | - E. Holmes
- University of California, Center for Watershed Sciences, Davis, California, USA
- California Department of Water Resources, West Sacramento, California, USA
| | - J. Kindopp
- California Department of Water Resources, Division of Integrated Science and Engineering, Oroville, California, USA
| | - M. Aidoo
- Bronx Community College, Bronx, New York, USA
| | - F. S. Colwell
- Department of Microbiology, Oregon State University, Corvallis, Oregon, USA
- College of Earth, Ocean, and Atmospheric Sciences, Oregon State University, Corvallis, Oregon, USA
| |
Collapse
|
3
|
Rowland FE, Richter CA, Tillitt DE, Walters DM. Evolutionary and ecological correlates of thiaminase in fishes. Sci Rep 2023; 13:18147. [PMID: 37875540 PMCID: PMC10598016 DOI: 10.1038/s41598-023-44654-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 08/17/2023] [Accepted: 10/11/2023] [Indexed: 10/26/2023] Open
Abstract
Thiamine (vitamin B1) is required by all living organisms in multiple metabolic pathways. It is scarce in natural systems, and deficiency can lead to reproductive failure, neurological issues, and death. One major cause of thiamine deficiency is an overreliance on diet items containing the enzyme thiaminase. Thiaminase activity has been noted in many prey fishes and linked to cohort failure in salmonid predators that eat prey fish with thiaminase activity, yet it is generally unknown whether evolutionary history, fish traits, and/or environmental conditions lead to production of thiaminase. We conducted literature and GenBank BLAST sequence searches to collect thiaminase activity data and sequence homology data in expressed protein sequences for 300 freshwater and marine fishes. We then tested whether presence or absence of thiaminase could be predicted by evolutionary relationships, trophic level, omega-3 fatty acid concentrations, habitat, climate, invasive potential, and body size. There was no evolutionary relationship with thiaminase activity. It first appears in Class Actinoptergyii (bony ray-finned fishes) and is present across the entire Actinoptergyii phylogeny in both primitive and derived fish orders. Instead, ecological factors explained the most variation in thiaminase: fishes were more likely to express thiaminase if they fed closer to the base of the food web, were high in polyunsaturated fatty acids, lived in freshwater, and were from tropical climates. These data provide a foundation for understanding sources of thiaminase leading to thiamine deficiency in fisheries and other organisms, including humans that eat uncooked fish.
Collapse
Affiliation(s)
- Freya E Rowland
- U.S. Geological Survey, Columbia Environmental Research Center, 4200 New Haven Rd, Columbia, MO, 65201, USA.
| | - Catherine A Richter
- U.S. Geological Survey, Columbia Environmental Research Center, 4200 New Haven Rd, Columbia, MO, 65201, USA
| | - Donald E Tillitt
- U.S. Geological Survey, Columbia Environmental Research Center, 4200 New Haven Rd, Columbia, MO, 65201, USA
| | - David M Walters
- U.S. Geological Survey, Columbia Environmental Research Center, 4200 New Haven Rd, Columbia, MO, 65201, USA
| |
Collapse
|
4
|
Edwards KA, Randall EA, Wolfe PC, Angert ER, Kraft CE. Dietary factors potentially impacting thiaminase I-mediated thiamine deficiency. Sci Rep 2023; 13:7008. [PMID: 37117240 PMCID: PMC10147936 DOI: 10.1038/s41598-023-34063-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 12/07/2022] [Accepted: 04/24/2023] [Indexed: 04/30/2023] Open
Abstract
Fish population declines from thiamine (vitamin B1) deficiency have been widespread in ecologically and economically valuable organisms, ranging from the Great Lakes to the Baltic Sea and, most recently, the California coast. Thiamine deficiencies in predatory fishes are often attributed to a diet of prey fishes with high levels of thiamine-degrading (e.g., thiaminase) enzymes, such as alewives, rainbow smelt, and anchovies. Since their discovery, thiaminase I enzymes have been recognized for breaking down thiamine into its pyrimidine and thiazole moieties using various nucleophilic co-substrates to afford cleavage, but these studies have not thoroughly considered other factors that could modify enzyme activity. We found the thiaminase I enzyme from Clostridium botulinum efficiently degrades thiamine in the presence of pyridoxine (vitamin B6) as a co-substrate but has relatively limited activity in the presence of nicotinic acid (vitamin B3). Using fluorescence measurements, thiamine degradation in an over-the-counter complete multivitamin formulation was inhibited, and a B-complex formulation required co-substrate supplementation for maximal thiamine depletion. These studies prompted the evaluation of specific constituents contributing to thiaminase I inhibition by both chromatography and fluorescence assays: Cu2+ potently and irreversibly inhibited thiamine degradation; ascorbic acid was a strong but reversible inhibitor; Fe2+, Mn2+ and Fe3+ modulated thiamine degradation to a lesser degree. The enhancement by pyridoxine and inhibition by Cu2+ extended to thiaminase-mediated degradation from Burkholderia thailandensis, Paenibacillus thiaminolyticus, and Paenibacillus apiarius in tryptic soy broth supernatants. These co-substrate limitations and the common presence of inhibitory dietary factors complement recent studies reporting that the intended function of thiaminase enzymes is to recycle thiamine breakdown products for thiamine synthesis, not thiamine degradation.
Collapse
Affiliation(s)
- Katie A Edwards
- Department of Pharmaceutical Sciences, Binghamton University, Binghamton, NY, 13902, USA.
- Department of Microbiology, Cornell University, Ithaca, NY, 14853, USA.
| | - Eileen A Randall
- Department of Natural Resources and the Environment, Cornell University, Ithaca, NY, 14853, USA
| | - Patricia C Wolfe
- Department of Pharmaceutical Sciences, Binghamton University, Binghamton, NY, 13902, USA
| | - Esther R Angert
- Department of Microbiology, Cornell University, Ithaca, NY, 14853, USA
| | - Clifford E Kraft
- Department of Natural Resources and the Environment, Cornell University, Ithaca, NY, 14853, USA
| |
Collapse
|
5
|
Wolfe PC, Tuske AM, Tillitt DE, Allen F, Edwards KA. Understanding and mitigating thiaminase activity in silver carp. Curr Res Food Sci 2023; 6:100502. [PMID: 37377495 PMCID: PMC10290998 DOI: 10.1016/j.crfs.2023.100502] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 02/24/2023] [Revised: 04/05/2023] [Accepted: 04/06/2023] [Indexed: 06/29/2023] Open
Abstract
A deficiency of thiamine (vitamin B1), an essential cofactor for enzymes involved in metabolic processes, can be caused by the enzyme thiaminase. Thiaminase in food stocks has been linked to morbidity and mortality due to thiamine depletion in many ecologically and economically important species. Thiaminase activity has been detected in certain bacteria, plants, and fish species, including carp. The invasive silver carp (Hypophthalmichthys molitrix) presents an enormous burden to ecosystems throughout the Mississippi River watershed. Its large biomass and nutritional content offer an attractive possibility as a food source for humans, wild animals, or pets. Additionally, harvesting this fish could alleviate some of the effects of this species on waterways. However, the presence of thiaminase would detract from its value for dietary consumption. Here we confirm the presence of thiaminase in several tissues from silver carp, most notably the viscera, and systematically examine the effects of microwaving, baking, dehydrating, and freeze-drying on thiaminase activity. Certain temperatures and durations of baking and microwaving reduced thiaminase activity to undetectable levels. However, caution should be taken when carp tissue is concentrated by processes without sufficient heat treatment, such as freeze-drying or dehydration, which results in concentration, but not inactivation of the enzyme. The effects of such treatments on the ease of extracting proteins, including thiaminase, and the impact on data interpretation using the 4-nitrothiophenol (4-NTP) thiaminase assay were considered.
Collapse
Affiliation(s)
- Patricia C. Wolfe
- Department of Pharmaceutical Sciences, Binghamton University, Binghamton, NY, 13902, USA
| | - Amber M. Tuske
- Department of Pharmaceutical Sciences, Binghamton University, Binghamton, NY, 13902, USA
| | - Donald E. Tillitt
- U.S. Geological Survey, Columbia Environmental Research Center, Columbia, MO, 65201, USA
| | - Fred Allen
- RADii Solutions, LLC, Princeton, NJ, 08540, USA
- Carpe Eat'm, LLC, Paducah, KY, 42001, USA
| | - Katie A. Edwards
- Department of Pharmaceutical Sciences, Binghamton University, Binghamton, NY, 13902, USA
| |
Collapse
|