1
|
Kannan P, Konda Ravindranath AN, Domala SS, Oldfield M, Schiffrin A, Gupta D. Tripartite Detection and Sensing of Toxic Heavy Metals Using a Copper-Based Porphyrin Metal-Organic Framework. ACS APPLIED MATERIALS & INTERFACES 2024. [PMID: 39499112 DOI: 10.1021/acsami.4c12974] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/07/2024]
Abstract
The detection of heavy metals in water sources is a critical concern for environmental preservation and public health. However, current electrochemical heavy metal sensors suffer from high sensing limits, cross-sensitivity, and poor selectivity. In this work, we present the possibility of an electrochemical sensor based on a copper (Cu) metal-organic framework for the detection of lead, cadmium, and mercury by replacing Cu metal nodes. The working electrode consists of a ∼5 μm thin layer of copper- tetracarboxyphenylporphyrin (Cu-TCPP) sheets that are adsorbed on a glassy carbon electrode (GCE). Upon interaction with Pb2+, Cd2+, and Hg2+, these ions are adsorbed on and incorporated into the metal nodes of the MOF. The adsorbed metallic species can be oxidized to the ionic form (Pb → Pb2+) electrochemically, which results in an oxidation response and enables the quantitative detection of these metals. The oxidation peak currents follow a (mostly) bimodal linear regression with a sensing range of up to 30 μM dependent on the deposition time and an ultralow limit of detection (LoD) of up to 5 nM. The system displays robust and selective sensing in saturated solutions of counterions and interfering metal ions (low error margins of <10%). This work represents the first report of a Cu-TCPP-modified GCE anode as an effective electrode for the sensitive detection of multiple heavy metals and an in-depth study into the Cu replacement kinetics of the Cu-MOF.
Collapse
Affiliation(s)
- Prashanth Kannan
- IITB-Monash Research Academy, IIT Bombay, Mumbai, Maharashtra 400076, India
| | | | - Sunil Suresh Domala
- Department of Metallurgical Engineering and Materials Science, IIT Bombay, Mumbai, Maharashtra 400076, India
| | - Mitko Oldfield
- School of Physics and Astronomy, Monash University, Clayton, VIC 3800, Australia
- ARC Centre of Excellence in Future Low-Energy Electronics Technologies, Monash University, Clayton, VIC 3800, Australia
| | - Agustin Schiffrin
- School of Physics and Astronomy, Monash University, Clayton, VIC 3800, Australia
- ARC Centre of Excellence in Future Low-Energy Electronics Technologies, Monash University, Clayton, VIC 3800, Australia
| | - Dipti Gupta
- Department of Metallurgical Engineering and Materials Science, IIT Bombay, Mumbai, Maharashtra 400076, India
| |
Collapse
|
2
|
Noorani N, Mehrdad A, Shamszadeh P. PVC-based mixed-matrix membranes based on IL@AC/NH 2-MIL-101 nanocomposites for improved CO 2 separation performance. Sci Rep 2024; 14:23843. [PMID: 39394262 PMCID: PMC11470065 DOI: 10.1038/s41598-024-75617-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2024] [Accepted: 10/07/2024] [Indexed: 10/13/2024] Open
Abstract
Mixed matrix membranes (MMMs), an important class of organic-inorganic nanocomposite membranes, were developed to overcome some of the limitations of purely polymeric membranes. In this study to improve the separation performance of polyvinyl chloride (PVC) membranes, mixed matrix membranes (MMMs) were prepared from incorporating choline prolinate based ionic liquid (IL) in a the coke/metal-organic framework (MOF) (NH2-MIL-101(Cr)) as a filler in polyvinyl chloride (PVC), which can be viewed as a potential solution to the trade-off problem with polymeric membranes because of the combination of the processing versatility of polymers and the high gas separation capability. Coke/MOF/PVC and IL@AC/MOF/PVC MMMs with different filler loadings of 5, 10, and 15 wt% were prepared using solution casting method and characterized using Fourier Transform Infrared Spectroscopy (FTIR), Thermogravimetric Analysis (TGA), Scanning Electron Microscopy (SEM) with Energy-Dispersive X-ray Spectroscopy (EDX) analyses, and Brunauer-Emmett-Teller (BET) surface area test. The porous structure of MMMs nanocomposites causes to which coke/MOF composite effectively accelerate gas diffusion in the PVC matrix. The permeability date was measured at 288.15, 298.15, 308.15 and 318.15 K and pressure up to 4 bar for CO2 and N2. According to the outcome, the addition of the IL([Cho][Pro]) filler, the permeability of the AC/MOF/PVC MMMs is increased compared to the pure PVC membrane. The MMMs have the highest gas separation efficiency and performance above Robson's Upper Bound from 2008.
Collapse
Affiliation(s)
- Narmin Noorani
- Department of Physical Chemistry, Faculty of Chemistry, University of Tabriz, Tabriz, Iran.
| | - Abbas Mehrdad
- Department of Physical Chemistry, Faculty of Chemistry, University of Tabriz, Tabriz, Iran.
| | - Parastoo Shamszadeh
- Department of Physical Chemistry, Faculty of Chemistry, University of Tabriz, Tabriz, Iran
| |
Collapse
|
3
|
Shokri A, Shahhosseini S, Bazyari A. Nanoporous Metatitanic acid on γ-Al 2O 3 aerogel for higher CO 2 adsorption capacity and lower energy consumption. Sci Rep 2024; 14:22905. [PMID: 39358431 PMCID: PMC11447002 DOI: 10.1038/s41598-024-74203-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Accepted: 09/24/2024] [Indexed: 10/04/2024] Open
Abstract
Carbon dioxide capture has become an important issue in reducing atmospheric heat these days. In this study, adsorption of carbon dioxide by aerogel Gamma Alumina-Metatitanic Acid has been investigated and optimized. Morphological and structural analyses such as BET, FESEM, FT-IR, and XRD have also been conducted. In addition, Response surface methodology has been applied in order to achieve the optimal conditions, using a five-level Central composite design. The highest amount of adsorption, 12.874 (mmol/g), was recorded at a temperature of 20 (°C), pressure of 7 (bar), and 25 (%wt) of Metatitanic Acid. This was approximately 11.46% and 4.84% higher than those of mesoporous MgO and 4Azeolite, respectively. Regeneration of the adsorbent was also studied at different temperatures and process durations. Metatitanic acid, as a catalyst, reduces the temperature and regeneration time of the adsorbent by creating active sites and surface hydroxyl groups. It also lowers the required activation energy and enhances the thermal conductivity of the composite material. The optimal result was achieved at a temperature of 100 (°C) and a duration of 30 (min). Finally, isothermal and thermodynamic experiments were conducted to establish the most accurate predictive model and conditions, including Enthalpy, Entropy, and Gibbs free energy. The results indicate that the Freundlich model aligned well with the laboratory findings. Additionally, the negative values of Enthalpy, Entropy, and Gibbs free energy suggested that the adsorption process was physical, exothermic, and spontaneous.
Collapse
Affiliation(s)
- Abolfazl Shokri
- School of Chemical, Petroleum and Gas Engineering, Iran University of Science and Technology, Tehran, Iran
| | - Shahrokh Shahhosseini
- School of Chemical, Petroleum and Gas Engineering, Iran University of Science and Technology, Tehran, Iran.
| | - Amin Bazyari
- School of Chemical, Petroleum and Gas Engineering, Iran University of Science and Technology, Tehran, Iran
| |
Collapse
|
4
|
Shahin MB, Liaqat S, Nancarrow P, McCormack SJ. Crystal Phase Ionic Liquids for Energy Applications: Heat Capacity Prediction via a Hybrid Group Contribution Approach. Molecules 2024; 29:2130. [PMID: 38731621 PMCID: PMC11085896 DOI: 10.3390/molecules29092130] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Revised: 04/19/2024] [Accepted: 04/26/2024] [Indexed: 05/13/2024] Open
Abstract
In the selection and design of ionic liquids (ILs) for various applications, including heat transfer fluids, thermal energy storage materials, fuel cells, and solvents for chemical processes, heat capacity is a key thermodynamic property. While several attempts have been made to develop predictive models for the estimation of the heat capacity of ILs in their liquid phase, none so far have been reported for the ILs' solid crystal phase. This is particularly important for applications where ILs will be used for thermal energy storage in the solid phase. For the first time, a model has been developed and used for the prediction of crystal phase heat capacity based on extending and modifying a previously developed hybrid group contribution model (GCM) for liquid phase heat capacity. A comprehensive database of over 5000 data points with 71 unique crystal phase ILs, comprising 42 different cations and 23 different anions, was used for parameterization and testing. This hybrid model takes into account the effect of the anion core, cation core, and subgroups within cations and anions, in addition to the derived indirect parameters that reflect the effects of branching and distribution around the core of the IL. According to the results, the developed GCM can reliably predict the crystal phase heat capacity with a mean absolute percentage error of 6.78%. This study aims to fill this current gap in the literature and to enable the design of ILs for thermal energy storage and other solid phase applications.
Collapse
Affiliation(s)
- Moh’d Basel Shahin
- Department of Chemical and Biological Engineering, American University of Sharjah, Sharjah P.O. Box 26666, United Arab Emirates; (M.B.S.); (S.L.)
| | - Shehzad Liaqat
- Department of Chemical and Biological Engineering, American University of Sharjah, Sharjah P.O. Box 26666, United Arab Emirates; (M.B.S.); (S.L.)
| | - Paul Nancarrow
- Department of Chemical and Biological Engineering, American University of Sharjah, Sharjah P.O. Box 26666, United Arab Emirates; (M.B.S.); (S.L.)
| | - Sarah J. McCormack
- Department of Civil, Structural and Environmental Engineering, Trinity College Dublin, D02 PN40 Dublin, Ireland;
| |
Collapse
|
5
|
Lupa L, Tolea NS, Iosivoni M, Maranescu B, Plesu N, Visa A. Performance of ionic liquid functionalized metal organic frameworks in the adsorption process of phenol derivatives. RSC Adv 2024; 14:4759-4777. [PMID: 38318619 PMCID: PMC10840391 DOI: 10.1039/d3ra08024b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Accepted: 01/20/2024] [Indexed: 02/07/2024] Open
Abstract
The growth of industrial activities has produced a significant increase in the release of toxic organic pollutants (OPs) to the environment from industrial wastewater. On this premise, this study reports the use of metal organic frameworks (MOFs) impregnated with various ionic liquids (ILs) in the adsorption of phenol derivatives, i.e., 2,6-dimethylphenol and 4,4'-dihydroxybiphenyl. MOFs were prepared starting from 1-hydroxyethylidene-1,1-diphosphonic acid (HEDP) with divalent (Co, Ni, Cu) and trivalent (Ce) metal salts in mild hydrothermal conditions using water as a green solvent. Imidazolium base ionic liquids, namely 1-butyl-3-methylimidazolium trifluoromethanesulfonate, 1-butyl-3-methylimidazolium nitrate, 1-butyl-3-methylimidazolium chloride, and 1-hexyl-3-methyl-imidazolium chloride, were used to modify MOFs, leading to composite materials (IL@MOF), which show the structural characteristics of MOFs, and complement the advantages of ILs. SEM, EDX images, and TG data indicate that the IL is just attached on the surface of the adsorbent material, with no changes in crystal size or morphology, but with slightly altered thermal stabilities of IL@MOF composites compared to the original ILs and MOFs, pointing to some interionic interaction between IL and MOF. This research consists of equilibrium experiments, studying the effect of the initial concentration of OPs on the adsorption efficiency of the as-prepared MOFs and IL@MOF, in order to determine the influence of the nature of the adsorbent on its developed adsorption capacity and to investigate the performance of both ILs and MOFs. To determine the maximum adsorption capacity, several empirical isotherms were used: Langmuir, Freundlich, Redlich-Peterson, and Dubinin-Radushkevich. The characteristic parameters for each isotherm and the correlation coefficient (R2) were identified. The IL modification of MOFs increased the adsorption capacity of IL@MOF for the removal of phenol derivatives from aqueous solution. The adsorption capacity function of the MOF structure follows the trend CeHEDP > CoHEDP > NiHEDP > CuHEDP. The best performance was achieved by adsorbent materials based on Ce.
Collapse
Affiliation(s)
- Lavinia Lupa
- Faculty of Industrial Chemistry and Environmental Engineering, Politehnica University Timisoara 6 Vasile Parvan Blv 300223 Timisoara Romania
- "Coriolan Dragulescu" Institute of Chemistry 24 Mihai Viteazul Blv 300223 Timisoara Romania
| | - Nick Samuel Tolea
- "Coriolan Dragulescu" Institute of Chemistry 24 Mihai Viteazul Blv 300223 Timisoara Romania
- National Institute of Research and Development for Electrochemistry and Condensed Matter Dr. A. P. Podeanu 144 300569 Timişoara Romania
| | - Marcela Iosivoni
- "Coriolan Dragulescu" Institute of Chemistry 24 Mihai Viteazul Blv 300223 Timisoara Romania
| | - Bianca Maranescu
- "Coriolan Dragulescu" Institute of Chemistry 24 Mihai Viteazul Blv 300223 Timisoara Romania
- Department of Biology-Chemistry, Faculty of Chemistry, Biology, Geography, West University 16 Pestalozzi Street 300115 Timisoara Romania
| | - Nicoleta Plesu
- "Coriolan Dragulescu" Institute of Chemistry 24 Mihai Viteazul Blv 300223 Timisoara Romania
| | - Aurelia Visa
- "Coriolan Dragulescu" Institute of Chemistry 24 Mihai Viteazul Blv 300223 Timisoara Romania
| |
Collapse
|
6
|
Sun Y, Xu W, Lang F, Wang H, Pan F, Hou H. Transformation of SBUs and Synergy of MOF Host-Guest in Single Crystalline State: Ingenious Strategies for Modulating Third-Order NLO Signals. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2305879. [PMID: 37715100 DOI: 10.1002/smll.202305879] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Revised: 08/30/2023] [Indexed: 09/17/2023]
Abstract
Central metal exchange can innovatively open the cavity of metal-organic frameworks (MOFs) by alternating the framework topology. Here, the single-crystal-to-single-crystal (SC-SC) transformation is reported from a Co-based MOF {[Co1.25 (HL)0.5 (Pz-NH2 )0.25 (µ3 -O)0.25 (µ2 -OH)0.25 (H2 O)]·0.125 Co·0.125 L·10.25H2 O}n (Co-MOF, L = 5,5'-(1H-2,3,5-triazole-1,4-diyl)diisophthalic acid) into two novel MOF materials, {[Cu1.75 L0.75 (Pz-NH2 )0.125 (µ3 -O)0.125 (µ2 -OH)0.25 (H2 O)0.375 ]•3CH3 CN}n (Cu-MOF) and {[Zn1.75 L0.625 (Pz-NH2 )0.25 (µ3 -O)0.25 (µ2 -O)0.25 (H2 O)1.25 ]•4CH3 CN}n (Zn-MOF), through exchanging the Co2+ in the MOF into Cu2+ or Zn2+ , respectively. The free Co2+ and L4- in the Co-MOF channels fuse with the skeleton during the Co→Cu and Co→Zn exchange processes, leading to the expansion of the channel space and the transformation of the secondary building units (SBUs) to form an adjustable skeleton. The nonlinear optical response results show that the MOFs generated by the exchange of the central metal exhibit different saturable absorption and the self-focusing effect. In addition, loading polypyrrole (PPy) into the MOFs can not only improve the stability of the MOFs but also further optimize the nonlinear optical behavior. This work suggests that SC-SC central metal exchange and the introduction of polymer molecules can tune the nonlinear optical response, which provides a new perspective for the future study of nonlinear optical materials.
Collapse
Affiliation(s)
- Yupei Sun
- Green Catalysis Center and College of Chemistry, Zhengzhou University, Zhengzhou, Henan, 450001, China
| | - Wenjuan Xu
- Green Catalysis Center and College of Chemistry, Zhengzhou University, Zhengzhou, Henan, 450001, China
| | - Feifan Lang
- Green Catalysis Center and College of Chemistry, Zhengzhou University, Zhengzhou, Henan, 450001, China
| | - Huarui Wang
- The College of Chemistry and Chemical Engineering, Luoyang Normal University, Luoyang, Henan, 471022, China
| | - Fangfang Pan
- College of Chemistry, Central China Normal University, Wuhan, Hubei, 430079, China
| | - Hongwei Hou
- Green Catalysis Center and College of Chemistry, Zhengzhou University, Zhengzhou, Henan, 450001, China
| |
Collapse
|
7
|
Abstract
Metal-organic frameworks (MOFs) and ionic liquids (ILs) represent promising materials for adsorption separation. ILs incorporated into MOF materials (denoted as IL/MOF composites) have been developed, and IL/MOF composites combine the advantages of MOFs and ILs to achieve enhanced performance in the adsorption-based separation of fluid mixtures. The designed different ILs are introduced into the various MOFs to tailor their functional properties, which affect the optimal adsorptive separation performance. In this Perspective, the rational fabrication of IL/MOF composites is presented, and their functional properties are demonstrated. This paper provides a critical overview of an emergent class of materials termed IL/MOF composites as well as the recent advances in the applications of IL/MOF composites as adsorbents or membranes in fluid separation. Furthermore, the applications of IL/MOF in adsorptive gas separations (CO2 capture from flue gas, natural gas purification, separation of acetylene and ethylene, indoor pollutants removal) and liquid separations (separation of bioactive components, organic-contaminant removal, adsorptive desulfurization, radionuclide removal) are discussed. Finally, the existing challenges of IL/MOF are highlighted, and an appropriate design strategy direction for the effective exploration of new IL/MOF adsorptive materials is proposed.
Collapse
Affiliation(s)
- Xueqin Li
- School of Chemistry and Chemical Engineering/Key Laboratory for Green Process of Chemical Engineering of Xinjiang Bingtuan, Shihezi University, Shihezi, Xinjiang 832003, China
| | - Kai Chen
- School of Chemistry and Chemical Engineering/Key Laboratory for Green Process of Chemical Engineering of Xinjiang Bingtuan, Shihezi University, Shihezi, Xinjiang 832003, China
| | - Ruili Guo
- School of Chemistry and Chemical Engineering/Key Laboratory for Green Process of Chemical Engineering of Xinjiang Bingtuan, Shihezi University, Shihezi, Xinjiang 832003, China
| | - Zhong Wei
- School of Chemistry and Chemical Engineering/Key Laboratory for Green Process of Chemical Engineering of Xinjiang Bingtuan, Shihezi University, Shihezi, Xinjiang 832003, China
| |
Collapse
|
8
|
Majid MF, Mohd Zaid HF, Abd Shukur MF, Ahmad A, Jumbri K. Host-Guest Interactions of Zirconium-Based Metal-Organic Framework with Ionic Liquid. Molecules 2023; 28:molecules28062833. [PMID: 36985805 PMCID: PMC10055841 DOI: 10.3390/molecules28062833] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Revised: 03/16/2023] [Accepted: 03/18/2023] [Indexed: 03/30/2023] Open
Abstract
A metal-organic framework (MOF) is a three-dimensional crystalline compound made from organic ligands and metals. The cross-linkage between organic ligands and metals creates a network of coordination polymers containing adjustable voids with a high total surface area. This special feature of MOF made it possible to form a host-guest interaction with small molecules, such as ionic liquid (IL), which can alter the phase behavior and improve the performance in battery applications. The molecular interactions of MOF and IL are, however, hard to understand due to the limited number of computational studies. In this study, the structural parameters of a zirconium-based metal-organic framework (UiO-66) and 1-ethyl-3-methylimidazolium bis(trifluoromethylsulfonyl)imide, [EMIM][TFSI] were investigated via a combined experimental and computational approach using the linker model approach. When IL was loaded, the bond length and bond angle of organic linkers were distorted due to the increased electron density surrounding the framework. The increase in molecular orbital energy after confining IL stabilized the structure of this hybrid system. The molecular interactions study revealed that the combination of UiO-66 and [EMIM][TFSI] could be a promising candidate as an electrolyte material in an energy storage system.
Collapse
Affiliation(s)
- Mohd Faridzuan Majid
- Department of Fundamental and Applied Sciences, Universiti Teknologi PETRONAS, Seri Iskandar 32610, Perak Darul Ridzuan, Malaysia
- Centre of Innovative Nanostructures & Nanodevices (COINN), Universiti Teknologi PETRONAS, Seri Iskandar 32610, Perak Darul Ridzuan, Malaysia
| | - Hayyiratul Fatimah Mohd Zaid
- Centre of Innovative Nanostructures & Nanodevices (COINN), Universiti Teknologi PETRONAS, Seri Iskandar 32610, Perak Darul Ridzuan, Malaysia
- Chemical Engineering Department, Universiti Teknologi PETRONAS, Seri Iskandar 32610, Perak Darul Ridzuan, Malaysia
| | - Muhammad Fadhlullah Abd Shukur
- Department of Fundamental and Applied Sciences, Universiti Teknologi PETRONAS, Seri Iskandar 32610, Perak Darul Ridzuan, Malaysia
- Centre of Innovative Nanostructures & Nanodevices (COINN), Universiti Teknologi PETRONAS, Seri Iskandar 32610, Perak Darul Ridzuan, Malaysia
| | - Azizan Ahmad
- Department of Chemical Sciences, Universiti Kebangsaan Malaysia, Bangi 43600, Selangor Darul Ehsan, Malaysia
- Department of Physics, Faculty of Science and Technology, Airlangga University (Campus C), Mulyorejo Road, Surabaya 60115, Indonesia
| | - Khairulazhar Jumbri
- Department of Fundamental and Applied Sciences, Universiti Teknologi PETRONAS, Seri Iskandar 32610, Perak Darul Ridzuan, Malaysia
- Centre for Research in Ionic Liquids (CORIL), Universiti Teknologi PETRONAS, Seri Iskandar 32610, Perak Darul Ridzuan, Malaysia
| |
Collapse
|