1
|
Mancarella S, Gigante I, Pizzuto E, Serino G, Terzi A, Dituri F, Maiorano E, Vincenti L, De Bellis M, Ardito F, Calvisi DF, Giannelli G. Targeting cancer-associated fibroblasts/tumor cells cross-talk inhibits intrahepatic cholangiocarcinoma progression via cell-cycle arrest. J Exp Clin Cancer Res 2024; 43:286. [PMID: 39415286 PMCID: PMC11484308 DOI: 10.1186/s13046-024-03210-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2024] [Accepted: 10/06/2024] [Indexed: 10/18/2024] Open
Abstract
BACKGROUND Cancer-associated fibroblasts (CAFs), mainly responsible for the desmoplastic reaction hallmark of intrahepatic Cholangiocarcinoma (iCCA), likely have a role in tumor aggressiveness and resistance to therapy, although the molecular mechanisms involved are unknown. Aim of the study is to investigate how targeting hCAF/iCCA cross-talk with a Notch1 inhibitor, namely Crenigacestat, may affect cancer progression. METHODS We used different in vitro models in 2D and established new 3D hetero-spheroids with iCCA cells and human (h)CAFs. The results were confirmed in a xenograft model, and explanted tumoral tissues underwent transcriptomic and bioinformatic analysis. RESULTS hCAFs/iCCA cross-talk sustains increased migration of both KKU-M213 and KKU-M156 cells, while Crenigacestat significantly inhibits only the cross-talk stimulated migration. Hetero-spheroids grew larger than homo-spheroids, formed by only iCCA cells. Crenigacestat significantly reduced the invasion and growth of hetero- but not of homo-spheroids. In xenograft models, hCAFs/KKU-M213 tumors grew significantly larger than KKU-M213 tumors, but were significantly reduced in volume by Crenigacestat treatment, which also significantly decreased the fibrotic reaction. Ingenuity pathway analysis revealed that genes of hCAFs/KKU-M213 but not of KKU-M213 tumors increased tumor lesions, and that Crenigacestat treatment inhibited the modulated canonical pathways. Cell cycle checkpoints were the most notably modulated pathway and Crenigacestat reduced CCNE2 gene expression, consequently inducing cell cycle arrest. In hetero-spheroids, the number of cells increased in the G2/M cell cycle phase, while Crenigacestat significantly decreased cell numbers in the G2/M phase in hetero but not in homo-spheroids. CONCLUSIONS The hCAFs/iCCA cross-talk is a new target for reducing cancer progression with drugs such as Crenigacestat.
Collapse
Affiliation(s)
- Serena Mancarella
- National Institute of Gastroenterology, IRCCS "S. de Bellis" Research Hospital, Via Turi 27, Castellana Grotte, BA, 70013, Italy
| | - Isabella Gigante
- National Institute of Gastroenterology, IRCCS "S. de Bellis" Research Hospital, Via Turi 27, Castellana Grotte, BA, 70013, Italy
| | - Elena Pizzuto
- National Institute of Gastroenterology, IRCCS "S. de Bellis" Research Hospital, Via Turi 27, Castellana Grotte, BA, 70013, Italy
| | - Grazia Serino
- National Institute of Gastroenterology, IRCCS "S. de Bellis" Research Hospital, Via Turi 27, Castellana Grotte, BA, 70013, Italy
| | - Alberta Terzi
- National Institute of Gastroenterology, IRCCS "S. de Bellis" Research Hospital, Via Turi 27, Castellana Grotte, BA, 70013, Italy
| | - Francesco Dituri
- National Institute of Gastroenterology, IRCCS "S. de Bellis" Research Hospital, Via Turi 27, Castellana Grotte, BA, 70013, Italy
| | - Eugenio Maiorano
- National Institute of Gastroenterology, IRCCS "S. de Bellis" Research Hospital, Via Turi 27, Castellana Grotte, BA, 70013, Italy
| | - Leonardo Vincenti
- National Institute of Gastroenterology, IRCCS "S. de Bellis" Research Hospital, Via Turi 27, Castellana Grotte, BA, 70013, Italy
| | - Mario De Bellis
- Division of General and Hepatobiliary Surgery, Department of Surgery, Dentistry, Gynecology and Pediatrics, University of Verona, G.B. Rossi University Hospital, P.le L.A. Scuro 10, Verona, 37134, Italy
| | - Francesco Ardito
- Hepatobiliary Surgery Unit, Foundation "Policlinico Universitario A. Gemelli", IRCCS, Catholic University, Rome, Italy
| | - Diego F Calvisi
- Institute of Pathology, University of Regensburg, 93053, Regensburg, Germany
| | - Gianluigi Giannelli
- National Institute of Gastroenterology, IRCCS "S. de Bellis" Research Hospital, Via Turi 27, Castellana Grotte, BA, 70013, Italy.
| |
Collapse
|
2
|
Jamadi Khiabani M, Soroushzadeh S, Talebi A, Samanta A. Shear-Induced Cycloreversion Leading to Shear-Thinning and Autonomous Self-Healing in an Injectable, Shape-Holding Collagen Hydrogel. ACS APPLIED MATERIALS & INTERFACES 2024; 16. [PMID: 39377244 PMCID: PMC11492320 DOI: 10.1021/acsami.4c08066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Revised: 09/22/2024] [Accepted: 09/26/2024] [Indexed: 10/09/2024]
Abstract
In vivo injectable extracellular matrix (ECM) derived hydrogels that are suitable for cell encapsulation have always been the holy grail in tissue engineering. Nevertheless, these hydrogels still fall short today of meeting three crucial criteria: (a) flexibility on the injectability time window, (b) autonomous self-healing of the injected hydrogel, and (c) shape-retention under aqueous conditions. Here we report the development of a collagen-based injectable hydrogel, cross-linked by cycloaddition reaction between furan and maleimide groups, that (a) is injectable up to 48 h after preparation, (b) can undergo complete autonomous self-healing after injection, (c) can retain its shape and size over several years when stored in the buffer, (d) can be degraded within hours when treated with collagenase, (e) is biocompatible as demonstrated by in vitro cell-culture, and (f) is completely resorbable in vivo when implanted subcutaneously in rats without causing any inflammation.
Collapse
Affiliation(s)
- Mahsa Jamadi Khiabani
- Macromolecular
Chemistry, Department of Chemistry—Ångström Laboratory, Uppsala University, Box 538, 751 21 Uppsala, Sweden
| | - Sareh Soroushzadeh
- Department
of Pathology, School of Medicine, Isfahan
University of Medical Sciences, Isfahan 8174673461, Iran
| | - Ardeshir Talebi
- Department
of Pathology, School of Medicine, Isfahan
University of Medical Sciences, Isfahan 8174673461, Iran
| | - Ayan Samanta
- Macromolecular
Chemistry, Department of Chemistry—Ångström Laboratory, Uppsala University, Box 538, 751 21 Uppsala, Sweden
| |
Collapse
|
3
|
Hong J, Yu J, Buratto D, Chen W, Zhou R, Ling S, Xu X. Unveiling the Role of Mechanical Microenvironment in Hepatocellular Carcinoma: Molecular Mechanisms and Implications for Therapeutic Strategies. Int J Biol Sci 2024; 20:5239-5253. [PMID: 39430235 PMCID: PMC11489173 DOI: 10.7150/ijbs.102706] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2024] [Accepted: 09/15/2024] [Indexed: 10/22/2024] Open
Abstract
Hepatocellular carcinoma (HCC) is the sixth most common cancer in the world and the third leading cause of cancer deaths globally. More than 80% of HCC patients have a background of fibrosis or cirrhosis, which leads to changes in physical factors in tumor microenvironment (TME), such as increased stiffness, solid stress, fluid stresses and structural alterations in the extracellular matrix (ECM). In the past, the focus of cancer research has predominantly been on genetic and biochemical factors in the TME, and the critical role of physical factors has often been overlooked. Recent discoveries suggest these unique physical signals are converted into biochemical signals through a mechanotransduction process that influences the biological behavior of tumor cells and stromal cells. This process facilitates the occurrence and progression of tumors. This review delves into the alterations in the mechanical microenvironment during the progression of liver fibrosis to HCC, the signaling pathways activated by physical signals, and the effects on both tumor and mesenchymal stromal cells. Furthermore, this paper summarizes and discusses the therapeutic options for targeting the mechanical aspects of the TME, offering valuable insights for future research into novel therapeutic avenues against HCC and other solid tumors.
Collapse
Affiliation(s)
- Jiachen Hong
- Hangzhou Normal University, Hangzhou, 311121, China
| | - Jiongjie Yu
- Zhejiang University School of Medicine, Hangzhou, Zhejiang, 310000, China
| | - Damiano Buratto
- Institute of Quantitative Biology, and College of Life Sciences, Zhejiang University, 310027, Hangzhou, China
| | - Wei Chen
- Department of Cell Biology, Zhejiang University School of Medicine, and Liangzhu Laboratory, Zhejiang University, Hangzhou, Zhejiang, China
| | - Ruhong Zhou
- Institute of Quantitative Biology, and College of Life Sciences, Zhejiang University, 310027, Hangzhou, China
- The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, 310058, China
| | - Sunbin Ling
- Department of Hepatobiliary and Pancreatic Surgery and Minimally Invasive Surgery, Zhejiang Provincial People's Hospital (Affiliated People's Hospital), School of Clinical Medicine, Hangzhou Medical College, Hangzhou 314408, China
| | - Xiao Xu
- Department of Hepatobiliary and Pancreatic Surgery and Minimally Invasive Surgery, Zhejiang Provincial People's Hospital (Affiliated People's Hospital), School of Clinical Medicine, Hangzhou Medical College, Hangzhou 314408, China
- The Second Clinical College of Hangzhou Normal University, Hangzhou Normal University, Hangzhou, Zhejiang 311121, China
| |
Collapse
|
4
|
Lu SL, Pei Y, Liu WW, Han K, Cheng JCH, Li PC. Evaluating ECM stiffness and liver cancer radiation response via shear-wave elasticity in 3D culture models. Radiat Oncol 2024; 19:128. [PMID: 39334323 PMCID: PMC11430210 DOI: 10.1186/s13014-024-02513-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2023] [Accepted: 08/26/2024] [Indexed: 09/30/2024] Open
Abstract
BACKGROUND The stiffness of the tumor microenvironment (TME) directly influences cellular behaviors. Radiotherapy (RT) is a common treatment for solid tumors, but the TME can impact its efficacy. In the case of liver cancer, clinical observations have shown that tumors within a cirrhotic, stiffer background respond less to RT, suggesting that the extracellular matrix (ECM) stiffness plays a critical role in the development of radioresistance. METHODS This study explored the effects of ECM stiffness and the inhibition of lysyl oxidase (LOX) isoenzymes on the radiation response of liver cancer in a millimeter-sized three-dimensional (3D) culture. We constructed a cube-shaped ECM-based millimeter-sized hydrogel containing Huh7 human liver cancer cells. By modulating the collagen concentration, we produced two groups of samples with different ECM stiffnesses to mimic the clinical scenarios of normal and cirrhotic livers. We used a single-transducer system for shear-wave-based elasticity measurement, to derive Young's modulus of the 3D cell culture to investigate how the ECM stiffness affects radiosensitivity. This is the first demonstration of a workflow for assessing radiation-induced response in a millimeter-sized 3D culture. RESULTS Increased ECM stiffness was associated with a decreased radiation response. Moreover, sonoporation-assisted LOX inhibition with BAPN (β-aminopropionitrile monofumarate) significantly decreased the initial ECM stiffness and increased RT-induced cell death. Inhibition of LOX was particularly effective in reducing ECM stiffness in stiffer matrices. Combining LOX inhibition with RT markedly increased radiation-induced DNA damage in cirrhotic liver cancer cells, enhancing their response to radiation. Furthermore, LOX inhibition can be combined with sonoporation to overcome stiffness-related radioresistance, potentially leading to better treatment outcomes for patients with liver cancer. CONCLUSIONS The findings underscore the significant influence of ECM stiffness on liver cancer's response to radiation. Sonoporation-aided LOX inhibition emerges as a promising strategy to mitigate stiffness-related resistance, offering potential improvements in liver cancer treatment outcomes.
Collapse
Affiliation(s)
- Shao-Lun Lu
- Department of Radiation Oncology, National Taiwan University Cancer Center, Taipei, Taiwan
- Graduate Institute of Oncology, National Taiwan University College of Medicine, Taipei, Taiwan
| | - Yu Pei
- Graduate Institute of Biomedical Electronics and Bioinformatics, National Taiwan University, Taipei, Taiwan
| | - Wei-Wen Liu
- Graduate Institute of Biomedical Electronics and Bioinformatics, National Taiwan University, Taipei, Taiwan
- Graduate of Institute of Oral Biology, National Taiwan University College of Medicine, Taipei, Taiwan
| | - Kun Han
- Graduate Institute of Biomedical Electronics and Bioinformatics, National Taiwan University, Taipei, Taiwan
| | - Jason Chia-Hsien Cheng
- Graduate Institute of Oncology, National Taiwan University College of Medicine, Taipei, Taiwan
- Division of Radiation Oncology, National Taiwan University Hospital, Taipei, Taiwan
| | - Pai-Chi Li
- Graduate Institute of Biomedical Electronics and Bioinformatics, National Taiwan University, Taipei, Taiwan.
- Department of Electrical Engineering, National Taiwan University, Taipei, Taiwan.
| |
Collapse
|
5
|
Peters K, Lerma Clavero A, Kullenberg F, Kopsida M, Dahlgren D, Heindryckx F, Lennernäs H, Sjöblom M. Melatonin mitigates chemotherapy-induced small intestinal atrophy in rats and reduces cytotoxicity in murine intestinal organoids. PLoS One 2024; 19:e0307414. [PMID: 39226257 PMCID: PMC11371236 DOI: 10.1371/journal.pone.0307414] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Accepted: 07/04/2024] [Indexed: 09/05/2024] Open
Abstract
Cancer continues to pose a significant global health challenge, with gastrointestinal (GI) cancers among the most prevalent and deadly forms. These cancers often lead to high mortality rates and demand the use of potent cytotoxic chemotherapeutics. For example, 5-fluorouracil (5-FU) forms the backbone of chemotherapy regimens for various GI cancers, including colorectal cancer. While these chemotherapeutics efficiently kill cancer cells, they frequently cause off-target effects such as chemotherapy-induced mucositis (CIM), characterized by debilitating symptoms like pain, nausea, and diarrhoea, necessitating medical intervention. In this study, we elucidated the potential of melatonin and misoprostol to reduce 5-FU-induced small intestinal mucositis. Morphological and cellular changes in the jejunum, along with colonic faecal water content were quantified in rats as markers for CIM. Additionally, the effects of melatonin were investigated in vitro on 5-FU treated murine intestinal organoids. The results showed that melatonin prevented villus atrophy in the rat jejunal mucosa and upheld cell viability in murine intestinal organoids. In contrast, misoprostol alone or in combination with melatonin did not significantly affect CIM caused by 5-FU. These in vivo and in vitro experiments provided promising insights that melatonin may be used as a preventive and/or adjuvant combination therapy to prevent and reduce CIM, holding the potential to enhance cancer treatment outcomes and improve patient quality-of-life.
Collapse
Affiliation(s)
- Karsten Peters
- Department of Medical Cell Biology, Uppsala University, Uppsala, Sweden
- Department of Pharmaceutical Biosciences, Uppsala University, Uppsala, Sweden
| | - Ada Lerma Clavero
- Department of Medical Cell Biology, Uppsala University, Uppsala, Sweden
| | - Fredrik Kullenberg
- Department of Pharmaceutical Biosciences, Uppsala University, Uppsala, Sweden
| | - Maria Kopsida
- Department of Medical Cell Biology, Uppsala University, Uppsala, Sweden
| | - David Dahlgren
- Department of Pharmaceutical Biosciences, Uppsala University, Uppsala, Sweden
| | - Femke Heindryckx
- Department of Medical Cell Biology, Uppsala University, Uppsala, Sweden
| | - Hans Lennernäs
- Department of Pharmaceutical Biosciences, Uppsala University, Uppsala, Sweden
| | - Markus Sjöblom
- Department of Medical Cell Biology, Uppsala University, Uppsala, Sweden
| |
Collapse
|
6
|
Cigliano A, Liao W, Deiana GA, Rizzo D, Chen X, Calvisi DF. Preclinical Models of Hepatocellular Carcinoma: Current Utility, Limitations, and Challenges. Biomedicines 2024; 12:1624. [PMID: 39062197 PMCID: PMC11274649 DOI: 10.3390/biomedicines12071624] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Revised: 07/16/2024] [Accepted: 07/19/2024] [Indexed: 07/28/2024] Open
Abstract
Hepatocellular carcinoma (HCC), the predominant primary liver tumor, remains one of the most lethal cancers worldwide, despite the advances in therapy in recent years. In addition to the traditional chemically and dietary-induced HCC models, a broad spectrum of novel preclinical tools have been generated following the advent of transgenic, transposon, organoid, and in silico technologies to overcome this gloomy scenario. These models have become rapidly robust preclinical instruments to unravel the molecular pathogenesis of liver cancer and establish new therapeutic approaches against this deadly disease. The present review article aims to summarize and discuss the commonly used preclinical models for HCC, evaluating their strengths and weaknesses.
Collapse
Affiliation(s)
- Antonio Cigliano
- Department of Medicine, Surgery and Pharmacy, University of Sassari, 07100 Sassari, Italy; (A.C.); (G.A.D.); (D.R.)
| | - Weiting Liao
- Department of Bioengineering and Therapeutic Sciences and Liver Center, University of California, San Francisco, CA 94143, USA; (W.L.); (X.C.)
- Cancer Biology Program, University of Hawaii Cancer Center, Honolulu, HI 96813, USA
| | - Giovanni A. Deiana
- Department of Medicine, Surgery and Pharmacy, University of Sassari, 07100 Sassari, Italy; (A.C.); (G.A.D.); (D.R.)
| | - Davide Rizzo
- Department of Medicine, Surgery and Pharmacy, University of Sassari, 07100 Sassari, Italy; (A.C.); (G.A.D.); (D.R.)
| | - Xin Chen
- Department of Bioengineering and Therapeutic Sciences and Liver Center, University of California, San Francisco, CA 94143, USA; (W.L.); (X.C.)
- Cancer Biology Program, University of Hawaii Cancer Center, Honolulu, HI 96813, USA
| | - Diego F. Calvisi
- Department of Medicine, Surgery and Pharmacy, University of Sassari, 07100 Sassari, Italy; (A.C.); (G.A.D.); (D.R.)
| |
Collapse
|
7
|
Schipka R, Heltmann-Meyer S, Schneidereit D, Friedrich O, Röder J, Boccaccini AR, Schrüfer S, Schubert DW, Horch RE, Bosserhoff AK, Arkudas A, Kengelbach-Weigand A, Schmid R. Characterization of two different alginate-based bioinks and the influence of melanoma growth within. Sci Rep 2024; 14:12945. [PMID: 38839791 PMCID: PMC11153560 DOI: 10.1038/s41598-024-63642-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Accepted: 05/30/2024] [Indexed: 06/07/2024] Open
Abstract
Extrusion-based bioprinting is an established method in biofabrication. Suitable bioinks have fundamentally different compositions and characteristics, which should be examined, in order to find a perfect model system. Here, we investigate the effect of two alginate-based, yet unalike 3D-printed bioinks, pre-crosslinked alginate-dialdehyde gelatin (ADA-GEL) and a mixture of alginate, hyaluronic acid, and gelatin (Alg/HA/Gel), on the melanoma cell line Mel Im and vice versa in terms of stiffness, shrinkage, cellular behavior and colony formation over 15 days. Rheological stiffness measurements revealed two soft gels with similar storage moduli. The cells did not have a significant impact on the overall stiffness, whereas ADA-GEL (2.5/2.5%) was significantly stiffer than Alg/HA/Gel (0.5/0.1/3%). Regarding the shrinkage of printed constructs, cells had a significant influence, especially in ADA-GEL, which has covalent bonds between the oxidized alginate and gelatin. Multi-photon microscopy exhibited proliferation, cell spreading and migration in ADA-GEL with cell-cell and cell-matrix interaction, dissimilarly to Alg/HA/Gel, in which cells formed spherical, encapsulated colonies. Scanning electron microscopy and histology showed degradation and multi-layered growth on ADA-GEL and fewer examples of escaped cells on Alg/HA/Gel. Both gels serve as proliferation bioink for melanoma with more necrosis in deeper Alg/HA/Gel colonies and differences in spreading and matrix interaction. These findings show the importance of proper characterization of the bioinks for different applications.
Collapse
Affiliation(s)
- Raphael Schipka
- Department of Plastic and Hand Surgery, Laboratory for Tissue Engineering and Regenerative Medicine, University Hospital Erlangen, Friedrich-Alexander-University Erlangen-Nürnberg, 91054, Erlangen, Germany
| | - Stefanie Heltmann-Meyer
- Department of Plastic and Hand Surgery, Laboratory for Tissue Engineering and Regenerative Medicine, University Hospital Erlangen, Friedrich-Alexander-University Erlangen-Nürnberg, 91054, Erlangen, Germany
| | - Dominik Schneidereit
- Institute of Medical Biotechnology, Department of Chemical and Biological Engineering, Friedrich-Alexander-University Erlangen-Nürnberg, 91052, Erlangen, Germany
| | - Oliver Friedrich
- Institute of Medical Biotechnology, Department of Chemical and Biological Engineering, Friedrich-Alexander-University Erlangen-Nürnberg, 91052, Erlangen, Germany
| | - Jonas Röder
- Institute of Biomaterials, Friedrich-Alexander-University Erlangen-Nürnberg, 91058, Erlangen, Germany
| | - Aldo R Boccaccini
- Institute of Biomaterials, Friedrich-Alexander-University Erlangen-Nürnberg, 91058, Erlangen, Germany
| | - Stefan Schrüfer
- Institute of Polymer Materials, Friedrich-Alexander-University Erlangen-Nürnberg, 91058, Erlangen, Germany
- RevoBITs, Friedrich-Alexander-University Erlangen-Nürnberg, 91058, Erlangen, Germany
| | - Dirk W Schubert
- Institute of Polymer Materials, Friedrich-Alexander-University Erlangen-Nürnberg, 91058, Erlangen, Germany
| | - Raymund E Horch
- Department of Plastic and Hand Surgery, Laboratory for Tissue Engineering and Regenerative Medicine, University Hospital Erlangen, Friedrich-Alexander-University Erlangen-Nürnberg, 91054, Erlangen, Germany
| | - Anja K Bosserhoff
- Institute of Biochemistry, Friedrich-Alexander-University Erlangen-Nürnberg, 91054, Erlangen, Germany
| | - Andreas Arkudas
- Department of Plastic and Hand Surgery, Laboratory for Tissue Engineering and Regenerative Medicine, University Hospital Erlangen, Friedrich-Alexander-University Erlangen-Nürnberg, 91054, Erlangen, Germany
| | - Annika Kengelbach-Weigand
- Department of Plastic and Hand Surgery, Laboratory for Tissue Engineering and Regenerative Medicine, University Hospital Erlangen, Friedrich-Alexander-University Erlangen-Nürnberg, 91054, Erlangen, Germany
| | - Rafael Schmid
- Department of Plastic and Hand Surgery, Laboratory for Tissue Engineering and Regenerative Medicine, University Hospital Erlangen, Friedrich-Alexander-University Erlangen-Nürnberg, 91054, Erlangen, Germany.
| |
Collapse
|
8
|
Min K, Karuppannan SK, Tae G. The impact of matrix stiffness on hepatic cell function, liver fibrosis, and hepatocellular carcinoma-Based on quantitative data. BIOPHYSICS REVIEWS 2024; 5:021306. [PMID: 38846007 PMCID: PMC11151446 DOI: 10.1063/5.0197875] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Accepted: 05/14/2024] [Indexed: 06/09/2024]
Abstract
Over the past few decades, extensive research has explored the development of supportive scaffold materials for in vitro hepatic cell culture, to effectively mimic in vivo microenvironments. It is crucial for hepatic disease modeling, drug screening, and therapeutic evaluations, considering the ethical concerns and practical challenges associated with in vivo experiments. This review offers a comprehensive perspective on hepatic cell culture using bioscaffolds by encompassing all stages of hepatic diseases-from a healthy liver to fibrosis and hepatocellular carcinoma (HCC)-with a specific focus on matrix stiffness. This review begins by providing physiological and functional overviews of the liver. Subsequently, it explores hepatic cellular behaviors dependent on matrix stiffness from previous reports. For hepatic cell activities, softer matrices showed significant advantages over stiffer ones in terms of cell proliferation, migration, and hepatic functions. Conversely, stiffer matrices induced myofibroblastic activation of hepatic stellate cells, contributing to the further progression of fibrosis. Elevated matrix stiffness also correlates with HCC by increasing proliferation, epithelial-mesenchymal transition, metastasis, and drug resistance of HCC cells. In addition, we provide quantitative information on available data to offer valuable perspectives for refining the preparation and development of matrices for hepatic tissue engineering. We also suggest directions for further research on this topic.
Collapse
Affiliation(s)
- Kiyoon Min
- School of Materials Science and Engineering, Gwangju Institute of Science and Technology (GIST), Gwangju 61005, Republic of Korea
| | - Sathish Kumar Karuppannan
- School of Materials Science and Engineering, Gwangju Institute of Science and Technology (GIST), Gwangju 61005, Republic of Korea
| | - Giyoong Tae
- School of Materials Science and Engineering, Gwangju Institute of Science and Technology (GIST), Gwangju 61005, Republic of Korea
| |
Collapse
|
9
|
Degerstedt O, O'Callaghan P, Clavero AL, Gråsjö J, Eriksson O, Sjögren E, Hansson P, Heindryckx F, Kreuger J, Lennernäs H. Quantitative imaging of doxorubicin diffusion and cellular uptake in biomimetic gels with human liver tumor cells. Drug Deliv Transl Res 2024; 14:970-983. [PMID: 37824040 DOI: 10.1007/s13346-023-01445-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/29/2023] [Indexed: 10/13/2023]
Abstract
Novel tumor-on-a-chip approaches are increasingly used to investigate tumor progression and potential treatment options. To improve the effect of any cancer treatment it is important to have an in depth understanding of drug diffusion, penetration through the tumor extracellular matrix and cellular uptake. In this study, we have developed a miniaturized chip where drug diffusion and cellular uptake in different hydrogel environments can be quantified at high resolution using live imaging. Diffusion of doxorubicin was reduced in a biomimetic hydrogel mimicking tissue properties of cirrhotic liver and early stage hepatocellular carcinoma (373 ± 108 µm2/s) as compared to an agarose gel (501 ± 77 µm2/s, p = 0.019). The diffusion was further lowered to 256 ± 30 µm2/s (p = 0.028) by preparing the biomimetic gel in cell media instead of phosphate buffered saline. The addition of liver tumor cells (Huh7 or HepG2) to the gel, at two different densities, did not significantly influence drug diffusion. Clinically relevant and quantifiable doxorubicin concentration gradients (1-20 µM) were established in the chip within one hour. Intracellular increases in doxorubicin fluorescence correlated with decreasing fluorescence of the DNA-binding stain Hoechst 33342 and based on the quantified intracellular uptake of doxorubicin an apparent cell permeability (9.00 ± 0.74 × 10-4 µm/s for HepG2) was determined. Finally, the data derived from the in vitro model were applied to a spatio-temporal tissue concentration model to evaluate the potential clinical impact of a cirrhotic extracellular matrix on doxorubicin diffusion and tumor cell uptake.
Collapse
Affiliation(s)
- Oliver Degerstedt
- Department of Pharmaceutical Biosciences, Uppsala University, Uppsala, Sweden
| | - Paul O'Callaghan
- Department of Medical Cell Biology, Uppsala University, Uppsala, Sweden
- Science for Life Laboratory, Uppsala University, Uppsala, Sweden
| | - Ada Lerma Clavero
- Department of Medical Cell Biology, Uppsala University, Uppsala, Sweden
| | - Johan Gråsjö
- Department of Pharmaceutical Biosciences, Uppsala University, Uppsala, Sweden
- Department of Medicinal Chemistry, Uppsala University, Uppsala, Sweden
| | - Olle Eriksson
- Department of Medical Cell Biology, Uppsala University, Uppsala, Sweden
- Science for Life Laboratory, Uppsala University, Uppsala, Sweden
| | - Erik Sjögren
- Department of Pharmaceutical Biosciences, Uppsala University, Uppsala, Sweden
| | - Per Hansson
- Department of Medicinal Chemistry, Uppsala University, Uppsala, Sweden
| | - Femke Heindryckx
- Department of Medical Cell Biology, Uppsala University, Uppsala, Sweden
| | - Johan Kreuger
- Department of Medical Cell Biology, Uppsala University, Uppsala, Sweden
- Science for Life Laboratory, Uppsala University, Uppsala, Sweden
| | - Hans Lennernäs
- Department of Pharmaceutical Biosciences, Uppsala University, Uppsala, Sweden.
| |
Collapse
|
10
|
De S, Vasudevan A, Tripathi DM, Kaur S, Singh N. A decellularized matrix enriched collagen microscaffold for a 3D in vitro liver model. J Mater Chem B 2024; 12:772-783. [PMID: 38167699 DOI: 10.1039/d3tb01652h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2024]
Abstract
The development of liver scaffolds retaining their three-dimensional (3D) structure and extra-cellular matrix (ECM) composition is essential for the advancement of liver tissue engineering. We report the design and validation of an alginate-based platform using a combination of decellularized matrices and collagen to preserve the functionality of liver cells. The scaffolds were characterized using SEM and fluorescence microscopy techniques. The proliferation and functional behaviours of hepatocellular carcinoma HuH7 cells were observed. It was found that the decellularized skin scaffold with collagen was better for maintaining the growth of cells in comparison to other decellularized matrices. In addition, we observed a significant increase in the functional profile once exogenous collagen was added to the liver matrix. Our study also suggests that a cirrhotic liver model should have a different matrix composition as compared to a healthy liver model. When primary rat hepatocytes were used for developing a healthy liver model, the proliferation studies with hepatocytes showed a decellularized skin matrix as the better option, but the functionality was only maintained in a decellularized liver matrix with addition of exogenous collagen. We further checked if these platforms can be used for studying drug induced toxicity observed in the liver by studying the activation of cytochrome P450 upon drug exposure of the cells growing in our model. We observed a significant induction of the CYP1A1 gene on administering the drugs for 6 days. Thus, this platform could be used for drug-toxicity screening studies using primary hepatocytes in a short span of time. Being a microscaffold based system, this platform offers some advantages, such as smaller volumes of samples, analysing multiple samples simultaneously and a minimal amount of decellularized matrix in the matrix composition, making it an economical option compared to a completely dECM based platform.
Collapse
Affiliation(s)
- Shreemoyee De
- Centre for Biomedical Engineering, Indian Institute of Technology Delhi, Hauz Khas, New Delhi-110016, India.
| | - Ashwini Vasudevan
- Department of Molecular and Cellular Medicine, Institute of Liver and Biliary Sciences, D1, Vasant Kunj Marg, New Delhi, Delhi 110070, India.
| | - Dinesh M Tripathi
- Department of Molecular and Cellular Medicine, Institute of Liver and Biliary Sciences, D1, Vasant Kunj Marg, New Delhi, Delhi 110070, India.
| | - Savneet Kaur
- Department of Molecular and Cellular Medicine, Institute of Liver and Biliary Sciences, D1, Vasant Kunj Marg, New Delhi, Delhi 110070, India.
| | - Neetu Singh
- Centre for Biomedical Engineering, Indian Institute of Technology Delhi, Hauz Khas, New Delhi-110016, India.
- Biomedical Engineering Unit, All India Institute of Medical Sciences, Ansari Nagar, New Delhi-110029, India
| |
Collapse
|
11
|
Lu S, Cui Q, Zheng H, Ma Y, Kang Y, Tang K. Challenges and Opportunities for Extracellular Vesicles in Clinical Oncology Therapy. Bioengineering (Basel) 2023; 10:bioengineering10030325. [PMID: 36978715 PMCID: PMC10045216 DOI: 10.3390/bioengineering10030325] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Revised: 02/24/2023] [Accepted: 02/27/2023] [Indexed: 03/08/2023] Open
Abstract
Extracellular vesicles (EVs) are membrane-bound vesicles that can be released by all cell types. They may have different biogenesis, physical features, and cargo. EVs are important biomarkers for the diagnosis and prediction of many diseases due to their essential role in intercellular communication, their highly variable cargoes, and their accumulation in various body fluids. These natural particles have been investigated as potential therapeutic materials for many diseases. In our previous studies, the clinical usage of tumor-cell-derived microparticles (T-MPs) as a novel medication delivery system was examined. This review summarizes the clinical translation of EVs and related clinical trials, aiming to provide suggestions for safer and more effective oncology therapeutic systems, particularly in biotherapeutic and immunotherapeutic systems.
Collapse
Affiliation(s)
- Shuya Lu
- Department of Biochemistry and Molecular Biology, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Qingfa Cui
- Department of Biochemistry and Molecular Biology, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Huan Zheng
- Department of Biochemistry and Molecular Biology, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Yuan Ma
- Department of Biochemistry and Molecular Biology, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Yanchun Kang
- Department of Biochemistry and Molecular Biology, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Ke Tang
- Department of Biochemistry and Molecular Biology, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
- Cell Architecture Research Center, Huazhong University of Science and Technology, Wuhan 430030, China
- Correspondence:
| |
Collapse
|