1
|
Wu Z, Chen Y, Jiang D, Pan Y, Tang T, Ma Y, Shapaer T. Mitochondrial-related drug resistance lncRNAs as prognostic biomarkers in laryngeal squamous cell carcinoma. Discov Oncol 2024; 15:785. [PMID: 39692950 DOI: 10.1007/s12672-024-01690-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/14/2024] [Accepted: 12/09/2024] [Indexed: 12/19/2024] Open
Abstract
Laryngeal squamous cell carcinoma (LSCC) is a common malignant tumor of the head and neck that significantly impacts patients' quality of life, with chemotherapy resistance notably affecting prognosis. This study aims to identify prognostic biomarkers to optimize treatment strategies for LSCC. Using data from The Cancer Genome Atlas (TCGA) and Gene Expression Omnibus (GEO), combined with mitochondrial gene database analysis, we identified mitochondrial lncRNAs associated with drug resistance genes. Key long non-coding RNAs (lncRNAs) were selected through univariate Cox regression and Lasso regression, and a multivariate Cox regression model was constructed to predict prognosis. We further analyzed the differences in immune function and biological pathway enrichment between high- and low-risk groups, developed a nomogram, and compared drug sensitivity. Results showed that the prognostic model based on seven mitochondrial lncRNAs could serve as an independent prognostic factor, with Area Under the Curve (AUC) values of 0.746, 0.827, and 0.771 at 1, 3, and 5 years, respectively, outperforming some existing models, demonstrating high predictive performance. Significant differences were observed in immune function and drug sensitivity between the high- and low-risk groups. The risk prediction model incorporating seven drug resistance-related mitochondrial lncRNAs can accurately and independently predict the prognosis of LSCC patients.
Collapse
Affiliation(s)
- Zhimin Wu
- Department of Otorhinolaryngology Head and Neck Surgery, The Maternal and Child Health Care Hospital of Guizhou Medical University, Guiyang, 550000, Guizhou, China
- Department of Otorhinolaryngology Head and Neck Surgery, Affiliated Hospital of Guizhou Medical University, Guiyang, 550003, Guizhou, China
| | - Yi Chen
- Department of Breast and Thyroid Surgery, the Affiliated Cancer Hospital of Xinjiang Medical University, Urumqi, 830011, Xinjiang Uygur Autonomous Region, China
| | - Dizhi Jiang
- Department of Radiation Oncology, Cheeloo College of Medicine, Qilu Hospital of Shandong University, Shandong University, Jinan, 250012, Shandong, China
| | - Yipeng Pan
- Department of Gastroenterology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, 310020, Zhejiang, China
| | - Tuoxian Tang
- Department of Biology, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Yifei Ma
- Department of Otorhinolaryngology Head and Neck Surgery, Affiliated Hospital of Guizhou Medical University, Guiyang, 550003, Guizhou, China.
| | - Tiannake Shapaer
- Department of Gastrointestinal Surgery, the Affiliated Cancer Hospital of Xinjiang Medical University, Urumqi, 830011, Xinjiang Uygur Autonomous Region, China.
| |
Collapse
|
2
|
Al-Suhaimi E, AlQuwaie R, AlSaqabi R, Winarni D, Dewi FRP, AlRubaish AA, Shehzad A, Elaissari A. Hormonal orchestra: mastering mitochondria's role in health and disease. Endocrine 2024; 86:903-929. [PMID: 39172335 DOI: 10.1007/s12020-024-03967-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Accepted: 07/10/2024] [Indexed: 08/23/2024]
Abstract
Mitochondria is a subcellular organelle involved in the pathogenesis of cellular stress, immune responses, differentiation, metabolic disorders, aging, and death by regulating process of fission, fusion, mitophagy, and transport. However, an increased interest in mitochondria as powerhouse for ATP production, the mechanisms of mitochondria-mediated cellular dysfunction in response to hormonal interaction remains unknown. Mitochondrial matrix contains chaperones and proteases that regulate intrinsic apoptosis pathway through pro-apoptotic Bcl-2 family's proteins Bax/Bak, and Cyt C release, and induces caspase-dependent and independent cells death. Energy and growth regulators such as thyroid hormones have profound effect on mitochondrial inner membrane protein and lipid compositions, ATP production by regulating oxidative phosphorylation system. Mitochondria contain cholesterol side-chain cleavage enzyme, P450scc, ferredoxin, and ferredoxin reductase providing an essential site for steroid hormones biosynthesis. In line with this, neurohormones such as oxytocin, vasopressin, and melatonin are correlated with mitochondrial integrity, displaying therapeutic implications for inflammatory and immune responses. Melatonin's also displayed protective role against oxidative stress and mitochondrial synthesis of ROS, suggesting a defense mechanism against aging-related diseases. An imbalance in mitochondrial bioenergetics can cause neurodegenerative disorders, cardiovascular diseases, and cancers. Hormone-induced PGC-1α stimulates mitochondrial biogenesis via activation of NRF1 and NRF2, which in turn triggers mtTFA in brown adipose and cardiac myocytes. Mitochondria can be transferred through cells merging, exosome-mediated transfer, and tunneling through nanotubes. By delineating the underlying molecular mechanism of hormonal mitochondrial interaction, this study reviews the dynamics mechanisms of mitochondria and its effects on cellular level, health, diseases, and therapeutic strategies targeting mitochondrial diseases.
Collapse
Affiliation(s)
- Ebtesam Al-Suhaimi
- Vice presidency for Scientific Research and Innovation, Imam Abdulrahman Bin Faisal University, Dammam, Saudi Arabia.
- King Abdulaziz and his Companions Foundation for Giftedness and Creativity "Mawhiba", Riyadh, Saudi Arabia.
| | - Rahaf AlQuwaie
- Master Program of Biotechnology, Imam Abdulrahman Bin Faisal University, Dammam, Saudi Arabia
| | - Reem AlSaqabi
- Master Program of Biotechnology, Imam Abdulrahman Bin Faisal University, Dammam, Saudi Arabia
| | - Dwi Winarni
- Department of Biology, Faculty of Science and Technology, Universitas Airlangga, Surabaya, East Java, Indonesia
| | - Firli Rahmah Primula Dewi
- Department of Biology, Faculty of Science and Technology, Universitas Airlangga, Surabaya, East Java, Indonesia
| | - Abdullah A AlRubaish
- College of Medicine, Imam Abdulrahman Bin Faisal University, Dammam, Saudi Arabia
| | - Adeeb Shehzad
- Biodiversity Unit, Research Center, Dhofar University, Salalah, Oman
| | | |
Collapse
|
3
|
Huang R, Kong Y, Luo Z, Li Q. LncRNA NDUFA6-DT: A Comprehensive Analysis of a Potential LncRNA Biomarker and Its Regulatory Mechanisms in Gliomas. Genes (Basel) 2024; 15:483. [PMID: 38674418 PMCID: PMC11050413 DOI: 10.3390/genes15040483] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2024] [Revised: 04/06/2024] [Accepted: 04/10/2024] [Indexed: 04/28/2024] Open
Abstract
Gliomas are the most prevalent primary malignant tumors affecting the brain, with high recurrence and mortality rates. Accurate diagnoses and effective treatment challenges persist, emphasizing the need for identifying new biomarkers to guide clinical decisions. Long noncoding RNAs (lncRNAs) hold potential as diagnostic and therapeutic biomarkers in cancer. However, only a limited subset of lncRNAs in gliomas have been explored. Therefore, this study aims to identify lncRNA signatures applicable to patients with gliomas across all grades and explore their clinical significance and potential biological mechanisms. Data used in this study were obtained from TCGA, CGGA, and GEO datasets to identify key lncRNA signatures in gliomas through differential and survival analyses and machine learning algorithms. We examined their associations with the clinical characteristics, gene mutations, diagnosis, and prognosis of gliomas. Functional enrichment analysis was employed to elucidate the potential biological mechanisms associated with these significant lncRNA signatures. We explored competing endogenous RNA (ceRNA) regulatory networks. We found that NDUFA6-DT emerged as a significant lncRNA signature in gliomas, with reduced NDUFA6-DT expression associated with a worse prognosis in gliomas. Nomogram analysis incorporating NDUFA6-DT expression levels exhibited excellent prognostic and predictive capabilities. Functional annotation suggested that NDUFA6-DT might influence immunological responses and synaptic transmission, potentially modifying glioma initiation and progression. The associated ceRNA network revealed the possible presence of the NDUFA6-DT-miR-455-3p-YWHAH/YWHAG axis in low-grade glioma (LGG) and glioblastoma multiforme (GBM), regulating the PI3K-AKT signaling pathway and influencing glioma cell survival and apoptosis. We believe that NDUFA6-DT is a novel lncRNA linked to glioma diagnosis and prognosis, potentially becoming a pivotal biomarker for glioma.
Collapse
Affiliation(s)
- Ruiting Huang
- School of Biology and Biological Engineering, South China University of Technology, Guangzhou 510006, China; (R.H.); (Y.K.); (Z.L.)
- Guangdong Provincial Engineering and Technology Research Center of Biopharmaceuticals, South China University of Technology, Guangzhou 510006, China
| | - Ying Kong
- School of Biology and Biological Engineering, South China University of Technology, Guangzhou 510006, China; (R.H.); (Y.K.); (Z.L.)
- Guangdong Provincial Engineering and Technology Research Center of Biopharmaceuticals, South China University of Technology, Guangzhou 510006, China
| | - Zhiqing Luo
- School of Biology and Biological Engineering, South China University of Technology, Guangzhou 510006, China; (R.H.); (Y.K.); (Z.L.)
| | - Quhuan Li
- School of Biology and Biological Engineering, South China University of Technology, Guangzhou 510006, China; (R.H.); (Y.K.); (Z.L.)
- Guangdong Provincial Engineering and Technology Research Center of Biopharmaceuticals, South China University of Technology, Guangzhou 510006, China
| |
Collapse
|
4
|
Wang Y, Wang DY, Bu KN, Gao JD, Zhang BL. Prognosis prediction and risk stratification of breast cancer patients based on a mitochondria-related gene signature. Sci Rep 2024; 14:2859. [PMID: 38310106 PMCID: PMC10838276 DOI: 10.1038/s41598-024-52981-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2023] [Accepted: 01/25/2024] [Indexed: 02/05/2024] Open
Abstract
As the malignancy with the highest global incidence, breast cancer represents a significant threat to women's health. Recent advances have shed light on the importance of mitochondrial function in cancer, particularly in metabolic reprogramming within tumors. Recognizing this, we developed a novel risk signature based on mitochondrial-related genes to improve prognosis prediction and risk stratification in breast cancer patients. In this study, transcriptome data and clinical features of breast cancer samples were extracted from two sources: the TCGA, serving as the training set, and the METABRIC, used as the independent validation set. We developed the signature using LASSO-Cox regression and assessed its prognostic efficacy via ROC curves. Furthermore, the signature was integrated with clinical features to create a Nomogram model, whose accuracy was validated through clinical calibration curves and decision curve analysis. To further elucidate prognostic variations between high and low-risk groups, we conducted functional enrichment and immune infiltration analyses. Additionally, the study encompassed a comparison of mutation landscapes and drug sensitivity, providing a comprehensive understanding of the differing characteristics in these groups. Conclusively, we established a risk signature comprising 8 mitochondrial-related genes-ACSL1, ALDH2, MTHFD2, MRPL13, TP53AIP1, SLC1A1, ME3, and BCL2A1. This signature was identified as an independent risk predictor for breast cancer patient survival, exhibiting a significant high hazard ratio (HR = 3.028, 95%CI 2.038-4.499, P < 0.001). Patients in the low-risk group showed a more favorable prognosis, with enhanced immune infiltration, distinct mutation landscapes, and greater sensitivity to anti-tumor drugs. In contrast, the high-risk group exhibited an adverse trend in these aspects. This risk signature represents a novel and effective prognostic indicator, suggesting valuable insights for patient stratification in breast cancer.
Collapse
Affiliation(s)
- Yang Wang
- Department of Breast Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - Ding-Yuan Wang
- Department of Breast Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - Ke-Na Bu
- Xingyuan Hospital of Yulin City, Yulin City, 719051, Shanxi Province, China
| | - Ji-Dong Gao
- Department of Breast Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China.
- Department of Breast Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital & Shenzhen Hospital, Chinese Academy of Medical Sciences and Peking Union College, Shenzhen, 518116, China.
| | - Bai-Lin Zhang
- Department of Breast Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China.
| |
Collapse
|
5
|
Wang YW, Liu C, Chen YD, Yang B, Chen X, Ma G, Tian YR, Bo X, Zhang K. An angiogenesis-related lncRNA signature predicts the immune microenvironment and prognosis of breast cancer. Aging (Albany NY) 2023; 15:7616-7636. [PMID: 37543427 PMCID: PMC10457060 DOI: 10.18632/aging.204930] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Accepted: 07/17/2023] [Indexed: 08/07/2023]
Abstract
Both angiogenesis and lncRNAs play crucial roles in the development and progression of breast cancer. Considering the unknown association of angiogenesis and lncRNAs in breast cancer, we aim to identify angiogenesis-related lncRNAs (ARLs) and explore their prognostic value. Here, based on analysis of The Cancer Genome Atlas database, the correlation between ARL and the prognosis and immune infiltration landscape of breast cancer were investigated. Eight ARLs (MAFG-DT, AC097478.1, AL357054.4, AL118556.1, SNHG10, MED14OS, OTUD6B-AS1, and CYTOR) were selected to construct the risk model as a prognostic signature. The survival rate of the patients in the high-risk group was lower than that in the low-risk group. The ARL signature was an independent prognostic predictor, and areas under the curve of 1-, 3-, and 5-year survival were 0.745, 0.695, and 0.699, respectively. The prognostic ARLs were associated with the immune infiltration landscape and could indicate the immune status, immune response, tumor mutational burden, and drug sensitivity of patients with breast cancer. Furthermore, qRT-PCR of clinical samples revealed that OTUD6B-AS1 was correlated with prognostic pathological parameters. OTUD6B-AS1 promoted breast cancer cell proliferation, wound healing, migration, invasion, and human umbilical vein endothelial cells tube formation. Mechanistically, OTUD6B-AS1 regulated EMT- and angiogenesis-related molecules. Taken together, we constructed and verified a robust signature of eight ARLs for the prediction of survival in patients with breast cancer, and the characterization of the immune infiltration landscape. Our findings suggest that OTUD6B-AS1 could be a therapeutic target for patients with breast cancer.
Collapse
Affiliation(s)
- Ya-Wen Wang
- Department of Breast Surgery, General Surgery, Qilu Hospital of Shandong University, Jinan, People’s Republic of China
| | - Can Liu
- Department of Breast Surgery, General Surgery, Qilu Hospital of Shandong University, Jinan, People’s Republic of China
| | - Yan-Duo Chen
- Department of Breast Surgery, General Surgery, Qilu Hospital of Shandong University, Jinan, People’s Republic of China
| | - Bin Yang
- Department of Breast Surgery, General Surgery, Qilu Hospital of Shandong University, Jinan, People’s Republic of China
| | - Xu Chen
- Department of Pathology, Qilu Hospital of Shandong University, Jinan, People’s Republic of China
| | - Guangxin Ma
- Hematology and Oncology Unit, Department of Geriatrics, Qilu Hospital of Shandong University, Jinan, People’s Republic of China
| | - Ya-Ru Tian
- Department of Radiation Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Science, Jinan, People’s Republic of China
| | - Xiangkun Bo
- Department of General Surgery, Affiliated Haian Hospital of Nantong University, Nantong, People’s Republic of China
| | - Kai Zhang
- Department of Breast Surgery, General Surgery, Qilu Hospital of Shandong University, Jinan, People’s Republic of China
| |
Collapse
|
6
|
Fonseca-Montaño MA, Vázquez-Santillán KI, Hidalgo-Miranda A. The current advances of lncRNAs in breast cancer immunobiology research. Front Immunol 2023; 14:1194300. [PMID: 37342324 PMCID: PMC10277570 DOI: 10.3389/fimmu.2023.1194300] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2023] [Accepted: 05/24/2023] [Indexed: 06/22/2023] Open
Abstract
Breast cancer is the most frequently diagnosed malignancy and the leading cause of cancer-related death in women worldwide. Breast cancer development and progression are mainly associated with tumor-intrinsic alterations in diverse genes and signaling pathways and with tumor-extrinsic dysregulations linked to the tumor immune microenvironment. Significantly, abnormal expression of lncRNAs affects the tumor immune microenvironment characteristics and modulates the behavior of different cancer types, including breast cancer. In this review, we provide the current advances about the role of lncRNAs as tumor-intrinsic and tumor-extrinsic modulators of the antitumoral immune response and the immune microenvironment in breast cancer, as well as lncRNAs which are potential biomarkers of tumor immune microenvironment and clinicopathological characteristics in patients, suggesting that lncRNAs are potential targets for immunotherapy in breast cancer.
Collapse
Affiliation(s)
- Marco Antonio Fonseca-Montaño
- Laboratorio de Genómica del Cáncer, Instituto Nacional de Medicina Genómica (INMEGEN), Mexico City, Mexico
- Programa de Doctorado, Posgrado en Ciencias Biológicas, Unidad de Posgrado, Universidad Nacional Autónoma de México (UNAM), Mexico City, Mexico
| | | | - Alfredo Hidalgo-Miranda
- Laboratorio de Genómica del Cáncer, Instituto Nacional de Medicina Genómica (INMEGEN), Mexico City, Mexico
| |
Collapse
|