1
|
Hu H, Zhang Z, Chen B, Zhang Q, Xu N, Paerl HW, Wang T, Hong W, Penuelas J, Qian H. Potential health risk assessment of cyanobacteria across global lakes. Appl Environ Microbiol 2024:e0193624. [PMID: 39494896 DOI: 10.1128/aem.01936-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2024] [Accepted: 10/09/2024] [Indexed: 11/05/2024] Open
Abstract
Cyanobacterial blooms pose environmental and health risks due to their production of toxic secondary metabolites. While current methods for assessing these risks have focused primarily on bloom frequency and intensity, the lack of comprehensive and comparable data on cyanotoxins makes it challenging to rigorously evaluate these health risks. In this study, we examined 750 metagenomic data sets collected from 103 lakes worldwide. Our analysis unveiled the diverse distributions of cyanobacterial communities and the genes responsible for cyanotoxin production across the globe. Our approach involved the integration of cyanobacterial biomass, the biosynthetic potential of cyanotoxin, and the potential effects of these toxins to establish potential cyanobacterial health risks. Our findings revealed that nearly half of the lakes assessed posed medium to high health risks associated with cyanobacteria. The regions of greatest concern were East Asia and South Asia, particularly in developing countries experiencing rapid industrialization and urbanization. Using machine learning techniques, we mapped potential cyanobacterial health risks in lakes worldwide. The model results revealed a positive correlation between potential cyanobacterial health risks and factors such as temperature, N2O emissions, and the human influence index. These findings underscore the influence of these variables on the proliferation of cyanobacterial blooms and associated risks. By introducing a novel quantitative method for monitoring potential cyanobacterial health risks on a global scale, our study contributes to the assessment and management of one of the most pressing threats to both aquatic ecosystems and human health. IMPORTANCE Our research introduces a novel and comprehensive approach to potential cyanobacterial health risk assessment, offering insights into risk from a toxicity perspective. The distinct geographical variations in cyanobacterial communities coupled with the intricate interplay of environmental factors underscore the complexity of managing cyanobacterial blooms at a global scale. Our systematic and targeted cyanobacterial surveillance enables a worldwide assessment of cyanobacteria-based potential health risks, providing an early warning system.
Collapse
Affiliation(s)
- Hang Hu
- College of Environment, Zhejiang University of Technology, Hangzhou, Zhejiang, China
| | - Zhenyan Zhang
- College of Environment, Zhejiang University of Technology, Hangzhou, Zhejiang, China
| | - Bingfeng Chen
- College of Environment, Zhejiang University of Technology, Hangzhou, Zhejiang, China
| | - Qi Zhang
- The Institute for Advanced Studies, Shaoxing University, Shaoxing, China
- College of Chemistry & Chemical Engineering, Shaoxing University, Shaoxing, China
| | - Nuohan Xu
- The Institute for Advanced Studies, Shaoxing University, Shaoxing, China
- College of Chemistry & Chemical Engineering, Shaoxing University, Shaoxing, China
| | - Hans W Paerl
- Institute of Marine Sciences, University of North Carolina at Chapel Hill, Morehead City, North Carolina, USA
| | - Tingzhang Wang
- Key Laboratory of Microbial Technology and Bioinformatics of Zhejiang Province, Hangzhou, China
| | - Wenjie Hong
- Key Laboratory of Microbial Technology and Bioinformatics of Zhejiang Province, Hangzhou, China
| | - Josep Penuelas
- CSIC, Global Ecology Unit CREAF-CSIC-UAB, Barcelona, Catalonia, Spain
- CREAF, Campus Universitat Autònoma de Barcelona, Barcelona, Catalonia, Spain
| | - Haifeng Qian
- College of Environment, Zhejiang University of Technology, Hangzhou, Zhejiang, China
| |
Collapse
|
2
|
Chávez-Luzanía RA, Ortega-Urquieta ME, Aguilera-Ibarra J, Morales-Sandoval PH, Hernández-Coss JA, González-Vázquez LA, Jara-Morales VB, Arredondo-Márquez SH, Olea-Félix MJ, de los Santos-Villalobos S. Transdisciplinary approaches for the study of cyanobacteria and cyanotoxins. CURRENT RESEARCH IN MICROBIAL SCIENCES 2024; 7:100289. [PMID: 39469049 PMCID: PMC11513502 DOI: 10.1016/j.crmicr.2024.100289] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/30/2024] Open
Abstract
Cyanobacteria, ancient aerobic and photoautotrophic prokaryotes, thrive in diverse ecosystems due to their extensive morphological and physiological adaptations. They play crucial roles in aquatic ecosystems as primary producers and resource providers but also pose significant ecological and health risks through blooms that produce harmful toxins, called cyanotoxins. The taxonomic affiliation of cyanobacteria has evolved from morphology-based methods to genomic analysis, which offers detailed structural and physiological insights that are essential for accurate taxonomic affiliation and monitoring. However, challenges posed by uncultured species have been extrapolated to the detection and quantification of cyanotoxins. Current advances in molecular biology and informatics improve the precision of monitoring and allow the analysis of groups of genes related to toxin production, providing crucial information for environmental biosafety and public health. Unfortunately, public genomic databases heavily underrepresent cyanobacteria, which limits the understanding of their diversity and metabolic capabilities. Despite the increasing availability of cyanobacterial genome sequences, research is still largely focused on a few model strains, narrowing the scope of genetic and metabolic studies. The challenges posed by cyanobacterial blooms and cyanotoxins necessitate improved molecular, cultivation, and polyphasic techniques for comprehensive classification and quantification, highlighting the need for advanced genomic approaches to better understand and manage cyanobacteria and toxins. This review explores the application of transdisciplinary approaches for the study of cyanobacteria and cyanotoxins focused on diversity analysis, population quantification, and cyanotoxin monitoring, emphasizing their genomic resources and their potential in the genomic mining of toxin-related genes.
Collapse
Affiliation(s)
- Roel Alejandro Chávez-Luzanía
- Laboratorio de Biotecnología del Recurso Microbiano, Instituto Tecnológico de Sonora, 5 de febrero 818 Sur, C.P.85000, Col. Centro, Ciudad Obregón, Sonora, Mexico
| | - María Edith Ortega-Urquieta
- Laboratorio de Biotecnología del Recurso Microbiano, Instituto Tecnológico de Sonora, 5 de febrero 818 Sur, C.P.85000, Col. Centro, Ciudad Obregón, Sonora, Mexico
| | - Jaquelyn Aguilera-Ibarra
- Laboratorio de Biotecnología del Recurso Microbiano, Instituto Tecnológico de Sonora, 5 de febrero 818 Sur, C.P.85000, Col. Centro, Ciudad Obregón, Sonora, Mexico
| | - Pamela Helué Morales-Sandoval
- Laboratorio de Biotecnología del Recurso Microbiano, Instituto Tecnológico de Sonora, 5 de febrero 818 Sur, C.P.85000, Col. Centro, Ciudad Obregón, Sonora, Mexico
| | - José Antonio Hernández-Coss
- Universidad Autónoma de Occidente, Blvd. Macario Gaxiola y Carretera internacional, México 15, C.P.81223, Los Mochis, Sinaloa, Mexico
| | - Luis Alberto González-Vázquez
- Universidad Autónoma de Sinaloa, Blvd. Miguel Tamayo Espinosa de los Monteros, C.P. 80050, Col. Desarrollo Urbano Tres Ríos, Culiacán, Sinaloa, Mexico
| | - Vielka Berenice Jara-Morales
- Laboratorio de Biotecnología del Recurso Microbiano, Instituto Tecnológico de Sonora, 5 de febrero 818 Sur, C.P.85000, Col. Centro, Ciudad Obregón, Sonora, Mexico
| | - Sergio Hiram Arredondo-Márquez
- Laboratorio de Biotecnología del Recurso Microbiano, Instituto Tecnológico de Sonora, 5 de febrero 818 Sur, C.P.85000, Col. Centro, Ciudad Obregón, Sonora, Mexico
| | - Marie Jennifer Olea-Félix
- Laboratorio de Biotecnología del Recurso Microbiano, Instituto Tecnológico de Sonora, 5 de febrero 818 Sur, C.P.85000, Col. Centro, Ciudad Obregón, Sonora, Mexico
| | - Sergio de los Santos-Villalobos
- Laboratorio de Biotecnología del Recurso Microbiano, Instituto Tecnológico de Sonora, 5 de febrero 818 Sur, C.P.85000, Col. Centro, Ciudad Obregón, Sonora, Mexico
| |
Collapse
|
3
|
Salmaso N, Cerasino L, Pindo M, Boscaini A. Taxonomic and functional metagenomic assessment of a Dolichospermum bloom in a large and deep lake south of the Alps. FEMS Microbiol Ecol 2024; 100:fiae117. [PMID: 39227168 PMCID: PMC11412076 DOI: 10.1093/femsec/fiae117] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Revised: 08/19/2024] [Accepted: 09/02/2024] [Indexed: 09/05/2024] Open
Abstract
Untargeted genetic approaches can be used to explore the high metabolic versatility of cyanobacteria. In this context, a comprehensive metagenomic shotgun analysis was performed on a population of Dolichospermum lemmermannii collected during a surface bloom in Lake Garda in the summer of 2020. Using a phylogenomic approach, the almost complete metagenome-assembled genome obtained from the analysis allowed to clarify the taxonomic position of the species within the genus Dolichospermum and contributed to frame the taxonomy of this genus within the ADA group (Anabaena/Dolichospermum/Aphanizomenon). In addition to common functional traits represented in the central metabolism of photosynthetic cyanobacteria, the genome annotation uncovered some distinctive and adaptive traits that helped define the factors that promote and maintain bloom-forming heterocytous nitrogen-fixing Nostocales in oligotrophic lakes. In addition, genetic clusters were identified that potentially encode several secondary metabolites that were previously unknown in the populations evolving in the southern Alpine Lake district. These included geosmin, anabaenopetins, and other bioactive compounds. The results expanded the knowledge of the distinctive competitive traits that drive algal blooms and provided guidance for more targeted analyses of cyanobacterial metabolites with implications for human health and water resource use.
Collapse
Affiliation(s)
- Nico Salmaso
- Research and Innovation Centre, Fondazione Edmund Mach, Via Edmund Mach, 1, 38098 San Michele all'Adige, Italy
- NBFC, National Biodiversity Future Center, Palermo 90133, Italy
| | - Leonardo Cerasino
- Research and Innovation Centre, Fondazione Edmund Mach, Via Edmund Mach, 1, 38098 San Michele all'Adige, Italy
| | - Massimo Pindo
- Research and Innovation Centre, Fondazione Edmund Mach, Via Edmund Mach, 1, 38098 San Michele all'Adige, Italy
| | - Adriano Boscaini
- Research and Innovation Centre, Fondazione Edmund Mach, Via Edmund Mach, 1, 38098 San Michele all'Adige, Italy
| |
Collapse
|
4
|
Jablonska M, Eleršek T, Kogovšek P, Skok S, Oarga-Mulec A, Mulec J. Molecular Screening for Cyanobacteria and Their Cyanotoxin Potential in Diverse Habitats. Toxins (Basel) 2024; 16:333. [PMID: 39195743 PMCID: PMC11360522 DOI: 10.3390/toxins16080333] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Revised: 07/16/2024] [Accepted: 07/25/2024] [Indexed: 08/29/2024] Open
Abstract
Cyanobacteria are adaptable and dominant organisms that exist in many harsh and extreme environments due to their great ecological tolerance. They produce various secondary metabolites, including cyanotoxins. While cyanobacteria are well studied in surface waters and some aerial habitats, numerous other habitats and niches remain underexplored. We collected 61 samples of: (i) biofilms from springs, (ii) aerial microbial mats from buildings and subaerial mats from caves, and (iii) water from borehole wells, caves, alkaline, saline, sulphidic, thermal, and iron springs, rivers, seas, and melted cave ice from five countries (Croatia, Georgia, Italy, Serbia, and Slovenia). We used (q)PCR to detect cyanobacteria (phycocyanin intergenic spacer-PC-IGS and cyanobacteria-specific 16S rRNA gene) and cyanotoxin genes (microcystins-mcyE, saxitoxins-sxtA, cylindrospermopsins-cyrJ), as well as amplicon sequencing and morphological observations for taxonomic identification. Cyanobacteria were detected in samples from caves, a saline spring, and an alkaline spring. While mcyE or sxtA genes were not observed in any sample, cyrJ results showed the presence of a potential cylindrospermopsin producer in a biofilm from a sulphidic spring in Slovenia. This study contributes to our understanding of cyanobacteria occurrence in diverse habitats, including rare and extreme ones, and provides relevant methodological considerations for future research in such environments.
Collapse
Affiliation(s)
- Maša Jablonska
- Department of Genetic Toxicology and Cancer Biology, National Institute of Biology, 1000 Ljubljana, Slovenia;
- Biotechnical Faculty, University of Ljubljana, 1000 Ljubljana, Slovenia
| | - Tina Eleršek
- Department of Genetic Toxicology and Cancer Biology, National Institute of Biology, 1000 Ljubljana, Slovenia;
| | - Polona Kogovšek
- Department of Biotechnology and Systems Biology, National Institute of Biology, 1000 Ljubljana, Slovenia;
| | - Sara Skok
- Karst Research Institute, Research Centre of the Slovenian Academy of Sciences and Arts, 6230 Postojna, Slovenia;
| | - Andreea Oarga-Mulec
- Materials Research Laboratory, University of Nova Gorica, 5000 Nova Gorica, Slovenia;
| | - Janez Mulec
- Karst Research Institute, Research Centre of the Slovenian Academy of Sciences and Arts, 6230 Postojna, Slovenia;
- UNESCO Chair on Karst Education, University of Nova Gorica, 5271 Vipava, Slovenia
| |
Collapse
|
5
|
Caro-Borrero A, Márquez-Santamaria K, Carmona-Jiménez J, Becerra-Absalón I, Perona E. Cyanobacterial Harmful Algal Mats (CyanoHAMs) in tropical rivers of central Mexico and their potential risks through toxin production. ENVIRONMENTAL MONITORING AND ASSESSMENT 2024; 196:408. [PMID: 38561517 PMCID: PMC10984904 DOI: 10.1007/s10661-024-12568-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Accepted: 03/23/2024] [Indexed: 04/04/2024]
Abstract
Cyanobacteria inhabiting lotic environments have been poorly studied and characterized in Mexico, despite their potential risks from cyanotoxin production. This article aims to fill this knowledge gap by assessing the importance of benthic cyanobacteria as potential cyanotoxin producers in central Mexican rivers through: (i) the taxonomic identification of cyanobacteria found in these rivers, (ii) the environmental characterization of their habitats, and (iii) testing for the presence of toxin producing genes in the encountered taxa. Additionally, we introduce and discuss the use of the term "CyanoHAMs" for lotic water environments. Populations of cyanobacteria were collected from ten mountain rivers and identified using molecular techniques. Subsequently, these taxa were evaluated for genes producing anatoxins and microcystins via PCR. Through RDA analyses, the collected cyanobacteria were grouped into one of three categories based on their environmental preferences for the following: (1) waters with high ionic concentrations, (2) cold-temperate waters, or (3) waters with high nutrient enrichment. Populations from six locations were identified to genus level: Ancylothrix sp., Cyanoplacoma sp., and Oxynema sp. The latter was found to contain the gene that produces anatoxins and microcystins in siliceous rivers, while Oxynema tested positive for the gene that produces microcystins in calcareous rivers. Our results suggest that eutrophic environments are not necessarily required for toxin-producing cyanobacteria. Our records of Compactonostoc, Oxynema, and Ancylothrix represent the first for Mexico. Four taxa were identified to species level: Wilmottia aff. murrayi, Nostoc tlalocii, Nostoc montejanii, and Dichothrix aff. willei, with only the first testing positive using PCR for anatoxin and microcystin-producing genes in siliceous rivers. Due to the differences between benthic growths with respect to planktonic ones, we propose the adoption of the term Cyanobacterial Harmful Algal Mats (CyanoHAMs) as a more precise descriptor for future studies.
Collapse
Affiliation(s)
- Angela Caro-Borrero
- Ecology and Natural Resources Department, Science Faculty, National Autonomous University of Mexico, University City, Exterior Circuit S/N, 04510, Coyoacan, Mexico City, Mexico
| | - Kenia Márquez-Santamaria
- Ecology and Natural Resources Department, Science Faculty, National Autonomous University of Mexico, University City, Exterior Circuit S/N, 04510, Coyoacan, Mexico City, Mexico
- Postgraduate School in Marine Sciences and Limnology, National Autonomous University of Mexico, University City, Exterior Circuit S/N, 04510, Coyoacan, Mexico City, Mexico
| | - Javier Carmona-Jiménez
- Ecology and Natural Resources Department, Science Faculty, National Autonomous University of Mexico, University City, Exterior Circuit S/N, 04510, Coyoacan, Mexico City, Mexico.
| | - Itzel Becerra-Absalón
- Comparative Biology Department, Science Faculty, National Autonomous University of Mexico, University City, Exterior Circuit S/N, 04510, Coyoacan, Mexico City, Mexico
| | - Elvira Perona
- Biology Department, Science Faculty, Autonomous University of Madrid, Darwin 2, Canto Blanco Campus, 28049, Madrid, Spain
| |
Collapse
|
6
|
Ledenko M, Antwi SO, Patel T. Geospatial analysis of cyanobacterial exposure and liver cancer in the contiguous United States. Hepatology 2024; 79:575-588. [PMID: 37607728 DOI: 10.1097/hep.0000000000000573] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Accepted: 08/09/2023] [Indexed: 08/24/2023]
Abstract
BACKGROUND AND AIMS Cyanobacteria are commonly found in water bodies and their production of hepatotoxins can contribute to liver damage. However, the population health effects of cyanobacteria exposure (CE) are unknown. Our objectives were to determine the effect of chronic exposure to cyanobacteria through proximity to water bodies with high cyanobacteria counts on the incidence and mortality of liver cancers, as well as to identify location-based risk factors. APPROACH AND RESULTS Across the contiguous United States, regions with high cyanobacteria counts in water bodies were identified using satellite remote sensing data. The data were geospatially mapped to county boundaries, and disease mortality and incidence rates were analyzed. Distinctive spatial clusters of CE and mortality related to liver diseases or cancer were identified. There was a highly significant spatial association between CE, liver disease, and liver cancer but not between CE and all cancers. Hot spots of CE and mortality were identified along the Gulf of Mexico, eastern Texas, Louisiana, and Florida, and cold spots across the Appalachians. The social vulnerability index was identified as a major location-based determinant by logistic regression, with counties in the fourth or fifth quintiles having the highest prevalence of hot spots of CE and mortality from liver cancer. CONCLUSIONS These findings emphasize the importance of environmental exposure to cyanobacteria as a location-based determinant of mortality from liver cancer. Public health initiatives addressing CE may be considered to reduce mortality, particularly in areas of high social vulnerability.
Collapse
Affiliation(s)
- Matthew Ledenko
- Department of Transplantation, Division of Gastroenterology and Hepatology, Mayo Clinic, Jacksonville, Florida, USA
| | - Samuel O Antwi
- Department of Quantitative Health Sciences, Mayo Clinic, Jacksonville, Florida, USA
| | - Tushar Patel
- Department of Transplantation, Division of Gastroenterology and Hepatology, Mayo Clinic, Jacksonville, Florida, USA
| |
Collapse
|