1
|
Marques DSC, da Silva Lima L, de Oliveira Moraes Miranda JF, Dos Anjos Santos CÁ, da Cruz Filho IJ, de Lima MDCA. Exploring the therapeutic potential of acridines: Synthesis, structure, and biological applications. Bioorg Chem 2025; 155:108096. [PMID: 39756205 DOI: 10.1016/j.bioorg.2024.108096] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2024] [Revised: 12/15/2024] [Accepted: 12/22/2024] [Indexed: 01/07/2025]
Abstract
The objective of this review was to explore the trends and chemical characteristics of acridines and their derivatives, analyze their contribution to the scientific literature and international cooperation, identify the most influential authors and articles, and provide an overview of the knowledge produced in elucidating their mechanisms of action. To this end, a bibliometric analysis was performed using RStudio software, along with a systematic review focusing on articles indexed in the "Web of Science" and "Scopus" databases. The keywords used were "acridine$", "Synthesi$", "Structure$", and "Biologic* Application$" for the period from 2020 to 2024. Relevant articles were carefully selected from these databases, and a bibliometric analysis was carried out to comprehensively discuss the most relevant biological activities associated with acridines. The results showed that, during the analyzed period, China and India led in the number of publications, followed by Brazil in third place. However, a decline in the number of publications was observed in the last two years of the period. Keyword analysis revealed that antitumor activity remains the most extensively studied aspect of acridines and their derivatives.
Collapse
Affiliation(s)
- Diego Santa Clara Marques
- Laboratory of Chemistry and Therapeutic Innovation - LQIT, Department of Antibiotics, Biosciences Center, Federal University of Pernambuco (UFPE), Avenida Prof. Moraes Rego, s/n, Cidade Universitária, 50740-600 Recife, PE, Brazil
| | - Lisandra da Silva Lima
- Laboratory of Chemistry and Therapeutic Innovation - LQIT, Department of Antibiotics, Biosciences Center, Federal University of Pernambuco (UFPE), Avenida Prof. Moraes Rego, s/n, Cidade Universitária, 50740-600 Recife, PE, Brazil
| | - Josué Filipe de Oliveira Moraes Miranda
- Laboratory of Chemistry and Therapeutic Innovation - LQIT, Department of Antibiotics, Biosciences Center, Federal University of Pernambuco (UFPE), Avenida Prof. Moraes Rego, s/n, Cidade Universitária, 50740-600 Recife, PE, Brazil
| | - Carolina Ávila Dos Anjos Santos
- Laboratory of Chemistry and Therapeutic Innovation - LQIT, Department of Antibiotics, Biosciences Center, Federal University of Pernambuco (UFPE), Avenida Prof. Moraes Rego, s/n, Cidade Universitária, 50740-600 Recife, PE, Brazil
| | - Iranildo José da Cruz Filho
- Laboratory of Chemistry and Therapeutic Innovation - LQIT, Department of Antibiotics, Biosciences Center, Federal University of Pernambuco (UFPE), Avenida Prof. Moraes Rego, s/n, Cidade Universitária, 50740-600 Recife, PE, Brazil.
| | - Maria do Carmo Alves de Lima
- Laboratory of Chemistry and Therapeutic Innovation - LQIT, Department of Antibiotics, Biosciences Center, Federal University of Pernambuco (UFPE), Avenida Prof. Moraes Rego, s/n, Cidade Universitária, 50740-600 Recife, PE, Brazil
| |
Collapse
|
2
|
Kurdyn A, Pawłowska M, Paluszkiewicz E, Cichorek M, Augustin E. c-Myc inhibition and p21 modulation contribute to unsymmetrical bisacridines-induced apoptosis and senescence in pancreatic cancer cells. Pharmacol Rep 2025; 77:182-209. [PMID: 39361216 PMCID: PMC11743403 DOI: 10.1007/s43440-024-00658-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2024] [Revised: 09/20/2024] [Accepted: 09/23/2024] [Indexed: 01/21/2025]
Abstract
BACKGROUND Pancreatic cancer (PC) is one of the most aggressive cancers and is the seventh leading cause of cancer-related death worldwide. PC is characterized by rapid progression and resistance to conventional treatments. Mutations in KRAS, CDKN2A, TP53, SMAD4/DPC4, and MYC are major genetic alterations associated with poor treatment outcomes in patients with PC. Therefore, optimizing PC therapy is a tremendous challenge. Unsymmetrical bisacridines (UAs), synthesized by our group, are new promising compounds that have exhibited high cytotoxicity and antitumor activity against several solid tumors, including pancreatic cancer. METHODS The cellular effects induced by UAs in PC cells were evaluated by MTT assay (cell growth inhibition), flow cytometry, and fluorescence and light microscopy (cell cycle distribution, apoptosis, and senescence detection). Analysis of the effects of UAs on the levels of proteins (c-Myc, p53, SMAD4, p21, and p16) was performed by Western blotting. RESULTS Apoptosis was the main triggered mechanism of death after UAs treatment, and induction of the SMAD4 protein can facilitate this process. c-Myc, which is one of the molecular targets of UAs, can participate in the induction of cell death in a p53-independent manner. Moreover, UAs can also induce accelerated senescence through the upregulation of p21. Notably, senescent cells can die via apoptosis after prolonged exposure to UAs. CONCLUSIONS UAs have emerged as potent anticancer agents that induce apoptosis by inhibiting c-Myc protein and triggering cellular senescence in a dose-dependent manner by increasing p21 levels. Thus, UAs exhibit desirable features as promising candidates for future pancreatic anticancer therapies.
Collapse
Affiliation(s)
- Agnieszka Kurdyn
- Department of Pharmaceutical Technology and Biochemistry, Faculty of Chemistry, Gdańsk University of Technology, Gabriela Narutowicza 11/12, Gdańsk, 80-233, Poland
| | - Monika Pawłowska
- Department of Pharmaceutical Technology and Biochemistry, Faculty of Chemistry, Gdańsk University of Technology, Gabriela Narutowicza 11/12, Gdańsk, 80-233, Poland
| | - Ewa Paluszkiewicz
- Department of Pharmaceutical Technology and Biochemistry, Faculty of Chemistry, Gdańsk University of Technology, Gabriela Narutowicza 11/12, Gdańsk, 80-233, Poland
| | - Mirosława Cichorek
- Department of Embryology, Medical University of Gdańsk, Dębinki 1, Gdańsk, 80-211, Poland
| | - Ewa Augustin
- Department of Pharmaceutical Technology and Biochemistry, Faculty of Chemistry, Gdańsk University of Technology, Gabriela Narutowicza 11/12, Gdańsk, 80-233, Poland.
| |
Collapse
|
3
|
Rupreo V, Das D, Yanthan S, Bhattacharyya J. Raubasine-Induced Groove Binding in Salmon Testes DNA: Exploring the Structural Modulation, Antiglycation, and Antioxidant Properties. J Phys Chem B 2025; 129:637-649. [PMID: 39772706 DOI: 10.1021/acs.jpcb.4c07948] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2025]
Abstract
As one of nature's most fundamental blueprints and due to its critical role in life processes, DNA has naturally become the cornerstone of numerous research efforts. One particularly intriguing area of study is understanding how small molecules interact with nucleic acids. In this study, we investigated the interaction between the plant-derived indole alkaloid Raubasine (Ajmalicine; AJM) and Salmon Testes (ST) DNA using biophysical and computational techniques. A hyperchromic shift in the fluorescence intensity indicated the effective binding of AJM to ST DNA. The binding constant was in the order of 105 M-1 with a single preferential binding mode. Thermodynamic analysis revealed that exothermic binding was driven by positive entropy and negative enthalpy. The salt-dependent fluorescence analysis indicates the involvement of nonpolyelectrolytic forces in the interaction. Studies of iodide quenching, urea denaturation, dye displacement, and molecular docking further support that AJM binds to ST DNA through groove binding. Structural perturbation of DNA was evident from circular dichroism. The stability of the AJM-DNA complex was confirmed by molecular dynamics simulations. Prolonged elevated blood glucose levels induce nonenzymatic glycation of DNA, resulting in DNA-AGE (advanced glycation end-products) formation and free radical production, which disrupts the DNA structure. We explored ST-DNA glycation and its suppression by AJM. DNA-AGEs in vitro were characterized using UV-vis and fluorescence spectroscopy. The inhibition of glycation by AJM was assessed through changes in AGEs fluorescence intensity, gel electrophoresis patterns, and antioxidant activity, highlighting its ability to target glycated sites or neutralize free radicals generated during glycation. Our findings reveal AJM's potential to prevent the formation of AGEs, which may offer promising avenues for targeted therapies against glycation-related diseases such as diabetes, neurodegeneration, and cancer.
Collapse
Affiliation(s)
- Vibeizonuo Rupreo
- Department of Chemistry, National Institute of Technology Nagaland, Chumukedima, Nagaland 797103, India
| | - Deepak Das
- Department of Chemistry, National Institute of Technology Nagaland, Chumukedima, Nagaland 797103, India
| | - Senchumbeni Yanthan
- Department of Chemistry, National Institute of Technology Nagaland, Chumukedima, Nagaland 797103, India
| | - Jhimli Bhattacharyya
- Department of Chemistry, National Institute of Technology Nagaland, Chumukedima, Nagaland 797103, India
| |
Collapse
|
4
|
Frackowiak JE, Kubica P, Kosno M, Potęga A, Owczarek-Grzymkowska K, Borzyszkowska-Bukowska J, Laskowski T, Paluszkiewicz E, Mazerska Z. Distinct cellular uptake patterns of two anticancer unsymmetrical bisacridines and their metabolic transformation in tumor cells. J Pharm Biomed Anal 2025; 252:116493. [PMID: 39368137 DOI: 10.1016/j.jpba.2024.116493] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2024] [Revised: 09/12/2024] [Accepted: 09/29/2024] [Indexed: 10/07/2024]
Abstract
Unsymmetrical bisacridines (UAs) represent a novel class of anticancer agents. Their high cytotoxicity towards multiple human cancer cell lines and inhibition of human tumor xenograft growth in nude mice signal their potential for cancer treatment. Therefore, the mechanism of their strong biological activity is broadly investigated. Here, we explore the efflux and metabolism of UAs, as both strongly contribute to the development of drug resistance in cancer cells. We tested two highly cytotoxic UAs, C-2028 and C-2045, as well as their glucuronic acid and glutathione conjugates in human cancer cell lines (HepG2 and LS174T). As a point of reference for cell-based systems, we examined the rate of UA metabolic conversion in cell-free systems. A multiple reaction monitoring (MRM)-mass spectrometry (MS) method was developed in the present study for analysis of UAs and their metabolic conversion in complex biological matrices. Individual analytes were identified by several features: their retention time, mass-to-charge ratio and unique fragmentation pattern. The rate of UA uptake and metabolic transformation was monitored for 24 h in cell extracts and cell culture medium. Both UAs were rapidly internalized by cells. However, C-2028 was gradually accumulated, while C-2045 was eventually released from cells during treatment. UAs demonstrated limited metabolic conversion in cells. The glucuronic acid conjugate was excreted, whereas the glutathione conjugate was deposited in cancer cells. Our results obtained from cell-free and cell-based systems, using a uniform MRM-MS method, will provide valuable insight into the mechanism of UA biological activity in diverse biological models.
Collapse
Affiliation(s)
- Joanna E Frackowiak
- Department of Pharmaceutical Technology and Biochemistry, Faculty of Chemistry, Gdańsk University of Technology, 11/12 Narutowicza Str., Gdańsk 80-233, Poland.
| | - Paweł Kubica
- Department of Analytical Chemistry, Faculty of Chemistry, Gdańsk University of Technology, 11/12 Narutowicza Str., Gdańsk 80-233, Poland
| | - Michał Kosno
- Department of Pharmaceutical Technology and Biochemistry, Faculty of Chemistry, Gdańsk University of Technology, 11/12 Narutowicza Str., Gdańsk 80-233, Poland
| | - Agnieszka Potęga
- Department of Pharmaceutical Technology and Biochemistry, Faculty of Chemistry, Gdańsk University of Technology, 11/12 Narutowicza Str., Gdańsk 80-233, Poland
| | - Katarzyna Owczarek-Grzymkowska
- Department of Biochemistry, Bioanalytical Laboratory, Faculty of Medicine, Medical University of Gdańsk, 1 Dębinki Str., Gdańsk 80-211, Poland
| | - Julia Borzyszkowska-Bukowska
- Department of Pharmaceutical Technology and Biochemistry, Faculty of Chemistry, Gdańsk University of Technology, 11/12 Narutowicza Str., Gdańsk 80-233, Poland
| | - Tomasz Laskowski
- Department of Pharmaceutical Technology and Biochemistry, Faculty of Chemistry, Gdańsk University of Technology, 11/12 Narutowicza Str., Gdańsk 80-233, Poland
| | - Ewa Paluszkiewicz
- Department of Pharmaceutical Technology and Biochemistry, Faculty of Chemistry, Gdańsk University of Technology, 11/12 Narutowicza Str., Gdańsk 80-233, Poland
| | - Zofia Mazerska
- Department of Pharmaceutical Technology and Biochemistry, Faculty of Chemistry, Gdańsk University of Technology, 11/12 Narutowicza Str., Gdańsk 80-233, Poland.
| |
Collapse
|
5
|
Pawłowska M, Kulesza J, Paluszkiewicz E, Augustin E, Mazerska Z. Unsymmetrical Bisacridines' Interactions with ABC Transporters and Their Cellular Impact on Colon LS 174T and Prostate DU 145 Cancer Cells. Molecules 2024; 29:5582. [PMID: 39683740 DOI: 10.3390/molecules29235582] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2024] [Revised: 11/20/2024] [Accepted: 11/22/2024] [Indexed: 12/18/2024] Open
Abstract
Multidrug resistance (MDR) is a process that constitutes a significant obstacle to effective anticancer therapy. Here, we examined whether unsymmetrical bisacridines (UAs) are substrates for ABC transporters and can influence their expression in human colon LS 174T and prostate DU 145 cancer cells. Moreover, we investigated the cytotoxicity and the cellular response induced by UAs in these cells. The ATPase activities of MDR1, MRP1, and MRP2 were measured using vesicles prepared from insect Sf9 cells expressing particular ABC transporters. The gene expression and protein levels were analyzed using qPCR and Western blotting. The cellular effects were studied by MTT (cytotoxicity), flow cytometry (cell cycle analysis and phosphatidylserine externalization), and fluorescence microscopy. We showed that UAs are substrates for MDR1. Importantly, they did not influence remarkably the expressions of the ABCB1, ABCC1, and ABCC2 genes and the levels of the MDR1 and PXR proteins in the studied cells. Furthermore, the cytotoxicity and the level of apoptosis triggered by UAs in LS 174T cells possessing higher expressions of metabolic enzymes were lower compared with DU 145 cells. These results indicate that during possible UA treatment, the occurrence of drug resistance could be limited, which could favor the use of such compounds as potential candidates for future studies.
Collapse
Affiliation(s)
- Monika Pawłowska
- Department of Pharmaceutical Technology and Biochemistry, Faculty of Chemistry, Gdańsk University of Technology, Gabriela Narutowicza Str. 11/12, 80-233 Gdańsk, Poland
| | - Jolanta Kulesza
- Department of Pharmaceutical Technology and Biochemistry, Faculty of Chemistry, Gdańsk University of Technology, Gabriela Narutowicza Str. 11/12, 80-233 Gdańsk, Poland
| | - Ewa Paluszkiewicz
- Department of Pharmaceutical Technology and Biochemistry, Faculty of Chemistry, Gdańsk University of Technology, Gabriela Narutowicza Str. 11/12, 80-233 Gdańsk, Poland
| | - Ewa Augustin
- Department of Pharmaceutical Technology and Biochemistry, Faculty of Chemistry, Gdańsk University of Technology, Gabriela Narutowicza Str. 11/12, 80-233 Gdańsk, Poland
| | - Zofia Mazerska
- Department of Pharmaceutical Technology and Biochemistry, Faculty of Chemistry, Gdańsk University of Technology, Gabriela Narutowicza Str. 11/12, 80-233 Gdańsk, Poland
| |
Collapse
|
6
|
Huang SC, Chen CW, Satange R, Hsieh CC, Chang CC, Wang SC, Peng CL, Chen TL, Chiang MH, Horng YC, Hou MH. Targeting DNA junction sites by bis-intercalators induces topological changes with potent antitumor effects. Nucleic Acids Res 2024; 52:9303-9316. [PMID: 39036959 PMCID: PMC11347135 DOI: 10.1093/nar/gkae643] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Revised: 06/21/2024] [Accepted: 07/09/2024] [Indexed: 07/23/2024] Open
Abstract
Targeting inter-duplex junctions in catenated DNA with bidirectional bis-intercalators is a potential strategy for enhancing anticancer effects. In this study, we used d(CGTATACG)2, which forms a tetraplex base-pair junction that resembles the DNA-DNA contact structure, as a model target for two alkyl-linked diaminoacridine bis-intercalators, DA4 and DA5. Cross-linking of the junction site by the bis-intercalators induced substantial structural changes in the DNA, transforming it from a B-form helical end-to-end junction to an over-wounded side-by-side inter-duplex conformation with A-DNA characteristics and curvature. These structural perturbations facilitated the angled intercalation of DA4 and DA5 with propeller geometry into two adjacent duplexes. The addition of a single carbon to the DA5 linker caused a bend that aligned its chromophores with CpG sites, enabling continuous stacking and specific water-mediated interactions at the inter-duplex contacts. Furthermore, we have shown that the different topological changes induced by DA4 and DA5 lead to the inhibition of topoisomerase 2 activities, which may account for their antitumor effects. Thus, this study lays the foundations for bis-intercalators targeting biologically relevant DNA-DNA contact structures for anticancer drug development.
Collapse
Affiliation(s)
- Shih-Chun Huang
- Doctoral Program in Medical Biotechnology, National Chung Hsing University, Taichung 402, Taiwan
- Graduate Institute of Genomics and Bioinformatics, National Chung Hsing University, Taichung 402, Taiwan
| | - Chia-Wei Chen
- Department of Chemistry, National Changhua University of Education, Changhua 50058, Taiwan
| | - Roshan Satange
- Graduate Institute of Genomics and Bioinformatics, National Chung Hsing University, Taichung 402, Taiwan
| | | | - Chih-Chun Chang
- Graduate Institute of Biotechnology, National Chung Hsing University, Taichung 402, Taiwan
| | - Shun-Ching Wang
- Doctoral Program in Medical Biotechnology, National Chung Hsing University, Taichung 402, Taiwan
- Graduate Institute of Genomics and Bioinformatics, National Chung Hsing University, Taichung 402, Taiwan
| | - Chi-Li Peng
- Graduate Institute of Genomics and Bioinformatics, National Chung Hsing University, Taichung 402, Taiwan
| | - Tai-Lin Chen
- Post Baccalaureate Medicine, School of Medicine, National Chung Hsing University, Taichung 402, Taiwan
| | - Ming-Hsi Chiang
- Institute of Chemistry, Academia Sinica, Taipei 11528, Taiwan
| | - Yih-Chern Horng
- Department of Chemistry, National Changhua University of Education, Changhua 50058, Taiwan
| | - Ming-Hon Hou
- Doctoral Program in Medical Biotechnology, National Chung Hsing University, Taichung 402, Taiwan
- Graduate Institute of Genomics and Bioinformatics, National Chung Hsing University, Taichung 402, Taiwan
- Graduate Institute of Biotechnology, National Chung Hsing University, Taichung 402, Taiwan
- Biotechnology Center, National Chung Hsing University, Taichung 402, Taiwan
| |
Collapse
|
7
|
Miranda TG, Ciribelli NN, Bihain MFR, Santos Pereira AKD, Cavallini GS, Pereira DH. Interactions between DNA and the acridine intercalator: A computational study. Comput Biol Chem 2024; 109:108029. [PMID: 38387123 DOI: 10.1016/j.compbiolchem.2024.108029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Revised: 02/08/2024] [Accepted: 02/08/2024] [Indexed: 02/24/2024]
Abstract
Cancer is a global public health problem characterized by deviations in the mechanisms that control cell proliferation, resulting in mutations and variations in the structure of DNA. The mechanisms of action of chemotherapeutic drugs are related to their interactions and binding with DNA; consequently, the development of antineoplastic agents that target DNA has extensively focused on use of acridine, a heterocyclic molecule that binds to deoxyribonucleic acid via intercalation, a process that modifies DNA and makes replication impossible. In this context, this study aimed to computationally investigate how acridine intercalators interact with DNA by evaluating the mechanism of interactions, binding, and interaction energies using quantum mechanics calculations. Molecular electrostatic potential (MEP) analysis revealed that acridine has well- distributed negative charges in the center of the molecule, indicative of a dominant electron-rich region. Acridine exhibits well-defined π orbitals (HOMO and LUMO) on the aromatic rings, suggesting that charge transfer occurs within the molecule and may be responsible for the pharmacological activity of the compound. Structural analysis revealed that acridine interacts with DNA mainly through hydrogen bonds between HAcridine… ODNA with bond lengths ranging from 2.370 Å to 3.472 Å. The Binding energy (ΔEBind) showed that acridine interacts with DNA effectively for all complexes and the electronic energy results (E+ZPE) for complexes revealed that the complexes are more stable when the DNA-centered acridine molecule. The Laplacian-analysis topological QTAIM parameter (∇2ρ(r)) and total energy (H(r)) categorized the interactions as being non-covalent in nature. The RGD peak distribution in the NCI analysis reveals the presence of van der Waals interactions, predominantly between the intercalator and DNA. Accordingly, we confirm that acridine/DNA interactions are relevant for understanding how the intercalator acts within nucleic acids.
Collapse
Affiliation(s)
- Thaynara Guimarães Miranda
- Programa de Pós Graduação em Biotecnologia, Universidade Federal do Tocantins (UFT), Gurupi, Tocantins CEP 77.402-970, Brazil
| | - Nicolas Nascimento Ciribelli
- Programa de Pós Graduação em Biotecnologia, Universidade Federal do Tocantins (UFT), Gurupi, Tocantins CEP 77.402-970, Brazil
| | | | - Anna Karla Dos Santos Pereira
- Programa de Pós Graduação em Química, Universidade Federal do Tocantins (UFT), Gurupi, Tocantins CEP 77.402-970, Brazil
| | - Grasiele Soares Cavallini
- Programa de Pós Graduação em Química, Universidade Federal do Tocantins (UFT), Gurupi, Tocantins CEP 77.402-970, Brazil
| | - Douglas Henrique Pereira
- Programa de Pós Graduação em Biotecnologia, Universidade Federal do Tocantins (UFT), Gurupi, Tocantins CEP 77.402-970, Brazil; Departamento de Química, Instituto Tecnológico de Aeronáutica (ITA), Praça Marechal Eduardo Gomes, 50, Vila das Acácias, São José dos Campos SP CEP 12228-900, Brazil.
| |
Collapse
|
8
|
Garberová M, Potočňák I, Tvrdoňová M, Majirská M, Bago-Pilátová M, Bekešová S, Kováč A, Takáč P, Khiratkar K, Kudličková Z, Elečko J, Vilková M. Derivatives Incorporating Acridine, Pyrrole, and Thiazolidine Rings as Promising Antitumor Agents. Molecules 2023; 28:6616. [PMID: 37764394 PMCID: PMC10537105 DOI: 10.3390/molecules28186616] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2023] [Revised: 09/10/2023] [Accepted: 09/12/2023] [Indexed: 09/29/2023] Open
Abstract
Derivatives combining acridine, pyrrole, and thiazolidine rings have emerged as promising candidates in the field of antitumor drug discovery. This paper aims to highlight the importance of these three structural motifs in developing potent and selective anticancer agents. The integration of these rings within a single molecule offers the potential for synergistic effects, targeting multiple pathways involved in tumor growth and progression. Spiro derivatives were efficiently synthesized in a two-step process starting from isothiocyanates and 2-cyanoacetohydrazide. The thiourea side chain in spiro derivatives was utilized as a key component for the construction of the thiazolidine-4-one ring through regioselective reactions with bifunctional reagents, namely methyl-bromoacetate, dietyl-acetylenedicarboxylate, ethyl-2-bromopropionate, and ethyl-2-bromovalerate. These reactions resulted in the formation of a single regioisomeric product for each derivative. Advanced spectroscopic techniques, including 1D and 2D NMR, FT-IR, HRMS, and single-crystal analysis, were employed to meticulously characterize the chemical structures of the synthesized derivatives. Furthermore, the influence of these derivatives on the metabolic activity of various cancer cell lines was assessed, with IC50 values determined via MTT assays. Notably, derivatives containing ester functional groups exhibited exceptional activity against all tested cancer cell lines, boasting IC50 values below 10 μM. Particularly striking were the spiro derivatives with methoxy groups at position 3 and nitro groups at position 4 of the phenyl ring. These compounds displayed remarkable selectivity and exhibited heightened activity against HCT-116 and Jurkat cell lines. Additionally, 4-oxo-1,3-thiazolidin-2-ylidene derivatives demonstrated a significant activity against MCF-7 and HCT-116 cancer cell lines.
Collapse
Affiliation(s)
- Monika Garberová
- Institute of Chemistry, Faculty of Science, Pavol Jozef Šafárik University, Moyzesova 11, 040 01 Košice, Slovakia; (M.G.); (I.P.); (M.T.); (J.E.)
| | - Ivan Potočňák
- Institute of Chemistry, Faculty of Science, Pavol Jozef Šafárik University, Moyzesova 11, 040 01 Košice, Slovakia; (M.G.); (I.P.); (M.T.); (J.E.)
| | - Monika Tvrdoňová
- Institute of Chemistry, Faculty of Science, Pavol Jozef Šafárik University, Moyzesova 11, 040 01 Košice, Slovakia; (M.G.); (I.P.); (M.T.); (J.E.)
| | - Monika Majirská
- Department of Pharmacology, Faculty of Medicine, Pavol Jozef Šafárik University, Trieda SNP 1, 040 01 Košice, Slovakia; (M.M.); (M.B.-P.)
| | - Martina Bago-Pilátová
- Department of Pharmacology, Faculty of Medicine, Pavol Jozef Šafárik University, Trieda SNP 1, 040 01 Košice, Slovakia; (M.M.); (M.B.-P.)
| | - Slávka Bekešová
- Thermo Fisher Scientific, Mlynské Nivy 5, 821 09 Bratislava, Slovakia;
| | - Andrej Kováč
- Department of Pharmacology and Toxicology, University of Veterinary Medicine and Pharmacy, Komenského 73, 041 81 Košice, Slovakia; (A.K.); (P.T.)
- Institute of Neuroimmunology, Slovak Academy of Sciences, Dúbravská Cesta 9, 845 10 Bratislava, Slovakia;
| | - Peter Takáč
- Department of Pharmacology and Toxicology, University of Veterinary Medicine and Pharmacy, Komenského 73, 041 81 Košice, Slovakia; (A.K.); (P.T.)
| | - Krutika Khiratkar
- Institute of Neuroimmunology, Slovak Academy of Sciences, Dúbravská Cesta 9, 845 10 Bratislava, Slovakia;
| | - Zuzana Kudličková
- Institute of Chemistry, Faculty of Science, Pavol Jozef Šafárik University, Moyzesova 11, 040 01 Košice, Slovakia; (M.G.); (I.P.); (M.T.); (J.E.)
| | - Ján Elečko
- Institute of Chemistry, Faculty of Science, Pavol Jozef Šafárik University, Moyzesova 11, 040 01 Košice, Slovakia; (M.G.); (I.P.); (M.T.); (J.E.)
| | - Mária Vilková
- Institute of Chemistry, Faculty of Science, Pavol Jozef Šafárik University, Moyzesova 11, 040 01 Košice, Slovakia; (M.G.); (I.P.); (M.T.); (J.E.)
| |
Collapse
|