1
|
Miu DM, Pavaloiu RD, Sha’at F, Vladu MG, Neagu G, Manoiu VS, Eremia MC. Preparation and Optimization of a Polyhydroxyoctanoate-Hydroxyapatite Composite Available to Scaffolds in Implantable Devices. Molecules 2025; 30:730. [PMID: 39942833 PMCID: PMC11820546 DOI: 10.3390/molecules30030730] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2024] [Revised: 01/26/2025] [Accepted: 01/31/2025] [Indexed: 02/16/2025] Open
Abstract
Biomaterials represent a distinct class of materials used in various medical applications, such as replicating the shape or function of damaged tissue caused by disease or trauma. The increasing focus on polyhydroxyalkanoate (PHA) research can be attributed to their properties, such as biodegradability, biocompatibility, and bioresorbability. PHAs can be incorporated into polymeric complexes or combined with bioceramics or bioactive substances. Films of PHO-HAp-Curcumin were prepared, and optimization studies were conducted using Design-Expert software (Stat-Ease 360-Trial Version). The effects of independent variables (amount of PHO, HAp, and curcumin) on biodegradability, film thickness, and curcumin release were studied. Statistical modeling revealed significant interactions among the components, with the 2FI and quadratic models providing strong predictive accuracy. The interaction of HAp and PHO amounts (X2X3) has a significant effect on biodegradability (Y1) and film thickness (Y3). For the degree of the cumulative release of curcumin (CDR), there was no significant interaction between the independent variables (curcumin-X1, HAp-X2, and PHO-X3). Optimized film exhibited a maximum desirability of 0.777 with 1 mg of curcumin, 100 mg of HAp, and 172.31 mg of PHO. A morphological analysis of optimized film revealed a rough, particle-rich surface favorable for biomedical use. The findings highlight the promise of PHO-HAp-Curcumin composite films in advancing tissue engineering.
Collapse
Affiliation(s)
- Dana-Maria Miu
- National Institute of Chemical-Pharmaceutical Research and Development-ICCF, 112 Vitan Avenue, 3rd District, 031299 Bucharest, Romania
- Faculty of Chemical Engineering and Biotechnologies, National University of Science and Technology Politehnica, 1 Gheroghe Polizu Street, 1st District, 011061 Bucharest, Romania
| | - Ramona Daniela Pavaloiu
- National Institute of Chemical-Pharmaceutical Research and Development-ICCF, 112 Vitan Avenue, 3rd District, 031299 Bucharest, Romania
| | - Fawzia Sha’at
- National Institute of Chemical-Pharmaceutical Research and Development-ICCF, 112 Vitan Avenue, 3rd District, 031299 Bucharest, Romania
| | - Mariana-Gratiela Vladu
- National Institute of Chemical-Pharmaceutical Research and Development-ICCF, 112 Vitan Avenue, 3rd District, 031299 Bucharest, Romania
| | - Georgeta Neagu
- National Institute of Chemical-Pharmaceutical Research and Development-ICCF, 112 Vitan Avenue, 3rd District, 031299 Bucharest, Romania
| | - Vasile-Sorin Manoiu
- National Institute of Research and Development for Biological Sciences, 296 Spaiul Independentei Street, 6th District, 060031 Bucharest, Romania
| | - Mihaela-Carmen Eremia
- National Institute of Chemical-Pharmaceutical Research and Development-ICCF, 112 Vitan Avenue, 3rd District, 031299 Bucharest, Romania
| |
Collapse
|
2
|
Naik TJ, Salgaonkar BB. Unlocking the potential of microbes: Concomitant production of polyhydroxyalkanoates and carotenoids. Int J Biol Macromol 2025; 303:140654. [PMID: 39909243 DOI: 10.1016/j.ijbiomac.2025.140654] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2024] [Revised: 01/21/2025] [Accepted: 02/02/2025] [Indexed: 02/07/2025]
Abstract
The escalating environmental concerns and depletion of crude oil resources have catalyzed interest in biologically derived polymers, particularly biodegradable ones such as polyhydroxyalkanoates. However, the high production costs associated with polyhydroxyalkanoates, driven by raw material expenses, stringent production conditions and low yields, hinder their widespread adoption. A potential strategy to mitigate these costs involves the production of PHAs and other high-value bioproducts, such as carotenoids simultaneously in microbial systems, utilizing shared metabolic pathways. Carotenoids, known for their antioxidant properties and applications in the food, cosmetics and pharmaceutical industries, offer substantial market potential. This review presents a comprehensive overview of the current progress in polyhydroxyalkanoate and carotenoid co-production, explores the co-synthesis pathways, addresses the challenges involved and explores the future prospects of this integrated bioprocess. By diversifying the product portfolio and optimizing microbial production systems, the co-production strategy could pave the way for more sustainable and economically viable bioplastics.
Collapse
Affiliation(s)
- Tejas Jagannath Naik
- Microbiology Programme, School of Biological Sciences and Biotechnology (SBSB), Goa University, Taleigao Plateau, Goa 403 206, India.
| | - Bhakti Balkrishna Salgaonkar
- Microbiology Programme, School of Biological Sciences and Biotechnology (SBSB), Goa University, Taleigao Plateau, Goa 403 206, India.
| |
Collapse
|
3
|
Di Leto Y, Mineo A, Capri FC, Puccio G, Mercati F, Alduina R, Gallo G, Mannina G. The role of carbon and nitrogen ratio on sewage sludge microbiota for producing polyhydroxyalkanoates. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2025; 375:124240. [PMID: 39879921 DOI: 10.1016/j.jenvman.2025.124240] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Revised: 01/10/2025] [Accepted: 01/18/2025] [Indexed: 01/31/2025]
Abstract
The products of an advanced sewage sludge fermentation process can be used to generate polyhydroxyalkanoates (PHAs), precursors of bioplastics considered excellent candidates for replacing petroleum-derived plastics. The aerobic feast-anoxic famine cycling strategy has proven to be an efficient method for enriching sewage sludge microbiota with PHA-producing microorganisms. This work evaluated the effect of different carbon to nitrogen ratios (C/N) of 3.5, 2, and 1 g COD/g N for modulating the structure of sewage sludge microbiota to improve PHA production. The study was executed on a pilot plant scale using wasted activated sludge as an organic carbon source derived from an oxic-settling anaerobic plant that collects wastewater from various facilities at the University of Palermo campus. PHA production performance was monitored over three experimental periods characterized by a different C/N ratio. The results showed that lower C/N ratios reduced PHA production with 20, 24, and 26 % w/w of PHAs for COD/N values of 1, 2, and 3.5 g COD/g N, respectively. In parallel, the metataxonomic analysis revealed a higher abundance of PHA-producing microorganisms at the ratio of 3.5 g COD/g N, such as Proteobacteria, specifically Betaproteobacteria. In addition, the analysis showed an increase in fungal abundance and diversity as decrease the ratio C/N decreased. Thus, these findings demonstrate the utility of metataxonomics in elucidating the relationships between operating conditions, bacterial and fungal microbiota structure and the achievement of specific outputs. The insights gained from this study demonstrated a positive correlation between C/N ratios, PHA-producing microorganisms, and PHA yields.
Collapse
Affiliation(s)
- Ylenia Di Leto
- Department of Biological, Chemical and Pharmaceutical Sciences and Technologies, University of Palermo, Viale delle Scienze, Ed. 16, 90128, Palermo, Italy
| | - Antonio Mineo
- Engineering Department, University of Palermo, Viale delle Scienze, Ed. 8, 90128, Palermo, Italy
| | - Fanny Claire Capri
- Department of Biological, Chemical and Pharmaceutical Sciences and Technologies, University of Palermo, Viale delle Scienze, Ed. 16, 90128, Palermo, Italy
| | - Guglielmo Puccio
- National Research Council, Institute of Biosciences and Bioresources (IBBR), via Ugo la Malfa 153, 90146, Palermo, Italy
| | - Francesco Mercati
- National Research Council, Institute of Biosciences and Bioresources (IBBR), via Ugo la Malfa 153, 90146, Palermo, Italy
| | - Rosa Alduina
- Department of Biological, Chemical and Pharmaceutical Sciences and Technologies, University of Palermo, Viale delle Scienze, Ed. 16, 90128, Palermo, Italy; NBFC, National Biodiversity Future Center, Palermo, Piazza Marina 61, 90133, Palermo, Italy
| | - Giuseppe Gallo
- Department of Biological, Chemical and Pharmaceutical Sciences and Technologies, University of Palermo, Viale delle Scienze, Ed. 16, 90128, Palermo, Italy; NBFC, National Biodiversity Future Center, Palermo, Piazza Marina 61, 90133, Palermo, Italy.
| | - Giorgio Mannina
- Engineering Department, University of Palermo, Viale delle Scienze, Ed. 8, 90128, Palermo, Italy
| |
Collapse
|
4
|
Abd-El-Haleem DAM, Elkatory MR, Abu-Elreesh GM. Uncovering novel polyhydroxyalkanoate biosynthesis genes and unique pathway in yeast hanseniaspora valbyensis for sustainable bioplastic production. Sci Rep 2024; 14:27162. [PMID: 39511267 PMCID: PMC11544117 DOI: 10.1038/s41598-024-77382-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2024] [Accepted: 10/22/2024] [Indexed: 11/15/2024] Open
Abstract
This study delves into the exploration of polyhydroxyalkanoate (PHA) biosynthesis genes within wild-type yeast strains, spotlighting the exceptional capabilities of isolate DMG-2. Through meticulous screening, DMG-2 emerged as a standout candidate, showcasing vivid red fluorescence indicative of prolific intracellular PHA granules. Characterization via FTIR spectroscopy unveiled a diverse biopolymer composition within DMG-2, featuring distinct functional groups associated with PHA and polyphosphate. Phylogenetic analysis placed DMG-2 within the Hanseniaspora valbyensis NRRL Y-1626 group, highlighting its distinct taxonomic classification. Subsequent investigation into DMG-2's PHA biosynthesis genes yielded promising outcomes, with successful cloning and efficient PHA accumulation confirmed in transgenic E. coli cells. Protein analysis of ORF1 revealed its involvement in sugar metabolism, supported by its cellular localization and identification of functional motifs. Genomic analysis revealed regulatory elements within ORF1, shedding light on potential splice junctions and transcriptional networks influencing PHA synthesis pathways. Spectroscopic analysis of the biopolymer extracted from transgenic E. coli DMG2-1 provided insights into its co-polymer nature, comprising segments of PHB, PHV, and polyphosphate. GC-MS analysis further elucidated the intricate molecular architecture of the polymer. In conclusion, this study represents a pioneering endeavor in exploring PHA biosynthesis genes within yeast cells, with isolate DMG-2 demonstrating remarkable potential. The findings offer valuable insights for advancing sustainable bioplastic production and hold significant implications for biotechnological applications.
Collapse
Affiliation(s)
- Desouky A M Abd-El-Haleem
- Environmental Biotechnology Department, Genetic Engineering and Biotechnology Institute, City of Scientific Research and Technological Applications SRTA-City, Alexandria, 21934, New Burelarab, Egypt.
| | - Marwa R Elkatory
- Advanced Technology and New Materials Research Institute, City of Scientific Research and Technological Applications SRTA-City, New Borg El-Arab City, 21934, Alexandria, Egypt
| | - Gadallah M Abu-Elreesh
- Environmental Biotechnology Department, Genetic Engineering and Biotechnology Institute, City of Scientific Research and Technological Applications SRTA-City, Alexandria, 21934, New Burelarab, Egypt
| |
Collapse
|
5
|
Elazzazy AM, Ali Abd K, Bataweel NM, Mahmoud MM, Baghdadi AM. Microbial Biosynthesis of Medium-Chain-Length Polyhydroxyalkanoate (mcl-PHA) from Waste Cooking Oil. Polymers (Basel) 2024; 16:2150. [PMID: 39125176 PMCID: PMC11314287 DOI: 10.3390/polym16152150] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2024] [Revised: 07/19/2024] [Accepted: 07/19/2024] [Indexed: 08/12/2024] Open
Abstract
Waste cooking oil is a common byproduct in the culinary industry, often posing disposal challenges. This study explores its conversion into the valuable bioplastic material, medium-chain-length polyhydroxyalkanoate (mcl-PHA), through microbial biosynthesis in controlled bioreactor conditions. Twenty-four bacterial isolates were obtained from oil-contaminated soil and waste materials in Mahd Ad-Dahab, Saudi Arabia. The best PHA-producing isolates were identified via 16S rDNA analysis as Neobacillus niacini and Metabacillus niabensis, with the sequences deposited in GenBank (accession numbers: PP346270 and PP346271). This study evaluated the effects of various carbon and nitrogen sources, as well as environmental factors, such as pH, temperature, and shaking speed, on the PHA production titer. Neobacillus niacini favored waste cooking oil and yeast extract, achieving a PHA production titer of 1.13 g/L, while Metabacillus niabensis preferred waste olive oil and urea, with a PHA production titer of 0.85 g/L. Both strains exhibited optimal growth at a neutral pH of 7, under optimal shaking -flask conditions. The bioreactor performance showed improved PHA production under controlled pH conditions, with a final titer of 9.75 g/L for Neobacillus niacini and 4.78 g/L for Metabacillus niabensis. Fourier transform infrared (FT-IR) spectroscopy and gas chromatography-mass spectrometry (GC-MS) confirmed the biosynthesized polymer as mcl-PHA. This research not only offers a sustainable method for transforming waste into valuable materials, but also provides insights into the optimal conditions for microbial PHA production, advancing environmental science and materials engineering.
Collapse
Affiliation(s)
- Ahmed M. Elazzazy
- Department of Biological Sciences, College of Science, University of Jeddah, P.O. Box 80327, Jeddah 21589, Saudi Arabia; (K.A.A.); (A.M.B.)
| | - Khawater Ali Abd
- Department of Biological Sciences, College of Science, University of Jeddah, P.O. Box 80327, Jeddah 21589, Saudi Arabia; (K.A.A.); (A.M.B.)
| | - Noor M. Bataweel
- King Fahad Medical Research Centre, King Abdulaziz University, Jeddah 21589, Saudi Arabia; (N.M.B.); (M.M.M.)
| | - Maged M. Mahmoud
- King Fahad Medical Research Centre, King Abdulaziz University, Jeddah 21589, Saudi Arabia; (N.M.B.); (M.M.M.)
- Department of Medical Laboratory Sciences, Faculty of Applied Medical Sciences, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Afra M. Baghdadi
- Department of Biological Sciences, College of Science, University of Jeddah, P.O. Box 80327, Jeddah 21589, Saudi Arabia; (K.A.A.); (A.M.B.)
| |
Collapse
|
6
|
Kukreti N, Kumar P, Kataria R. A sustainable synthesis of polyhydroxyalkanoate from stubble waste as a carbon source using Pseudomonas putida MTCC 2475. Front Bioeng Biotechnol 2024; 12:1343579. [PMID: 38665813 PMCID: PMC11043596 DOI: 10.3389/fbioe.2024.1343579] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Accepted: 03/07/2024] [Indexed: 04/28/2024] Open
Abstract
Polyhydroxyalkanoates (PHAs) are biodegradable polymers that can be produced from lignocellulosic biomass by microorganisms. Cheap and readily available raw material, such as corn stover waste, has the potential to lessen the cost of PHA synthesis. In this research study, corn stover is pretreated with NaOH under conditions optimized for high cellulose and low lignin with central composite design (CCD) followed by characterization using Fourier-transform infrared spectroscopy (FTIR), thermal gravimetric analysis (TGA), and scanning electron microscopy (SEM). Design expert software performed further optimization of alkali pretreated corn stover for high total reducing sugar (TRS) enhancement using CCD using response surface methodology (RSM). The optimized condition by RSM produced a TRS yield of 707.19 mg/g. Fermentation using corn stover hydrolysate by Pseudomonas putida MTCC 2475 gave mcl-PHA detected through gas c hromatography - t andem m ass s pectrometry (GC-MS/MS) and characterization of the PHA film by differential scanning calorimetry (DSC), FTIR, and nuclear magnetic resonance (NMR). Thus, this research paper focuses on using agriculture (stubble) waste as an alternative feedstock for PHA production.
Collapse
|
7
|
Patil TD, Ghosh S, Agarwal A, Patel SKS, Tripathi AD, Mahato DK, Kumar P, Slama P, Pavlik A, Haque S. Production, optimization, scale up and characterization of polyhydoxyalkanoates copolymers utilizing dairy processing waste. Sci Rep 2024; 14:1620. [PMID: 38238404 PMCID: PMC10796949 DOI: 10.1038/s41598-024-52098-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Accepted: 01/13/2024] [Indexed: 01/22/2024] Open
Abstract
The microbial biotransformation using low-cost feedstock to produce biopolymers (degradable), an alternative to petrochemical-based synthesis plastics (non-degradable), can be a beneficial approach towards sustainable development. In this study, the dairy industry processes waste (whey) is used in polyhydroxyalkanoate (PHA) copolymer production. Initial screening suggested that Ralstonia eutropha produced higher PHA as compared to Bacillus megaterium. A central composite rotatable design-based optimization using two process variables (amino acid and tween-80) concentration remarkably influenced PHA co-polymer production under physiological conditions of pH (7), temperature (37 °C), and agitation rate of 150 rpm. High polyhydroxybutyrate (PHB) mass fraction yield of 69.3% was observed as compared to predicted yield of 62.8% from deproteinized whey as feed. The combination of tryptophan (50 mg L-1) and tween-80 (3 mL-1) enhanced R. eutropha mass gain to 6.80 g L-1 with PHB contents of 4.71 g L-1. Further, characterization of PHA and its copolymers was done by ESI-MS, FTIR, and TEM. On upscaling up to 3.0 L, the PHA contents and yields were noted as quite similar by R. eutropha. This study demonstrates that dairy waste processing waste can be potentially utilized as inexpensive feed for producing high content of biopolymers to develop a sustainable system of waste management.
Collapse
Affiliation(s)
- Tejaswini Dhanaji Patil
- Department of Dairy Science and Food Technology, Institute of Agricultural Sciences, Banaras Hindu University, Varanasi, Uttar Pradesh, 221005, India
| | - Saptaneel Ghosh
- Department of Dairy Science and Food Technology, Institute of Agricultural Sciences, Banaras Hindu University, Varanasi, Uttar Pradesh, 221005, India
| | - Aparna Agarwal
- Department of Food and Nutrition Science, Lady Irwin College, Delhi University, New Delhi, 110001, India
| | | | - Abhishek Dutt Tripathi
- Department of Dairy Science and Food Technology, Institute of Agricultural Sciences, Banaras Hindu University, Varanasi, Uttar Pradesh, 221005, India.
| | - Dipendra Kumar Mahato
- School of Exercise and Nutrition Sciences, CASS Food Research Centre, Deakin University, Burwood, VIC, 3125, Australia
| | - Pradeep Kumar
- Department of Botany, University of Lucknow, Lucknow, 226007, India
| | - Petr Slama
- Department of Animal Morphology, Physiology and Genetics, Faculty of AgriSciences, Mendel University in Brno, 61300, Brno, Czech Republic
| | - Ales Pavlik
- Department of Animal Morphology, Physiology and Genetics, Faculty of AgriSciences, Mendel University in Brno, 61300, Brno, Czech Republic
| | - Shafiul Haque
- Research and Scientific Studies Unit, College of Nursing and Health Sciences, Jazan University, Jazan, 45142, Saudi Arabia
- Gilbert and Rose-Marie Chagoury School of Medicine, Lebanese American University, Beirut-1102 2801, Lebanon
- Centre of Medical and Bio-Allied Health Sciences Research, Ajman University, Ajman-13306, United Arab Emirates
| |
Collapse
|