1
|
Song X, Li Y, Wu H, Qiu H, Sun Y. T-Cell Epitope-Based Vaccines: A Promising Strategy for Prevention of Infectious Diseases. Vaccines (Basel) 2024; 12:1181. [PMID: 39460347 PMCID: PMC11511246 DOI: 10.3390/vaccines12101181] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2024] [Revised: 10/06/2024] [Accepted: 10/12/2024] [Indexed: 10/28/2024] Open
Abstract
With the development of novel vaccine strategies, T-cell epitope-based vaccines have become promising prophylactic and therapeutic tools against infectious diseases that cannot be controlled via traditional vaccines. T-cell epitope-based vaccines leverage specific immunogenic peptides to elicit protective T-cell responses against infectious pathogens. Compared to traditional vaccines, they provide superior efficacy and safety, minimizing the risk of adverse side effects. In this review, we summarized and compared the prediction and identification methods of T-cell epitopes. By integrating bioinformatic prediction and experimental validation, efficient and precise screening of T-cell epitopes can be achieved. Importantly, we delved into the development approaches to diverse T-cell epitope-based vaccines, comparing their merits and demerits, as well as discussing the prevalent challenges and perspectives in their applications. This review offers fresh perspectives for the formulation of safe and efficacious epitope-based vaccines for the devastating diseases against which no vaccines are currently available.
Collapse
Affiliation(s)
| | | | | | - Huaji Qiu
- State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin 150069, China; (X.S.); (Y.L.); (H.W.)
| | - Yuan Sun
- State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin 150069, China; (X.S.); (Y.L.); (H.W.)
| |
Collapse
|
2
|
Mahmoodi S, Amirzakaria JZ, Ghasemian A. A novel multi-epitope peptide vaccine targeting immunogenic antigens of Ebola and monkeypox viruses with potential of immune responses provocation in silico. Biotechnol Appl Biochem 2024. [PMID: 39128888 DOI: 10.1002/bab.2646] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Accepted: 07/10/2024] [Indexed: 08/13/2024]
Abstract
The emergence or reemergence of monkeypox (Mpox) and Ebola virus (EBOV) agents causing zoonotic diseases remains a huge threat to human health. Our study aimed at designing a multi-epitope vaccine (MEV) candidate to target both the Mpox and EBOV agents using immunoinformatics tools. Viral protein sequences were retrieved, and potential nonallergenic, nontoxic, and antigenic epitopes were obtained. Next, cytotoxic and helper T-cell (CTL and HTL, respectively) and B-cell (BCL) epitopes were predicted, and those potential epitopes were fused utilizing proper linkers. The in silico cloning and expression processes were implemented using Escherichia coli K12. The immune responses were prognosticated using the C-ImmSim server. The MEV construct (29.53 kDa) included four BCL, two CTL, and four HTL epitopes and adjuvant. The MEV traits were pertinent in terms of antigenicity, non-allergenicity, nontoxicity, physicochemical characters, and stability. The MEV candidate was also highly expressed in E. coli K12. The strong affinity of MEV-TLR3 was confirmed using molecular docking and molecular dynamics simulation analyses. Immune simulation analyses unraveled durable activation and responses of cellular and humoral arms alongside innate immune responses. The designed MEV candidate demonstrated appropriate traits and was promising in the prediction of immune responses against both Mpox and EBOV agents. Further experimental assessments of the MEV are required to verify its efficacy.
Collapse
Affiliation(s)
- Shirin Mahmoodi
- Department of Medical Biotechnology, School of Advanced Technologies in Medicine, Fasa University of Medical Sciences, Fasa, Iran
| | - Javad Zamani Amirzakaria
- Department of Plant Biotechnology, National Institute of Genetic Engineering and Biotechnology, Tehran, Iran
| | - Abdolmajid Ghasemian
- Noncommunicable Diseases Research Center, Fasa University of Medical Sciences, Fasa, Iran
| |
Collapse
|
3
|
Kumar A, Dutt M, Dehury B, Martinez GS, Singh KP, Kelvin DJ. Formulation of next-generation polyvalent vaccine candidates against three important poxviruses by targeting DNA-dependent RNA polymerase using an integrated immunoinformatics and molecular modeling approach. J Infect Public Health 2024; 17:102470. [PMID: 38865776 DOI: 10.1016/j.jiph.2024.102470] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Revised: 05/27/2024] [Accepted: 06/02/2024] [Indexed: 06/14/2024] Open
Abstract
BACKGROUND Poxviruses comprise a group of large double-stranded DNA viruses and are known to cause diseases in humans, livestock animals, and other animal species. The Mpox virus (MPXV; formerly Monkeypox), variola virus (VARV), and volepox virus (VPXV) are among the prevalent poxviruses of the Orthopoxviridae genera. The ongoing Mpox infectious disease pandemic caused by the Mpox virus has had a major impact on public health across the globe. To date, only limited repurposed antivirals and vaccines are available for the effective treatment of Mpox and other poxviruses that cause contagious diseases. METHODS The present study was conducted with the primary goal of formulating multi-epitope vaccines against three evolutionary closed poxviruses i.e., MPXV, VARV, and VPXV using an integrated immunoinformatics and molecular modeling approach. DNA-dependent RNA polymerase (DdRp), a potential vaccine target of poxviruses, has been used to determine immunodominant B and T-cell epitopes followed by interactions analysis with Toll-like receptor 2 at the atomic level. RESULTS Three multi-epitope vaccine constructs, namely DdRp_MPXV (V1), DdRp_VARV (V2), and DdRp_VPXV (V3) were designed. These vaccine constructs were found to be antigenic, non-allergenic, non-toxic, and soluble with desired physicochemical properties. Protein-protein docking and interaction profiling analysis depicts a strong binding pattern between the targeted immune receptor TLR2 and the structural models of the designed vaccine constructs, and manifested a number of biochemical bonds (hydrogen bonds, salt bridges, and non-bonded contacts). State-of-the-art all-atoms molecular dynamics simulations revealed highly stable interactions of vaccine constructs with TLR2 at the atomic level throughout the simulations on 300 nanoseconds. Additionally, the outcome of the immune simulation analysis suggested that designed vaccines have the potential to induce protective immunity against targeted poxviruses. CONCLUSIONS Taken together, formulated next-generation polyvalent vaccines were found to have good efficacy against closely related poxviruses (MPXV, VARV, and VPXV) as demonstrated by our extensive immunoinformatics and molecular modeling evaluations; however, further experimental investigations are still needed.
Collapse
Affiliation(s)
- Anuj Kumar
- Department of Microbiology and Immunology, Faculty of Medicine, Dalhousie University, Halifax, Canada; Department of Pediatrics, IWK Health Center, Canadian Centre for Vaccinology CCfV, Halifax, Canada; Laboratory of Immunity, Shantou University Medical College, Shantou, China; BioForge Canada Limited, Halifax, Canada
| | - Mansi Dutt
- Department of Microbiology and Immunology, Faculty of Medicine, Dalhousie University, Halifax, Canada; Department of Pediatrics, IWK Health Center, Canadian Centre for Vaccinology CCfV, Halifax, Canada; Laboratory of Immunity, Shantou University Medical College, Shantou, China; BioForge Canada Limited, Halifax, Canada
| | - Budheswar Dehury
- Department of Bioinformatics, Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal 576104, India
| | - Gustavo Sganzerla Martinez
- Department of Microbiology and Immunology, Faculty of Medicine, Dalhousie University, Halifax, Canada; Department of Pediatrics, IWK Health Center, Canadian Centre for Vaccinology CCfV, Halifax, Canada; Laboratory of Immunity, Shantou University Medical College, Shantou, China; BioForge Canada Limited, Halifax, Canada
| | - Krishna Pal Singh
- Mahatma Jyotiba Phule Rohilkhand University, Bareilly, Uttar Pradesh, India
| | - David J Kelvin
- Department of Microbiology and Immunology, Faculty of Medicine, Dalhousie University, Halifax, Canada; Department of Pediatrics, IWK Health Center, Canadian Centre for Vaccinology CCfV, Halifax, Canada; Laboratory of Immunity, Shantou University Medical College, Shantou, China; BioForge Canada Limited, Halifax, Canada.
| |
Collapse
|
4
|
Tanner T, Medhavi FNU, Richardson S, Omosun YO, Eko FO. In silico design and analysis of a multiepitope vaccine against Chlamydia. Pathog Dis 2024; 82:ftae015. [PMID: 38889932 PMCID: PMC11234648 DOI: 10.1093/femspd/ftae015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Revised: 05/10/2024] [Accepted: 06/17/2024] [Indexed: 06/20/2024] Open
Abstract
Chlamydia trachomatis (Ct) is the most common sexually transmitted bacterial infection worldwide, potentially leading to severe pathologies including pelvic inflammatory disease, ectopic pregnancy, and tubal infertility if left untreated. Current strategies, including screening and antibiotics, have limited effectiveness due to high rates of asymptomatic cases and logistical challenges. A multiepitope prophylactic vaccine could afford long-term protection against infection. Immunoinformatic analyses were employed to design a multiepitope Chlamydia vaccine antigen. B- and T-cell epitopes from five highly conserved and immunogenic Ct antigens were predicted and selected for the vaccine design. The final construct, adjuvanted with cholera toxin A1 subunit (CTA1), was further screened for immunogenicity. CTA1-MECA (multiepitope Chlamydia trachomatis antigen) was identified as antigenic and nonallergenic. A tertiary structure was predicted, refined, and validated as a good quality model. Molecular docking exhibited strong interactions between the vaccine and toll-like receptor 4 (TLR4). Additionally, immune responses consistent with protection including IFN-γ, IgG + IgM antibodies, and T- and B-cell responses were predicted following vaccination in an immune simulation. Expression of the construct in an Escherichia coli expression vector proved efficient. To further validate the vaccine efficacy, we assessed its immunogenicity in mice. Immunization with CTA1-MECA elicited high levels of Chlamydia-specific antibodies in mucosal and systemic compartments.
Collapse
Affiliation(s)
- Tayhlor Tanner
- Department of Microbiology, Biochemistry and Immunology, Morehouse School of Medicine. 720 Westview Drive, Atlanta, GA 30310, United States
| | - F N U Medhavi
- Department of Microbiology, Biochemistry and Immunology, Morehouse School of Medicine. 720 Westview Drive, Atlanta, GA 30310, United States
| | - Shakyra Richardson
- Department of Microbiology, Biochemistry and Immunology, Morehouse School of Medicine. 720 Westview Drive, Atlanta, GA 30310, United States
| | - Yusuf O Omosun
- Department of Microbiology, Biochemistry and Immunology, Morehouse School of Medicine. 720 Westview Drive, Atlanta, GA 30310, United States
| | - Francis O Eko
- Department of Microbiology, Biochemistry and Immunology, Morehouse School of Medicine. 720 Westview Drive, Atlanta, GA 30310, United States
| |
Collapse
|
5
|
Hemmati S, Saeidikia Z, Seradj H, Mohagheghzadeh A. Immunomodulatory Peptides as Vaccine Adjuvants and Antimicrobial Agents. Pharmaceuticals (Basel) 2024; 17:201. [PMID: 38399416 PMCID: PMC10892805 DOI: 10.3390/ph17020201] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2024] [Revised: 01/26/2024] [Accepted: 01/28/2024] [Indexed: 02/25/2024] Open
Abstract
The underdevelopment of adjuvant discovery and diversity, compared to core vaccine technology, is evident. On the other hand, antibiotic resistance is on the list of the top ten threats to global health. Immunomodulatory peptides that target a pathogen and modulate the immune system simultaneously are promising for the development of preventive and therapeutic molecules. Since investigating innate immunity in insects has led to prominent achievements in human immunology, such as toll-like receptor (TLR) discovery, we used the capacity of the immunomodulatory peptides of arthropods with concomitant antimicrobial or antitumor activity. An SVM-based machine learning classifier identified short immunomodulatory sequences encrypted in 643 antimicrobial peptides from 55 foe-to-friend arthropods. The critical features involved in efficacy and safety were calculated. Finally, 76 safe immunomodulators were identified. Then, molecular docking and simulation studies defined the target of the most optimal peptide ligands among all human cell-surface TLRs. SPalf2-453 from a crab is a cell-penetrating immunoadjuvant with antiviral properties. The peptide interacts with the TLR1/2 heterodimer. SBsib-711 from a blackfly is a TLR4/MD2 ligand used as a cancer vaccine immunoadjuvant. In addition, SBsib-711 binds CD47 and PD-L1 on tumor cells, which is applicable in cancer immunotherapy as a checkpoint inhibitor. MRh4-679 from a shrimp is a broad-spectrum or universal immunoadjuvant with a putative Th1/Th2-balanced response. We also implemented a pathway enrichment analysis to define fingerprints or immunological signatures for further in vitro and in vivo immunogenicity and reactogenicity measurements. Conclusively, combinatorial machine learning, molecular docking, and simulation studies, as well as systems biology, open a new opportunity for the discovery and development of multifunctional prophylactic and therapeutic lead peptides.
Collapse
Affiliation(s)
- Shiva Hemmati
- Department of Pharmaceutical Biotechnology, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz 71345-1583, Iran
- Biotechnology Research Center, Shiraz University of Medical Sciences, Shiraz 71345-1583, Iran
- Department of Pharmaceutical Biology, Faculty of Pharmaceutical Sciences, UCSI University, Cheras, Kuala Lumpur 56000, Malaysia
| | - Zahra Saeidikia
- Student Research Committee, Shiraz University of Medical Sciences, Shiraz 71345-1583, Iran;
| | - Hassan Seradj
- Department of Medicinal Chemistry, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz 71345-1583, Iran;
| | - Abdolali Mohagheghzadeh
- Department of Phytopharmaceuticals, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz 71345-1583, Iran;
| |
Collapse
|