1
|
Lopez AD, Whyms S, Luker HA, Galvan CJ, Holguin FO, Hansen IA. Repellency of Essential Oils and Plant-Derived Compounds Against Aedes aegypti Mosquitoes. INSECTS 2025; 16:51. [PMID: 39859632 PMCID: PMC11765945 DOI: 10.3390/insects16010051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/11/2024] [Revised: 12/29/2024] [Accepted: 01/06/2025] [Indexed: 01/27/2025]
Abstract
Plant-based oils have a long history of use as insect repellents. In an earlier study, we showed that in a 10% concentration, geraniol, 2-phenylethl propionate, and the plant-based essential oils clove and cinnamon effectively protected from mosquito bites for over 60 min. To expand on this study, we reanalyzed our GC-MS data to identify the short organic constituents of these oils. We then used an arm-in-cage assay to test the repellency of different concentrations and combinations of these oils and pure compounds. We found a sigmoidal relationship between the complete protection time from mosquito bites and the concentration of these oils. The complete protection times we recorded for combinations of these oils suggest an absence of additive effects. The results of this study can inform the development of novel, effective, and plant-based insect repellents.
Collapse
Affiliation(s)
- April D. Lopez
- Department of Biology, New Mexico State University, Las Cruces, NM 88003, USA; (A.D.L.); (H.A.L.)
| | - Sophie Whyms
- NatPro Centre, School of Pharmacy and Pharmaceutical Sciences, Trinity College Dublin, 2 Dublin, Ireland;
| | - Hailey A. Luker
- Department of Biology, New Mexico State University, Las Cruces, NM 88003, USA; (A.D.L.); (H.A.L.)
| | - Claudia J. Galvan
- Department of Plant and Environmental Sciences, New Mexico State University, Las Cruces, NM 88003, USA; (C.J.G.); (F.O.H.)
| | - F. Omar Holguin
- Department of Plant and Environmental Sciences, New Mexico State University, Las Cruces, NM 88003, USA; (C.J.G.); (F.O.H.)
| | - Immo A. Hansen
- Department of Biology, New Mexico State University, Las Cruces, NM 88003, USA; (A.D.L.); (H.A.L.)
| |
Collapse
|
2
|
Gaudet K, Anholeto LA, Hillier NK, Faraone N. Lemongrass essential oil and DEET inhibit attractant detection in infected and non-infected Ixodes scapularis ticks. CURRENT RESEARCH IN INSECT SCIENCE 2024; 6:100096. [PMID: 39386116 PMCID: PMC11462224 DOI: 10.1016/j.cris.2024.100096] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Revised: 09/12/2024] [Accepted: 09/16/2024] [Indexed: 10/12/2024]
Abstract
Blacklegged tick, Ixodes scapularis Say (Arachnida: Ixodidae), is a growing health concern for humans as vectors the causative agent of Lyme disease, Borrelia burgdorferi, and many other pathogens. Given the potential health threat I. scapularis entails, and the need to find effective strategies to prevent tick bites, it is pivotal to understand the chemosensory system of ticks and their host-seeking behaviour when exposed to repellents. In this study, we investigated whether the exposure to synthetic and plant-derived repellents impairs the ability of I. scapularis to detect attractants and host volatiles (butyric acid), and ultimately how these repellents interfere with host-seeking behaviour in both wild and lab-reared ticks. Furthermore, we screened wild ticks used in electrophysiology and Y-tube behavioural assays for presence of pathogens (Borrelia, Anaplasma, and Babesia) to evaluate if the bacterial infection status would affect the detection of butyric acid under the exposure to repellents. We determined that the exposure to DEET, lemongrass essential oil, citral, and geraniol significantly inhibited the ability of both lab-reared and wild adult female I. scapularis to detect and respond to butyric acid. We found that tick infection status does not significantly impact host-seeking behaviour in adult female I. scapularis. The knowledge gained from our study contributes to advance our understanding of host-seeking behaviour in ticks and the impact that the exposure to repellent has on the tick chemosensory system. These findings will be important for elucidating the mechanism of repellence in ticks and for the development of effective tick repellent management tools.
Collapse
Affiliation(s)
- Kayla Gaudet
- Department of Biology, Acadia University, 33 Westwood Ave., Wolfville, NS, Canada B4P 2R6
- Department of Chemistry, Acadia University, 6 University Ave., Wolfville, NS, Canada B4P 2R6
| | - Luis Adriano Anholeto
- Department of Chemistry, Acadia University, 6 University Ave., Wolfville, NS, Canada B4P 2R6
| | - N. Kirk Hillier
- Department of Biology, Acadia University, 33 Westwood Ave., Wolfville, NS, Canada B4P 2R6
| | - Nicoletta Faraone
- Department of Chemistry, Acadia University, 6 University Ave., Wolfville, NS, Canada B4P 2R6
| |
Collapse
|
3
|
Duarte JL, Di Filippo LD, Ribeiro TDC, Silva ACDJ, Hage-Melim LIDS, Duchon S, Carrasco D, Pinto MC, Corbel V, Chorilli M. Effective Mosquito Repellents: Myrcene- and Cymene-Loaded Nanohydrogels against Aedes aegypti. Pharmaceutics 2024; 16:1096. [PMID: 39204441 PMCID: PMC11360331 DOI: 10.3390/pharmaceutics16081096] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2024] [Revised: 08/10/2024] [Accepted: 08/14/2024] [Indexed: 09/04/2024] Open
Abstract
Aedes mosquito-borne diseases remain a significant global health threat, necessitating effective control strategies. This study introduces monoterpenes-based nanohydrogels for potential use as repellents against Aedes aegypti, the primary dengue vector worldwide. We formulated hydrogels using cymene- and myrcene-based nanoemulsions with different polymers: chitosan, carboxymethylcellulose (CMC), and carbopol®. Our evaluations of rheological, texture, and bioadhesive properties identified CMC hydrogel as the most promising gelling agent for topical application, exhibiting sustained monoterpene release over 12 h with low skin permeation and high retention in the stratum corneum. Myrcene-loaded CMC hydrogel achieved a 57% feeding deterrence compared to 47% with cymene hydrogel in the mosquito membrane-feeding model. Molecular docking studies revealed interactions between myrcene and an essential amino acid (Ile116) in the Ae. aegypti odorant-binding protein 22 (AeOBP22), corroborating its higher repellent efficacy. These findings suggest that myrcene-loaded CMC hydrogels offer a promising, minimally invasive strategy for personal protection against Ae. aegypti and warrant further investigation to optimize monoterpene concentrations for vector control.
Collapse
Affiliation(s)
- Jonatas Lobato Duarte
- Department of Drugs and Medicines, School of Pharmaceutical Sciences, São Paulo State University (UNESP), Araraquara 14800-903, São Paulo, Brazil; (J.L.D.); (L.D.D.F.); (T.d.C.R.)
| | - Leonardo Delello Di Filippo
- Department of Drugs and Medicines, School of Pharmaceutical Sciences, São Paulo State University (UNESP), Araraquara 14800-903, São Paulo, Brazil; (J.L.D.); (L.D.D.F.); (T.d.C.R.)
| | - Tais de Cássia Ribeiro
- Department of Drugs and Medicines, School of Pharmaceutical Sciences, São Paulo State University (UNESP), Araraquara 14800-903, São Paulo, Brazil; (J.L.D.); (L.D.D.F.); (T.d.C.R.)
| | - Ana Carolina de Jesus Silva
- Departamento de Ciências Biológicas e da Saúde, Universidade Federal do Amapá, Macapá 68903-419, Amapá, Brazil; (A.C.d.J.S.); (L.I.d.S.H.-M.)
| | - Lorane Izabel da Silva Hage-Melim
- Departamento de Ciências Biológicas e da Saúde, Universidade Federal do Amapá, Macapá 68903-419, Amapá, Brazil; (A.C.d.J.S.); (L.I.d.S.H.-M.)
| | - Stéphane Duchon
- IRD, CNRS, University of Montpellier, MIVEGEC, 34000 Montpellier, France; (S.D.); (D.C.); (V.C.)
| | - David Carrasco
- IRD, CNRS, University of Montpellier, MIVEGEC, 34000 Montpellier, France; (S.D.); (D.C.); (V.C.)
| | - Mara Cristina Pinto
- Departamento de Ciências Biológicas, Faculdade de Ciências Farmacêuticas, Universidade Estadual Paulista “Júlio de Mesquita Filho”, Araraquara 14800-060, São Paulo, Brazil;
| | - Vincent Corbel
- IRD, CNRS, University of Montpellier, MIVEGEC, 34000 Montpellier, France; (S.D.); (D.C.); (V.C.)
| | - Marlus Chorilli
- Department of Drugs and Medicines, School of Pharmaceutical Sciences, São Paulo State University (UNESP), Araraquara 14800-903, São Paulo, Brazil; (J.L.D.); (L.D.D.F.); (T.d.C.R.)
| |
Collapse
|
4
|
Esmaeili D, Salas KR, Luker HA, Mitra S, Galvan CJ, Holguin FO, Whyms S, Hansen IA, Costa AG. Rancid rumors or Native wisdom: Evaluating the efficacy of animal fats as insect repellents attributed to historic-period Native Americans. PLoS One 2024; 19:e0301677. [PMID: 39018308 PMCID: PMC11253976 DOI: 10.1371/journal.pone.0301677] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Accepted: 03/19/2024] [Indexed: 07/19/2024] Open
Abstract
Little is known about Native American adaptations to blood-sucking arthropods prior to and following European contact. Multiple accounts starting in the 16th century suggest that rancid animal grease was employed by Gulf Coast indigenes as a mosquito repellent. Although many Native American ethnobotanical remedies for biting insects have been recorded, the use of animal products for this purpose is not well documented. Moreover, few traditional Native American mosquito repellents have been examined using controlled laboratory methods for repellency testing. In this study, we tested the repellent efficacy of fats derived from alligator, bear, cod, and shark that were aged to various stages of rancidity. Using yellow fever mosquitoes, (Aedes aegypti), we performed an arm-in-cage assay to measure the complete protection times resulted from these fats, when applied to human skin. We used a Y-tube olfactometer assay to evaluate long-distance repellency and tested tick-repellency in a crawling assay. Our results suggest that rancid animal fats from cod, bear, and alligator are potent albeit short-lived mosquito repellents. We found that both rancid and fresh fats do not repel ticks. Our findings show the validity of traditional ethnozoological knowledge of Native American people and support aspects of the ethnohistorical record.
Collapse
Affiliation(s)
- Delaram Esmaeili
- Department of Biology, New Mexico State University, Las Cruces, NM, United States of America
| | - Keyla R. Salas
- Department of Biology, New Mexico State University, Las Cruces, NM, United States of America
| | - Hailey A. Luker
- Department of Biology, New Mexico State University, Las Cruces, NM, United States of America
| | - Soumi Mitra
- Department of Neuroscience, Baylor College of Medicine, Houston, TX, United States of America
| | - Claudia J. Galvan
- Department of Plant and Environmental Sciences, New Mexico State University, Las Cruces, NM, United States of America
| | - F. Omar Holguin
- Department of Plant and Environmental Sciences, New Mexico State University, Las Cruces, NM, United States of America
| | - Sophie Whyms
- School of Pharmacy and Pharmaceutical Sciences, Trinity College, Dublin, Ireland
| | - Immo A. Hansen
- Department of Biology, New Mexico State University, Las Cruces, NM, United States of America
| | - August G. Costa
- Department of Anthropology, Rice University, Houston, TX, United States of America
| |
Collapse
|
5
|
Alimi D, Trabelsi N, Hajri A, Amor MB, Mejri A, Jallouli S, Sebai H. Laboratory assessment of the acaricidal, repellent and anti-cholinesterase effects of Melaleuca alternifolia and Chamaemelum nobile essential oils against Hyalomma scupense ticks. Vet Res Commun 2024; 48:1379-1391. [PMID: 38267710 DOI: 10.1007/s11259-024-10313-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2023] [Accepted: 01/18/2024] [Indexed: 01/26/2024]
Abstract
In cattle, Hyalomma scupense serves as an important vector of several pathogens resulting in diseases, subsequently affecting the agricultural field as well as the economy. Resistance to chemical acaricides has become widespread affirming the need for new drugs to tick control. The goal of this study was to investigate the acaricidal, repellent activities as well as the putative mode of action of two essential oils (EOs) from Melaleuca alternifolia (Tea tree) and Chamaemelum nobile (Roman chamomile) on Hyalomma scupense. The chemical composition of EOs was also evaluated. Different concentrations of EOs were tested in vitro for their acaricidal property on adults and larvae of H. scupense using adult immersion test (AIT) and larval packet test (LPT). Additionally, using Ellman's spectrophotometric method, the anticholinesterase (AChE) inhibition activity of M. alternifolia and C. nobile EOs was assessed in order to understand their putative mode of action. The main compounds of C. nobile were α-Bisabolene (22.20%) and (E)-β-Famesene (20.41%). The major components in the analyzed M. alternifolia were Terpinen-4-ol (36.32%) and γ-Terpinene (13.69%). Adulticidal and larvicidal assays demonstrated a promising efficacy of the essential oils against tick H. scupense. The lethal concentration (LC50) values obtained for M. alternifolia and C. nobile oils were 0.84 and 0.96 mg/mL in the AIT and 0.37 and 0.48 mg/mL in the LPT, respectively. Regarding repellent activity, M. alternifolia achieved 100% repellency at the concentration of 1 mg/mL while C. nobile showed 95.98% repellency activity at concentration of 4 mg/mL. Also, M. alternifolia and C. nobile EOs displayed potent AChE inhibition with IC50 value of 91.27 and 100.12 μg/mL, respectively. In the present study, M. alternifolia and, to a lesser degree, C. nobile EOs were found to be effective in vitro acaricides, repellents and acetylcholinesterase inhibitor against H. scupense ticks. These plants may represent an economical and sustainable alternative to toxic synthetic acaricides in the management of ectoparasites of veterinary importance.
Collapse
Affiliation(s)
- Dhouha Alimi
- Laboratory of Functional Physiology and Valorization of Bio-Resources (LR23ES08), Higher Institute of Biotechnology of Beja, University of Jendouba, Habib Bourguiba Street, Box 382, 9000, Beja, Tunisia.
| | - Najla Trabelsi
- Laboratory of Olive Biotechnology, Center of Biotechnology of Borj-Cedria, Hammam-Lif, Tunisia
| | - Azhar Hajri
- Laboratory of Functional Physiology and Valorization of Bio-Resources (LR23ES08), Higher Institute of Biotechnology of Beja, University of Jendouba, Habib Bourguiba Street, Box 382, 9000, Beja, Tunisia
| | - Marwa Ben Amor
- Laboratory of Olive Biotechnology, Center of Biotechnology of Borj-Cedria, Hammam-Lif, Tunisia
| | - Asma Mejri
- Laboratory of Olive Biotechnology, Center of Biotechnology of Borj-Cedria, Hammam-Lif, Tunisia
| | - Selim Jallouli
- Laboratory of Bioactive Substances, Centre of Biotechnology of Borj-Cedria, Box 901, 2050, Hammam-Lif, Tunisia
| | - Hichem Sebai
- Laboratory of Functional Physiology and Valorization of Bio-Resources (LR23ES08), Higher Institute of Biotechnology of Beja, University of Jendouba, Habib Bourguiba Street, Box 382, 9000, Beja, Tunisia
| |
Collapse
|
6
|
Rito-Rueda A, Flores-Jiménez JE, Gutiérrez-Cabrera AE, Cruz-Esteban S, Córdoba-Aguilar A, Cruz-López L, Alavez-Rosas D. How to repel a killer; chemical identification and effective repellent activity of commercial essential oils against kissing bugs. MEDICAL AND VETERINARY ENTOMOLOGY 2024; 38:148-159. [PMID: 38006300 DOI: 10.1111/mve.12702] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Accepted: 10/31/2023] [Indexed: 11/27/2023]
Abstract
Triatomines are haematophagous insects, some species are vectors of Trypanosoma cruzi, the aetiological agent of Chagas disease. The main strategy for interrupting T. cruzi transmission is to avoid contact of the vector populations with humans. Volatiles from commercial essential oils are excellent candidates to serve as repellents of kissing bugs. We used an exposure device to assess the repellence effect of eight commercial essential oils on Triatoma pallidipennis. The most effective oils were blended and evaluated against T. infestans, T. pallidipennis and Rhodnius prolixus. The blend was also evaluated on parasitised T. pallidipennis. Data were compared with the commercial repellent NN-diethyl-3-methylbenzamide. We recorded the time the insects spent in the proximity of the host and determined if any of the evaluated oils served as kissing bug repellent. We found commercial essential oils and a blend that significantly reduced the time spent in the proximity of the host. The blend was effective for use by human males and females, repelling infected and non-infected insects. The study of essential oils as repellents of blood-sucking disease-vector insects could shed light on the development of new control strategies.
Collapse
Affiliation(s)
| | | | - Ana Erika Gutiérrez-Cabrera
- CONAHCyT-Centro de Investigación Sobre Enfermedades Infecciosas, Instituto Nacional de Salud Pública, Cuernavaca, Mexico
| | - Samuel Cruz-Esteban
- Instituto de Ecología, A.C. Red de Diversidad Biológica del Occidente Mexicano, Pátzcuaro, Mexico
- CONAHCYT, Ciudad de México, Mexico
| | - Alex Córdoba-Aguilar
- Instituto de Ecología, Universidad Nacional Autónoma de México, Circuito exterior s/n, Ciudad Universitaria, Ciudad de México, Mexico
| | | | - David Alavez-Rosas
- Instituto de Ecología, Universidad Nacional Autónoma de México, Circuito exterior s/n, Ciudad Universitaria, Ciudad de México, Mexico
| |
Collapse
|
7
|
Le Mauff A, Norris EJ, Li AY, Swale DR. Repellent activity of essential oils to the Lone Star tick, Amblyomma americanum. Parasit Vectors 2024; 17:202. [PMID: 38711138 DOI: 10.1186/s13071-024-06246-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Accepted: 03/14/2024] [Indexed: 05/08/2024] Open
Abstract
BACKGROUND The Lone Star tick, Amblyomma americanum is important to human health because of a variety of pathogenic organisms transmitted to humans during feeding events, which underscores the need to identify novel approaches to prevent tick bites. Thus, the goal of this study was to test natural and synthetic molecules for repellent activity against ticks in spatial, contact and human fingertip bioassays. METHODS The efficacy of essential oils and naturally derived compounds as repellents to Am. americanum nymphs was compared in three different bioassays: contact, spatial and fingertip repellent bioassays. RESULTS Concentration response curves after contact exposure to 1R-trans-chrysanthemic acid (TCA) indicated a 5.6 μg/cm2 concentration required to repel 50% of ticks (RC50), which was five- and sevenfold more active than DEET and nootkatone, respectively. For contact repellency, the rank order of repellency at 50 μg/cm2 for natural oils was clove > geranium > oregano > cedarwood > thyme > amyris > patchouli > citronella > juniper berry > peppermint > cassia. For spatial bioassays, TCA was approximately twofold more active than DEET and nootkatone at 50 μg/cm2 but was not significantly different at 10 μg/cm2. In spatial assays, thyme and cassia were the most active compounds tested with 100% and 80% ticks repelled within 15 min of exposure respectively and was approximately twofold more effective than DEET at the same concentration. To translate these non-host assays to efficacy when used on the human host, we quantified repellency using a finger-climbing assay. TCA, nootkatone and DEET were equally effective in the fingertip assay, and patchouli oil was the only natural oil that significantly repelled ticks. CONCLUSIONS The differences in repellent potency based on the assay type suggests that the ability to discover active tick repellents suitable for development may be more complicated than with other arthropod species; furthermore, the field delivery mechanism must be considered early in development to ensure translation to field efficacy. TCA, which is naturally derived, is a promising candidate for a tick repellent that has comparable repellency to commercialized tick repellents.
Collapse
Affiliation(s)
- Anais Le Mauff
- Emerging Pathogens Institute, Department of Entomology and Nematology, University of Florida, 2055 Mowry Road, PO Box 100009, Gainesville, FL, 32610, USA
| | - Edmund J Norris
- Center for Medical, Agricultural, and Veterinary Entomology, United States Department of Agriculture, Agricultural Research Service, Gainesville, FL, 32608, USA
| | - Andrew Y Li
- Invasive Insect Biocontrol & Behavior Laboratory, United States Department of Agriculture, Agricultural Research Service, Beltsville, MD, 20705, USA
| | - Daniel R Swale
- Emerging Pathogens Institute, Department of Entomology and Nematology, University of Florida, 2055 Mowry Road, PO Box 100009, Gainesville, FL, 32610, USA.
| |
Collapse
|
8
|
Islam MS, Haque MS, You MJ. Comparative analysis of essential oil efficacy against the Asian longhorned tick Haemaphysalis longicornis (Acari: Ixodidae). PARASITES, HOSTS AND DISEASES 2024; 62:217-225. [PMID: 38835262 DOI: 10.3347/phd.23097] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Accepted: 02/23/2024] [Indexed: 06/06/2024]
Abstract
This study evaluated the potential repellent and acaricidal effects of 4 essential oils (clove, eucalyptus, lavender, and mint) against the Asian longhorned tick Haemaphysalis longicornis, a vector of various tick-borne diseases in medical and veterinary contexts. Selected for their potential repellent and acaricidal properties, the 4 essential oils were tested on adult and nymph H. longicornis ticks at different concentrations. The experiment assessed mortality rates and repellency, particularly during tick attachment to host skin. There was a significant increase (p<0.05) in tick mortality and repellency scores across all groups. At a 1% concentration, adult tick mortality ranged from 36% to 86%, while nymph mortality ranged from 6% to 97%. Clove oil exhibited notable efficacy, demonstrating high mortality rates of nymphs and adults. Clove oil also displayed strong repellency properties, with a repellency index of 0.05, surpassing those of mint, eucalyptus, and lavender oils. Clove oil showed the highest effectiveness in deterring nonattached adult ticks (90%) and nymphs (95%) when applied to skin. Clove oil was the most effective against adult and nymph ticks, achieving mortality rates of 86% and 97%, respectively, and led to the highest nonattachment rates when applied to skin. In conclusion, essential oils such as clove, eucalyptus, lavender, and mint oils present promising results for tick population control.
Collapse
Affiliation(s)
- Mohammad Saiful Islam
- Laboratory of Veterinary Parasitology, College of Veterinary Medicine and Bio-Safety Research Center, Jeonbuk National University Specialized Campus, Iksan 54596, Korea
- Department of Medicine Surgery & Obstetrics, Faculty of Veterinary and Animal Science, Hajee Mohammad Danesh Science and Technology University, Dinajpur 5200, Bangladesh
| | - Md Samiul Haque
- Laboratory of Veterinary Parasitology, College of Veterinary Medicine and Bio-Safety Research Center, Jeonbuk National University Specialized Campus, Iksan 54596, Korea
| | - Myung-Jo You
- Laboratory of Veterinary Parasitology, College of Veterinary Medicine and Bio-Safety Research Center, Jeonbuk National University Specialized Campus, Iksan 54596, Korea
| |
Collapse
|
9
|
Zhao X, Liu Y, Li M, Li H, Zhang Q, Lv Q. Differential analysis of volatiles in five types of mosquito-repellent products by chemometrics combined with headspace GC-Orbitrap HRMS nontargeted detection. Talanta 2024; 269:125443. [PMID: 38048684 DOI: 10.1016/j.talanta.2023.125443] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Revised: 11/16/2023] [Accepted: 11/18/2023] [Indexed: 12/06/2023]
Abstract
This paper reports a method for the differential analysis of volatile chemical components in five novel types of mosquito-repellent products based on chemometrics combined with headspace gas chromatography-Orbitrap high-resolution mass spectrometry (HS-GC-Orbitrap HRMS) nontargeted screening. A total of 358 unknown substances were detected in 30 samples under specific headspace conditions. Through principal component analysis and orthogonal partial least-squares discriminant analysis, 36 significantly different substances with variable importance in the projection values greater than 1 were further screened, and these substances were accurately identified by GC-Orbitrap HRMS. Most substances were found for the first time in mosquito-repellent products. The clustered heat map, Venn diagram and peak area histogram showed that the mosquito-repellent products had similar volatile composition, and the volatile species and content of different types of mosquito-repellent products significantly varied. Substances, such as eucalyptol, d-limonene, α-pinene, β-pinene, dl-menthol and methyl salicylate, may be the main sources of odour in mosquito-repellent products. This work explored the characteristic volatile components in mosquito-repellent products and comparatively analysed the chemical composition of different types of products. It can be generalised to consumer products as a case study and has positive implications for promoting product quality and safety and improving production processes.
Collapse
Affiliation(s)
- Xiying Zhao
- Key Laboratory of Consumer Product Quality Safety Inspection and Risk Assessment for State Market Regulation, Chinese Academy of Inspection and Quarantine, Beijing, 100176, China; College of Life Science, Shanxi University, Taiyuan, 030006, Shanxi Province, China
| | - Yahui Liu
- Key Laboratory of Consumer Product Quality Safety Inspection and Risk Assessment for State Market Regulation, Chinese Academy of Inspection and Quarantine, Beijing, 100176, China
| | - Meiping Li
- College of Life Science, Shanxi University, Taiyuan, 030006, Shanxi Province, China.
| | - Hongyan Li
- Zhejiang Institute of Product Quality and Safety Science, Hangzhou, 310018, Zhejiang Province, China
| | - Qing Zhang
- Key Laboratory of Consumer Product Quality Safety Inspection and Risk Assessment for State Market Regulation, Chinese Academy of Inspection and Quarantine, Beijing, 100176, China
| | - Qing Lv
- Key Laboratory of Consumer Product Quality Safety Inspection and Risk Assessment for State Market Regulation, Chinese Academy of Inspection and Quarantine, Beijing, 100176, China.
| |
Collapse
|
10
|
Anholeto LA, Blanchard S, Wang HV, Chagas ACDS, Hillier NK, Faraone N. In vitro acaricidal activity of essential oils and their binary mixtures against ixodes scapularis (Acari: Ixodidae). Ticks Tick Borne Dis 2024; 15:102309. [PMID: 38219289 DOI: 10.1016/j.ttbdis.2024.102309] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Revised: 12/24/2023] [Accepted: 01/01/2024] [Indexed: 01/16/2024]
Abstract
Ixodes scapularis ticks are vectors of infectious agents that cause illness in humans, including Lyme disease. Recent years have seen a surge in tick-borne diseases (TBD) resulting in a high demand for tick management products. Plants offer a valuable source of active compounds for the development of novel, eco-friendly tick control products, reducing potential risks to human and animal health. Essential oils (EOs) have emerged as potential acaricides and repellents against ticks providing an alternative to synthetic chemicals and aiding in the prevention of TBD by lowering the risk of tick bites. We investigated the acaricidal activity of EOs from lemongrass (Cymbopogon citratus), geranium (Pelargonium x asperum), savory thyme (Thymus saturejoides), and white thyme (Thymus zygis) on I. scapularis. The interactions (i.e., synergistic, antagonistic, or additive) of their binary mixtures were also evaluated. EO samples were analyzed via gas chromatography-mass spectrometry to determine their chemical composition. The adult immersion test was used to determine the lethal concentration (LC50) of each EO alone and in mixtures. Quantitative assessment of synergistic, additive, or antagonistic effect of the binary mixtures was performed by calculating the combination index. Strong acaricidal activity was recorded for savory thyme and white thyme EOs, with LC50 values of 28.0 and 11.0 μg/μL, respectively. The LC50 of lemongrass and geranium EOs were 49.0 and 39.7 μg/μL, respectively. Among the tested EOs, savory thyme and white thyme had a strong acaricidal effect on I. scapularis, which might be linked to the presence of carvacrol (26.05 % ± 0.38) and thymol (53.6 % ± 2.31), main components present in savory thyme and white thyme EOs, respectively. The tick killing efficacy of lemongrass and geranium EOs was lower when mixed than when used separately (LC50 of 65.3 µg/µL). The same happened with savory thyme and white thyme EOs, except at 9.75 µg/µL where they had a synergistic effect (LC50 of 58.3 µg/µL). Lemongrass and savory thyme EOs had a synergistic effect at low concentrations, and an antagonistic effect at higher concentrations (LC50 of 95.4 µg/µL). Lemongrass and white thyme EOs had a synergistic effect against ticks from 15 to 120 µg/µL (LC50 of 18.5 µg/µL) similar to white thyme EO. Geranium and savory thyme EOs had an antagonistic effect at all concentrations, with an LC50 of 66.8 µg/µL. Geranium and white thyme EOs also had an antagonistic effect, except at 12.7 µg/µL where they had a synergistic effect (LC50 of 66.8 µg/µL). The interaction observed when combining selected essential oils suggests promising potential for developing acaricidal formulations aimed at controlling ticks and curbing the transmission of tick-borne disease agents.
Collapse
|
11
|
Burtis JC, Ford SL, Parise CM, Eisen RJ, Eisen L. Efficacy of unregulated minimum risk tick repellent products evaluated with Ixodes scapularis nymphs in a human skin bioassay. Parasit Vectors 2024; 17:50. [PMID: 38303091 PMCID: PMC10835920 DOI: 10.1186/s13071-024-06146-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2023] [Accepted: 01/18/2024] [Indexed: 02/03/2024] Open
Abstract
BACKGROUND The majority of vector-borne disease cases in the USA are caused by pathogens spread by ticks, most commonly the blacklegged tick, Ixodes scapularis. Personal protection against tick bites, including use of repellents, is the primary defense against tick-borne diseases. Tick repellents registered by the Environmental Protection Agency (EPA) are well documented to be safe as well as effective against ticks. Another group of tick repellent products, 25(b) exempt or minimum risk products, use alternative, mostly botanically derived, active ingredients. These are considered to pose minimal risk to human health and therefore are exempt from EPA registration; efficacy testing is not mandated for these products. METHODS We used a finger bioassay to evaluate the repellency against I. scapularis nymphs for 11 formulated 25(b) exempt products together with two positive control DEET-based EPA registered products. Repellency was assessed hourly from 0.5 to 6.5 h after product application. RESULTS The DEET-based products showed ≥ 97% repellency for all examined timepoints. By contrast, an average of 63% of ticks were repelled in the first 1.5 h after application across the 11 25(b) exempt products, and the average fell to 3% repelled between 2.5 and 6.5 h. Ten of the 11 25(b) exempt products showed statistically similar efficacy to DEET-based products at 30 min after application (repellency of 79-97%). However, only four 25(b) exempt products maintained a level of repellency similar to DEET-based products (> 72%) at the 1.5-h mark, and none of these products were effective in repelling ticks at the timepoints from 2.5 to 6.5 h after application. CONCLUSIONS Neither the claims on the labels nor specific active ingredients and their concentrations appeared to predict the duration of efficacy we observed for the 25(b) exempt products. These products are not registered with the EPA, so the methods used to determine the application guidelines on their labels are unclear. Consumers should be aware that both the level of efficacy and the duration of repellency may differ among unregulated 25(b) exempt repellent products labeled for use against ticks. We encourage more research on these products and the 25(b) exempt active ingredients they contain to help determine and improve their efficacy as repellents under different conditions.
Collapse
Affiliation(s)
- James C Burtis
- Division of Vector-Borne Diseases, Centers for Disease Control and Prevention, Fort Collins, CO, USA.
| | - Shelby L Ford
- Division of Vector-Borne Diseases, Centers for Disease Control and Prevention, Fort Collins, CO, USA
| | - Christina M Parise
- Division of Vector-Borne Diseases, Centers for Disease Control and Prevention, Fort Collins, CO, USA
| | - Rebecca J Eisen
- Division of Vector-Borne Diseases, Centers for Disease Control and Prevention, Fort Collins, CO, USA
| | - Lars Eisen
- Division of Vector-Borne Diseases, Centers for Disease Control and Prevention, Fort Collins, CO, USA
| |
Collapse
|
12
|
Luker HA. A critical review of current laboratory methods used to evaluate mosquito repellents. FRONTIERS IN INSECT SCIENCE 2024; 4:1320138. [PMID: 38469342 PMCID: PMC10926509 DOI: 10.3389/finsc.2024.1320138] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Accepted: 01/02/2024] [Indexed: 03/13/2024]
Abstract
Pathogens transmitted by mosquitoes threaten human health around the globe. The use of effective mosquito repellents can protect individuals from contracting mosquito-borne diseases. Collecting evidence to confirm and quantify the effectiveness of a mosquito repellent is crucial and requires thorough standardized testing. There are multitudes of methods to test repellents that each have their own strengths and weaknesses. Determining which type of test to conduct can be challenging and the collection of currently used and standardized methods has changed over time. Some of these methods can be powerful to rapidly screen numerous putative repellent treatments. Other methods can test mosquito responses to specific treatments and measure either spatial or contact repellency. A subset of these methods uses live animals or human volunteers to test the repellency of treatments. Assays can greatly vary in their affordability and accessibility for researchers and/or may require additional methods to confirm results. Here I present a critical review that covers some of the most frequently used laboratory assays from the last two decades. I discuss the experimental designs and highlight some of the strengths and weaknesses of each type of method covered.
Collapse
Affiliation(s)
- Hailey A. Luker
- Molecular Vector Physiology Laboratory, Department of Biology, New Mexico State University, Las Cruces, NM, United States
| |
Collapse
|
13
|
Abstract
Human-biting ticks threaten public health in the United States. Registration by the Environmental Protection Agency of products to kill host-seeking ticks or repel ticks contacting humans is indicative of their safety and effectiveness. Unregulated minimum risk products, exempt from Environmental Protection Agency registration and often based on botanical oils, are proliferating in the marketplace, but there is concern about their effectiveness to kill and repel ticks. Evaluations of such products are limited in the published literature. A review showed considerable variability among minimum risk products to kill host-seeking blacklegged ticks, with effectiveness similar to chemical pesticide products for some minimum risk products but minimal impact on the ticks for other products. Evaluations of minimum risk tick repellents have typically focused on individual active ingredients rather than formulated products, which often combine multiple active ingredients. Consumers should be aware that effectiveness to kill and repel ticks can differ among unregulated minimum risk products.
Collapse
|
14
|
Burtis JC, Ford SL, Parise CM, Foster E, Eisen RJ, Eisen L. Comparison of in vitro and in vivo repellency bioassay methods for Ixodes scapularis nymphs. Parasit Vectors 2023; 16:228. [PMID: 37430360 DOI: 10.1186/s13071-023-05845-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Accepted: 06/20/2023] [Indexed: 07/12/2023] Open
Abstract
BACKGROUND Numerous bioassay methods have been used to test the efficacy of repellents for ticks, but the comparability of results across different methods has only been evaluated in a single study. Of particular interest are comparisons between bioassays that use artificial containers (in vitro) with those conducted on a human subject (in vivo) for efficacy testing of new potential unregistered active ingredients, which most commonly use in vitro methods. METHODS We compared four different bioassay methods and evaluated three ingredients (DEET [N,N-Diethyl-meta-toluamide], peppermint oil and rosemary oil) and a negative control (ethanol) over a 6-h period. Two of the methods tested were in vivo bioassay methods in which the active ingredient was applied to human skin (finger and forearm bioassays), and the other two methods were in vitro methods using artificial containers (jar and petri dish bioassays). All four bioassays were conducted using Ixodes scapularis nymphs. We compared the results using nymphs from two different tick colonies that were derived from I. scapularis collected in the US states of Connecticut and Rhode Island (northern origin) and Oklahoma (southern origin), expecting that ticks of different origin would display differences in host-seeking behavior. RESULTS The results between bioassay methods did not differ significantly, even when comparing those that provide the stimulus of human skin with those that do not. We also found that tick colony source can impact the outcome of repellency bioassays due to differences in movement speed; behavioral differences were incorporated into the assay screening. DEET effectively repelled nymphs for the full 6-h duration of the study. Peppermint oil showed a similar repellent efficacy to DEET during the first hour, but it decreased sharply afterwards. Rosemary oil did not effectively repel nymphs across any of the time points. CONCLUSIONS The repellency results did not differ significantly between the four bioassay methods tested. The results also highlight the need to consider the geographic origin of ticks used in repellency bioassays in addition to species and life stage. Finally, our results indicate a limited repellent efficacy of the two essential oils tested, which highlights the need for further studies on the duration of repellency for similar botanically derived active ingredients and for evaluation of formulated products.
Collapse
Affiliation(s)
- James C Burtis
- Division of Vector-Borne Diseases, National Center for Emerging and Zoonotic Infectious Diseases, Centers for Disease Control and Prevention, Fort Collins, CO, 80521, USA.
| | - Shelby L Ford
- Division of Vector-Borne Diseases, National Center for Emerging and Zoonotic Infectious Diseases, Centers for Disease Control and Prevention, Fort Collins, CO, 80521, USA
| | - Christina M Parise
- Division of Vector-Borne Diseases, National Center for Emerging and Zoonotic Infectious Diseases, Centers for Disease Control and Prevention, Fort Collins, CO, 80521, USA
| | - Erik Foster
- Division of Vector-Borne Diseases, National Center for Emerging and Zoonotic Infectious Diseases, Centers for Disease Control and Prevention, Fort Collins, CO, 80521, USA
| | - Rebecca J Eisen
- Division of Vector-Borne Diseases, National Center for Emerging and Zoonotic Infectious Diseases, Centers for Disease Control and Prevention, Fort Collins, CO, 80521, USA
| | - Lars Eisen
- Division of Vector-Borne Diseases, National Center for Emerging and Zoonotic Infectious Diseases, Centers for Disease Control and Prevention, Fort Collins, CO, 80521, USA
| |
Collapse
|