1
|
Zhang X, Zhao G, Ma T, Simmons CA, Santerre JP. A critical review on advances and challenges of bioprinted cardiac patches. Acta Biomater 2024:S1742-7061(24)00583-X. [PMID: 39374681 DOI: 10.1016/j.actbio.2024.09.056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Revised: 09/10/2024] [Accepted: 09/30/2024] [Indexed: 10/09/2024]
Abstract
Myocardial infarction (MI), which causes irreversible myocardium necrosis, affects 0.25 billion people globally and has become one of the most significant epidemics of our time. Over the past few years, bioprinting has moved beyond a concept of simply incorporating cells into biomaterials, to strategically defining the microenvironment (e.g., architecture, biomolecular signalling, mechanical stimuli, etc.) within which the cells are printed. Among the different bioprinting applications, myocardial repair is a field that has seen some of the most significant advances towards the management of the repaired tissue microenvironment. This review critically assesses the most recent biomedical innovations being carried out in cardiac patch bioprinting, with specific considerations given to the biomaterial design parameters, growth factors/cytokines, biomechanical and bioelectrical conditioning, as well as innovative biomaterial-based "4D" bioprinting (3D scaffold structure + temporal morphology changes) of myocardial tissues, immunomodulation and sustained delivery systems used in myocardium bioprinting. Key challenges include the ability to generate large quantities of cardiac cells, achieve high-density capillary networks, establish biomaterial designs that are comparable to native cardiac extracellular matrix, and manage the sophisticated systems needed for combining cardiac tissue microenvironmental cues while simultaneously establishing bioprinting technologies yielding both high-speed and precision. This must be achieved while considering quality assurance towards enabling reproducibility and clinical translation. Moreover, this manuscript thoroughly discussed the current clinical translational hurdles and regulatory issues associated with the post-bioprinting evaluation, storage, delivery and implantation of the bioprinted myocardial patches. Overall, this paper provides insights into how the clinical feasibility and important regulatory concerns may influence the design of the bioink (biomaterials, cell sources), fabrication and post-fabrication processes associated with bioprinting of the cardiac patches. This paper emphasizes that cardiac patch bioprinting requires extensive collaborations from imaging and 3D modelling technical experts, biomaterial scientists, additive manufacturing experts and healthcare professionals. Further, the work can also guide the field of cardiac patch bioprinting moving forward, by shedding light on the potential use of robotics and automation to increase productivity, reduce financial cost, and enable standardization and true commercialization of bioprinted cardiac patches. STATEMENT OF SIGNIFICANCE: The manuscript provides a critical review of important themes currently pursued for heart patch bioprinting, including critical biomaterial design parameters, physiologically-relevant cardiac tissue stimulations, and newly emerging cardiac tissue bioprinting strategies. This review describes the limited number of studies, to date in the literature, that describe systemic approaches to combine multiple design parameters, including capabilities to yield high-density capillary networks, establish biomaterial composite designs similar to native cardiac extracellular matrix, and incorporate cardiac tissue microenvironmental cues, while simultaneously establishing bioprinting technologies that yield high-speed and precision. New tools such as artificial intelligence may provide the analytical power to consider multiple design parameters and identify an optimized work-flow(s) for enabling the clinical translation of bioprinted cardiac patches.
Collapse
Affiliation(s)
- Xiaoqing Zhang
- School of Basic Medical Sciences, Binzhou Medical University, Yantai, Shandong 264003, China; Translational Biology and Engineering Program, Ted Rogers Centre for Heart Research, University of Toronto, Toronto, Ontario M5G 1M1, Canada.
| | - Guangtao Zhao
- School of Basic Medical Sciences, Binzhou Medical University, Yantai, Shandong 264003, China
| | - Tianyi Ma
- Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam 999077, Hong Kong Special Administrative Region of China
| | - Craig A Simmons
- School of Basic Medical Sciences, Binzhou Medical University, Yantai, Shandong 264003, China; Department of Mechanical and Industrial Engineering, University of Toronto, Toronto, Ontario M5S 3G8, Canada; Translational Biology and Engineering Program, Ted Rogers Centre for Heart Research, University of Toronto, Toronto, Ontario M5G 1M1, Canada.
| | - J Paul Santerre
- School of Basic Medical Sciences, Binzhou Medical University, Yantai, Shandong 264003, China; Translational Biology and Engineering Program, Ted Rogers Centre for Heart Research, University of Toronto, Toronto, Ontario M5G 1M1, Canada.
| |
Collapse
|
2
|
Fiorelli E, Scioli MG, Terriaca S, Ul Haq A, Storti G, Madaghiele M, Palumbo V, Pashaj E, De Matteis F, Ribuffo D, Cervelli V, Orlandi A. Comparison of Bioengineered Scaffolds for the Induction of Osteochondrogenic Differentiation of Human Adipose-Derived Stem Cells. Bioengineering (Basel) 2024; 11:920. [PMID: 39329662 PMCID: PMC11429422 DOI: 10.3390/bioengineering11090920] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2024] [Revised: 08/29/2024] [Accepted: 09/10/2024] [Indexed: 09/28/2024] Open
Abstract
Osteochondral lesions may be due to trauma or congenital conditions. In both cases, therapy is limited because of the difficulty of tissue repair. Tissue engineering is a promising approach that relies on designed scaffolds with variable mechanical attributes to favor cell attachment and differentiation. Human adipose-derived stem cells (hASCs) are a very promising cell source in regenerative medicine with osteochondrogenic potential. Based on the assumption that stiffness influences cell commitment, we investigated three different scaffolds: a semisynthetic animal-derived GelMA hydrogel, a combined scaffold made of rigid PEGDA coated with a thin GelMA layer and a decellularized plant-based scaffold. We investigated the role of different biomechanical stimulations in the scaffold-induced osteochondral differentiation of hASCs. We demonstrated that all scaffolds support cell viability and spontaneous osteochondral differentiation without any exogenous factors. In particular, we observed mainly osteogenic commitment in higher stiffness microenvironments, as in the plant-based one, whereas in a dense and softer matrix, such as in GelMA hydrogel or GelMA-coated-PEGDA scaffold, chondrogenesis prevailed. We can induce a specific cell commitment by combining hASCs and scaffolds with particular mechanical attributes. However, in vivo studies are needed to fully elucidate the regenerative process and to eventually suggest it as a potential approach for regenerative medicine.
Collapse
Affiliation(s)
- Elena Fiorelli
- Anatomic Pathology Section, Department of Biomedicine and Prevention, University of Rome Tor Vergata, 00133 Rome, Italy; (E.F.); (S.T.); (A.O.)
| | - Maria Giovanna Scioli
- Anatomic Pathology Section, Department of Biomedicine and Prevention, University of Rome Tor Vergata, 00133 Rome, Italy; (E.F.); (S.T.); (A.O.)
| | - Sonia Terriaca
- Anatomic Pathology Section, Department of Biomedicine and Prevention, University of Rome Tor Vergata, 00133 Rome, Italy; (E.F.); (S.T.); (A.O.)
- Plastic Surgery Unit, Department of Surgery “Pietro Valdoni”, Sapienza University of Rome, 00133 Rome, Italy;
| | - Arsalan Ul Haq
- Department of Industrial Engineering, University of Rome Tor Vergata, 00133 Rome, Italy; (A.U.H.); (F.D.M.)
- Interdepartmental Research Centre for Regenerative Medicine (CIMER), University of Rome Tor Vergata, 00133 Rome, Italy
| | - Gabriele Storti
- Department of Plastic Surgery, University of Rome Tor Vergata, 00133 Rome, Italy; (G.S.); (V.C.)
| | - Marta Madaghiele
- Department of Experimental Medicine, University of Salento, 73100 Lecce, Italy;
| | - Valeria Palumbo
- Department of Experimental Medicine, University of Rome Tor Vergata, 00133 Rome, Italy;
| | - Ermal Pashaj
- Department of Surgical Sciences, Catholic University Our Lady of Good Counsel, 1005 Tirana, Albania;
| | - Fabio De Matteis
- Department of Industrial Engineering, University of Rome Tor Vergata, 00133 Rome, Italy; (A.U.H.); (F.D.M.)
- Interdepartmental Research Centre for Regenerative Medicine (CIMER), University of Rome Tor Vergata, 00133 Rome, Italy
| | - Diego Ribuffo
- Plastic Surgery Unit, Department of Surgery “Pietro Valdoni”, Sapienza University of Rome, 00133 Rome, Italy;
| | - Valerio Cervelli
- Department of Plastic Surgery, University of Rome Tor Vergata, 00133 Rome, Italy; (G.S.); (V.C.)
| | - Augusto Orlandi
- Anatomic Pathology Section, Department of Biomedicine and Prevention, University of Rome Tor Vergata, 00133 Rome, Italy; (E.F.); (S.T.); (A.O.)
- Department of Biomedical Sciences, Catholic University Our Lady of Good Counsel, 1005 Tirana, Albania
| |
Collapse
|
3
|
Horrocks MS, Zhurenkov KE, Malmström J. Conducting polymer hydrogels for biomedical application: Current status and outstanding challenges. APL Bioeng 2024; 8:031503. [PMID: 39323539 PMCID: PMC11424142 DOI: 10.1063/5.0218251] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Accepted: 09/06/2024] [Indexed: 09/27/2024] Open
Abstract
Conducting polymer hydrogels (CPHs) are composite polymeric materials with unique properties that combine the electrical capabilities of conducting polymers (CPs) with the excellent mechanical properties and biocompatibility of traditional hydrogels. This review aims to highlight how the unique properties CPHs have from combining their two constituent materials are utilized within the biomedical field. First, the synthesis approaches and applications of non-CPH conductive hydrogels are discussed briefly, contrasting CPH-based systems. The synthesis routes of hydrogels, CPs, and CPHs are then discussed. This review also provides a comprehensive overview of the recent advancements and applications of CPHs in the biomedical field, encompassing their applications as biosensors, drug delivery scaffolds (DDSs), and tissue engineering platforms. Regarding their applications within tissue engineering, a comprehensive discussion of the usage of CPHs for skeletal muscle prosthetics and regeneration, cardiac regeneration, epithelial regeneration and wound healing, bone and cartilage regeneration, and neural prosthetics and regeneration is provided. Finally, critical challenges and future perspectives are also addressed, emphasizing the need for continued research; however, this fascinating class of materials holds promise within the vastly evolving field of biomedicine.
Collapse
|
4
|
Lee KK, Celt N, Ardoña HAM. Looking both ways: Electroactive biomaterials with bidirectional implications for dynamic cell-material crosstalk. BIOPHYSICS REVIEWS 2024; 5:021303. [PMID: 38736681 PMCID: PMC11087870 DOI: 10.1063/5.0181222] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/15/2023] [Accepted: 04/15/2024] [Indexed: 05/14/2024]
Abstract
Cells exist in natural, dynamic microenvironmental niches that facilitate biological responses to external physicochemical cues such as mechanical and electrical stimuli. For excitable cells, exogenous electrical cues are of interest due to their ability to stimulate or regulate cellular behavior via cascade signaling involving ion channels, gap junctions, and integrin receptors across the membrane. In recent years, conductive biomaterials have been demonstrated to influence or record these electrosensitive biological processes whereby the primary design criterion is to achieve seamless cell-material integration. As such, currently available bioelectronic materials are predominantly engineered toward achieving high-performing devices while maintaining the ability to recapitulate the local excitable cell/tissue microenvironment. However, such reports rarely address the dynamic signal coupling or exchange that occurs at the biotic-abiotic interface, as well as the distinction between the ionic transport involved in natural biological process and the electronic (or mixed ionic/electronic) conduction commonly responsible for bioelectronic systems. In this review, we highlight current literature reports that offer platforms capable of bidirectional signal exchange at the biotic-abiotic interface with excitable cell types, along with the design criteria for such biomaterials. Furthermore, insights on current materials not yet explored for biointerfacing or bioelectronics that have potential for bidirectional applications are also provided. Finally, we offer perspectives aimed at bringing attention to the coupling of the signals delivered by synthetic material to natural biological conduction mechanisms, areas of improvement regarding characterizing biotic-abiotic crosstalk, as well as the dynamic nature of this exchange, to be taken into consideration for material/device design consideration for next-generation bioelectronic systems.
Collapse
Affiliation(s)
- Kathryn Kwangja Lee
- Department of Chemical and Biomolecular Engineering, University of California, Irvine, California 92697, USA
| | - Natalie Celt
- Department of Biomedical Engineering, University of California, Irvine, California 92697, USA
| | | |
Collapse
|
5
|
Ul Haq A, Carotenuto F, De Matteis F, Di Nardo P. Three-Dimensional Electrically Conductive Scaffolds to Culture Cardiac Progenitor Cells. Methods Mol Biol 2024; 2835:269-275. [PMID: 39105922 DOI: 10.1007/978-1-0716-3995-5_22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/07/2024]
Abstract
Three-dimensional (3D) scaffolds provide cell support while improving tissue regeneration through amplified cellular responses between implanted materials and native tissues. So far, highly conductive cardiac, nerve, and muscle tissues have been engineered by culturing stem cells on electrically inert scaffolds. These scaffolds, even though suitable, may not be very useful compared to the results shown by cells when cultured on conductive scaffolds. Noticing the mature phenotype the stem cells develop over time when cultured on conductive scaffolds, scientists have been trying to impart conductivity to traditionally nonconductive scaffolds. One way to achieve this goal is to blend conductive polymers (polyaniline, polypyrrole, PEDOT:PSS) with inert biomaterials and produce a 3D scaffold using various fabrication techniques. One such technique is projection micro-stereolithography, which is an additive manufacturing technique. It uses a photosensitive solution blended with conductive polymers and uses visible/UV light to crosslink the solution. 3D scaffolds with complex architectural features down to microscale resolution can be printed with this technique promptly. This chapter reports a protocol to fabricate electrically conductive scaffolds using projection micro-stereolithography.
Collapse
Affiliation(s)
- Arsalan Ul Haq
- Department of Clinical Sciences and Translational Medicine, University of Rome "Tor Vergata", Rome, Italy
- Interdepartmental Research Centre for Regenerative Medicine (CIMER), Department of Clinical Sciences and Translational Medicine, University of Rome "Tor Vergata", Rome, Italy
| | - Felicia Carotenuto
- Department of Clinical Sciences and Translational Medicine, University of Rome "Tor Vergata", Rome, Italy
- Interdepartmental Research Centre for Regenerative Medicine (CIMER), Department of Clinical Sciences and Translational Medicine, University of Rome "Tor Vergata", Rome, Italy
| | - Fabio De Matteis
- Interdepartmental Research Centre for Regenerative Medicine (CIMER), Department of Clinical Sciences and Translational Medicine, University of Rome "Tor Vergata", Rome, Italy
- Department of Industrial Engineering, University of Rome "Tor Vergata", Rome, Italy
| | - Paolo Di Nardo
- Department of Clinical Sciences and Translational Medicine, University of Rome "Tor Vergata", Rome, Italy.
| |
Collapse
|
6
|
Chen Z, Sun Z, Fan Y, Yin M, Jin C, Guo B, Yin Y, Quan R, Zhao S, Han S, Cheng X, Liu W, Chen B, Xiao Z, Dai J, Zhao Y. Mimicked Spinal Cord Fibers Trigger Axonal Regeneration and Remyelination after Injury. ACS NANO 2023; 17:25591-25613. [PMID: 38078771 DOI: 10.1021/acsnano.3c09892] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/27/2023]
Abstract
Spinal cord injury (SCI) causes tissue structure damage and composition changes of the neural parenchyma, resulting in severe consequences for spinal cord function. Mimicking the components and microstructure of spinal cord tissues holds promise for restoring the regenerative microenvironment after SCI. Here, we have utilized electrospinning technology to develop aligned decellularized spinal cord fibers (A-DSCF) without requiring synthetic polymers or organic solvents. A-DSCF preserves multiple types of spinal cord extracellular matrix proteins and forms a parallel-oriented structure. Compared to aligned collagen fibers (A-CF), A-DSCF exhibits stronger mechanical properties, improved enzymatic stability, and superior functionality in the adhesion, proliferation, axonal extension, and myelination of differentiated neural progenitor cells (NPCs). Notably, axon extension or myelination has been primarily linked to Agrin (AGRN), Laminin (LN), or Collagen type IV (COL IV) proteins in A-DSCF. When transplanted into rats with complete SCI, A-DSCF loaded with NPCs improves the survival, maturation, axon regeneration, and motor function of the SCI rats. These findings highlight the potential of structurally and compositionally biomimetic scaffolds to promote axonal extension and remyelination after SCI.
Collapse
Affiliation(s)
- Zhenni Chen
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Zheng Sun
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yongheng Fan
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Man Yin
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Chen Jin
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Bo Guo
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Yanyun Yin
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Rui Quan
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Shuaijing Zhao
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Shuyu Han
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xiaokang Cheng
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Weiyuan Liu
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Bing Chen
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Zhifeng Xiao
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Jianwu Dai
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
- Tianjin Key Laboratory of Biomedical Materials, Institute of Biomedical Engineering, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin 300192, China
| | - Yannan Zhao
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| |
Collapse
|
7
|
Sergi PN. Some Mechanical Constraints to the Biomimicry with Peripheral Nerves. Biomimetics (Basel) 2023; 8:544. [PMID: 37999185 PMCID: PMC10669299 DOI: 10.3390/biomimetics8070544] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Revised: 10/01/2023] [Accepted: 10/20/2023] [Indexed: 11/25/2023] Open
Abstract
Novel high technology devices built to restore impaired peripheral nerves should be biomimetic in both their structure and in the biomolecular environment created around regenerating axons. Nevertheless, the structural biomimicry with peripheral nerves should follow some basic constraints due to their complex mechanical behaviour. However, it is not currently clear how these constraints could be defined. As a consequence, in this work, an explicit, deterministic, and physical-based framework was proposed to describe some mechanical constraints needed to mimic the peripheral nerve behaviour in extension. More specifically, a novel framework was proposed to investigate whether the similarity of the stress/strain curve was enough to replicate the natural nerve behaviour. An original series of computational optimizing procedures was then introduced to further investigate the role of the tangent modulus and of the rate of change of the tangent modulus with strain in better defining the structural biomimicry with peripheral nerves.
Collapse
Affiliation(s)
- Pier Nicola Sergi
- Translational Neural Engineering Area, The Biorobotics Institute and Department of Excellence in Robotics and AI, Sant'Anna School of Advanced Studies, 56127 Pisa, Italy
| |
Collapse
|
8
|
Pescosolido F, Montaina L, Carcione R, Politi S, Matassa R, Carotenuto F, Nottola SA, Nardo PD, Tamburri E. A New Strong-Acid Free Route to Produce Xanthan Gum-PANI Composite Scaffold Supporting Bioelectricity. Macromol Biosci 2023; 23:e2300132. [PMID: 37399840 DOI: 10.1002/mabi.202300132] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Revised: 06/27/2023] [Accepted: 06/30/2023] [Indexed: 07/05/2023]
Abstract
Conductive hybrid xanthan gum (XG)-polyaniline (PANI) biocomposites forming 3D structures able to mimic electrical biological functions are synthesized by a strong-acid free medium. In situ aniline oxidative chemical polymerizations are performed in XG water dispersions to produce stable XG-PANI pseudoplastic fluids. XG-PANI composites with 3D architectures are obtained by subsequent freeze-drying processes. The morphological investigation highlights the formation of porous structures; UV-vis and Raman spectroscopy characterizations assess the chemical structure of the produced composites. I-V measurements evidence electrical conductivity of the samples, while electrochemical analyses point out their capability to respond to electric stimuli with electron and ion exchanges in physiological-like environment. Trial tests on prostate cancer cells evaluate biocompatibility of the XG-PANI composite. Obtained results demonstrate that a strong acid-free route produces an electrically conductive and electrochemically active XG-PANI polymer composite. The investigation of charge transport and transfer, as well as of biocompatibility properties of composite materials produced in aqueous environments, brings new perspective for exploitation of such materials in biomedical applications. In particular, the developed strategy can be used to realize biomaterials working as scaffolds that require electrical stimulations for inducing cell growth and communication or for biosignals monitoring and analysis.
Collapse
Affiliation(s)
- Francesca Pescosolido
- Department of Chemical Science and Technologies, University of Rome "Tor Vergata,", Via Della Ricerca Scientifica, Rome, 00133, Italy
- Interdepartmental Research Centre for Regenerative Medicine (CIMER), University of Rome "Tor Vergata,", Via Montpellier 1, Rome, 00133, Italy
- Department of Clinical Science and Translational Medicine, University of Rome "Tor Vergata," Via Montpellier 1, Rome, 00133, Italy
| | - Luca Montaina
- Department of Chemical Science and Technologies, University of Rome "Tor Vergata,", Via Della Ricerca Scientifica, Rome, 00133, Italy
| | - Rocco Carcione
- Department of Chemical Science and Technologies, University of Rome "Tor Vergata,", Via Della Ricerca Scientifica, Rome, 00133, Italy
| | - Sara Politi
- Department of Chemical Science and Technologies, University of Rome "Tor Vergata,", Via Della Ricerca Scientifica, Rome, 00133, Italy
- Interdepartmental Research Centre for Regenerative Medicine (CIMER), University of Rome "Tor Vergata,", Via Montpellier 1, Rome, 00133, Italy
| | - Roberto Matassa
- Department of Anatomy, Histology, Forensic Medicine and Orthopedics, Section of Human Anatomy, Sapienza University of Rome, Via A. Borelli 50, Rome, 00161, Italy
| | - Felicia Carotenuto
- Interdepartmental Research Centre for Regenerative Medicine (CIMER), University of Rome "Tor Vergata,", Via Montpellier 1, Rome, 00133, Italy
- Department of Clinical Science and Translational Medicine, University of Rome "Tor Vergata," Via Montpellier 1, Rome, 00133, Italy
| | - Stefania Annarita Nottola
- Department of Anatomy, Histology, Forensic Medicine and Orthopedics, Section of Human Anatomy, Sapienza University of Rome, Via A. Borelli 50, Rome, 00161, Italy
| | - Paolo Di Nardo
- Interdepartmental Research Centre for Regenerative Medicine (CIMER), University of Rome "Tor Vergata,", Via Montpellier 1, Rome, 00133, Italy
- Department of Clinical Science and Translational Medicine, University of Rome "Tor Vergata," Via Montpellier 1, Rome, 00133, Italy
| | - Emanuela Tamburri
- Department of Chemical Science and Technologies, University of Rome "Tor Vergata,", Via Della Ricerca Scientifica, Rome, 00133, Italy
- Interdepartmental Research Centre for Regenerative Medicine (CIMER), University of Rome "Tor Vergata,", Via Montpellier 1, Rome, 00133, Italy
| |
Collapse
|
9
|
Carcione R, Pescosolido F, Montaina L, Toschi F, Orlanducci S, Tamburri E, Battistoni S. Self-Standing 3D-Printed PEGDA-PANIs Electroconductive Hydrogel Composites for pH Monitoring. Gels 2023; 9:784. [PMID: 37888357 PMCID: PMC10606186 DOI: 10.3390/gels9100784] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Revised: 09/11/2023] [Accepted: 09/18/2023] [Indexed: 10/28/2023] Open
Abstract
Additive manufacturing (AM), or 3D printing processes, is introducing new possibilities in electronic, biomedical, sensor-designing, and wearable technologies. In this context, the present work focuses on the development of flexible 3D-printed polyethylene glycol diacrylate (PEGDA)- sulfonated polyaniline (PANIs) electrically conductive hydrogels (ECHs) for pH-monitoring applications. PEGDA platforms are 3D printed by a stereolithography (SLA) approach. Here, we report the successful realization of PEGDA-PANIs electroconductive hydrogel (ECH) composites produced by an in situ chemical oxidative co-polymerization of aniline (ANI) and aniline 2-sulfonic acid (ANIs) monomers at a 1:1 equimolar ratio in acidic medium. The morphological and functional properties of PEGDA-PANIs are compared to those of PEGDA-PANI composites by coupling SEM, swelling degree, I-V, and electro-chemo-mechanical analyses. The differences are discussed as a function of morphological, structural, and charge transfer/transport properties of the respective PANIs and PANI filler. Our investigation showed that the electrochemical activity of PANIs allows for the exploitation of the PEGDA-PANIs composite as an electrode material for pH monitoring in a linear range compatible with that of most biofluids. This feature, combined with the superior electromechanical behavior, swelling capacity, and water retention properties, makes PEGDA-PANIs hydrogel a promising active material for developing advanced biomedical, soft tissue, and biocompatible electronic applications.
Collapse
Affiliation(s)
- Rocco Carcione
- Consiglio Nazionale delle Ricerche, Institute of Materials for Electronics and Magnetism (CNR-IMEM), Parco Area delle Scienze 37A, 43124 Parma, Italy;
| | - Francesca Pescosolido
- Dipartimento di Scienze e Tecnologie Chimiche & UdR INSTM di Roma, Università degli Studi di Roma “Tor Vergata”—Via della Ricerca Scientifica, 00133 Rome, Italy; (F.P.); (L.M.); (S.O.)
- Centro di Ricerca Interdipartimentale di Medicina Rigenerativa (CIMER), Università degli Studi di Roma “Tor Vergata”, Via Montpellier 1, 00133 Rome, Italy
| | - Luca Montaina
- Dipartimento di Scienze e Tecnologie Chimiche & UdR INSTM di Roma, Università degli Studi di Roma “Tor Vergata”—Via della Ricerca Scientifica, 00133 Rome, Italy; (F.P.); (L.M.); (S.O.)
| | - Francesco Toschi
- Istituto di Struttura della Materia—CNR (ISM-CNR) & EuroFEL Support Laboratory (EFSL), 00015 Monterotondo Scalo, Italy;
| | - Silvia Orlanducci
- Dipartimento di Scienze e Tecnologie Chimiche & UdR INSTM di Roma, Università degli Studi di Roma “Tor Vergata”—Via della Ricerca Scientifica, 00133 Rome, Italy; (F.P.); (L.M.); (S.O.)
| | - Emanuela Tamburri
- Dipartimento di Scienze e Tecnologie Chimiche & UdR INSTM di Roma, Università degli Studi di Roma “Tor Vergata”—Via della Ricerca Scientifica, 00133 Rome, Italy; (F.P.); (L.M.); (S.O.)
- Centro di Ricerca Interdipartimentale di Medicina Rigenerativa (CIMER), Università degli Studi di Roma “Tor Vergata”, Via Montpellier 1, 00133 Rome, Italy
| | - Silvia Battistoni
- Consiglio Nazionale delle Ricerche, Institute of Materials for Electronics and Magnetism (CNR-IMEM), Parco Area delle Scienze 37A, 43124 Parma, Italy;
| |
Collapse
|
10
|
Bernava G, Iop L. Advances in the design, generation, and application of tissue-engineered myocardial equivalents. Front Bioeng Biotechnol 2023; 11:1247572. [PMID: 37811368 PMCID: PMC10559975 DOI: 10.3389/fbioe.2023.1247572] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Accepted: 08/29/2023] [Indexed: 10/10/2023] Open
Abstract
Due to the limited regenerative ability of cardiomyocytes, the disabling irreversible condition of myocardial failure can only be treated with conservative and temporary therapeutic approaches, not able to repair the damage directly, or with organ transplantation. Among the regenerative strategies, intramyocardial cell injection or intravascular cell infusion should attenuate damage to the myocardium and reduce the risk of heart failure. However, these cell delivery-based therapies suffer from significant drawbacks and have a low success rate. Indeed, cardiac tissue engineering efforts are directed to repair, replace, and regenerate native myocardial tissue function. In a regenerative strategy, biomaterials and biomimetic stimuli play a key role in promoting cell adhesion, proliferation, differentiation, and neo-tissue formation. Thus, appropriate biochemical and biophysical cues should be combined with scaffolds emulating extracellular matrix in order to support cell growth and prompt favorable cardiac microenvironment and tissue regeneration. In this review, we provide an overview of recent developments that occurred in the biomimetic design and fabrication of cardiac scaffolds and patches. Furthermore, we sift in vitro and in situ strategies in several preclinical and clinical applications. Finally, we evaluate the possible use of bioengineered cardiac tissue equivalents as in vitro models for disease studies and drug tests.
Collapse
Affiliation(s)
| | - Laura Iop
- Department of Cardiac Thoracic Vascular Sciences and Public Health, Padua Medical School, University of Padua, Padua, Italy
| |
Collapse
|