1
|
Romdoni Y, Prasedya ES, Kadja GTM, Kitamoto Y, Khalil M. Efficient delivery of anticancer drugs using functionalized-Ag-decorated Fe 3O 4@SiO 2 nanocarrier with folic acid and β-cyclodextrin. Biochim Biophys Acta Gen Subj 2024; 1868:130643. [PMID: 38797254 DOI: 10.1016/j.bbagen.2024.130643] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2023] [Revised: 04/21/2024] [Accepted: 05/22/2024] [Indexed: 05/29/2024]
Abstract
Nanocarrier surface functionalization has been widely regarded as a promising approach for achieving precise and targeted drug delivery systems. In this work, the fabrication of functionalized-Ag-decorated Fe3O4@SiO2 (Fe3O4@SiO2-Ag) nanocarriers with folic acid (FA) and β-cyclodextrin (BCD) exhibit a remarkable capacity for delivering two types of anticancer drugs, i.e., doxorubicin (DOX) and epirubicin (EPI), into cancer cells. The effective functionalization of Fe3O4@SiO2-Ag nanoparticles has been achieved through the use of cysteine (Cys) as an anchor for attaching FA and BCD via EDC-NHS coupling and Steglich esterification methods, respectively. The findings indicate that surface functionalization had no significant impact on the physicochemical characteristics of the nanoparticles. However, it notably affected DOX and EPI loading and release efficiency. The electrostatic conjugation of DOX/EPI onto the surface of Fe3O4@SiO2-Ag/Cys/FA and Fe3O4@SiO2-Ag/Cys/BCD exhibited maximum loading efficiency of 50-60% at concentration ratio of DOX/EPI to nanoparticles of 1:14. These nanocarriers also achieved an 40-47% DOX/EPI release over 36 days. Furthermore, the drug-loaded functionalized-nanocarrier showed cytotoxic effects on SK-MEL-2 cells, as demonstrated by an in vitro MTT assay. This suggests that the as-prepared functionalized-nanoparticles have promise as a carrier for the efficient anticancer drugs.
Collapse
Affiliation(s)
- Yoga Romdoni
- Department of Chemistry, Faculty of Mathematics and Natural Sciences, Universitas Indonesia, 16424 Depok, West Java, Indonesia; Low Dimension Materials Lab., Department of Chemistry, Faculty of Mathematics and Natural Sciences, Universitas Indonesia, 16424 Depok, West Java, Indonesia
| | - Eka Sunarwidhi Prasedya
- Department of Biology, Faculty of Mathematics and Natural Sciences, Universitas Mataram, 83125 Lombok, West Nusa Tenggara, Indonesia; Bioscience and Biotechnology Research Center, Faculty of Mathematics and Natural Sciences, University of Mataram, 83125 Lombok, West Nusa Tenggara, Indonesia
| | - Grandprix T M Kadja
- Division of Inorganic and Physical Chemistry, Institut Teknologi Bandung, Jalan Ganesha No. 10, Bandung 40132, Indonesia; Research Center for Nanosciences and Nanotechnology, Institut Teknologi Bandung, Jalan Ganesha No. 10, Bandung 40132, Indonesia; Center for Catalysis and Reaction Engineering, Institut Teknologi Bandung, Jalan Ganesha No. 10, Bandung 40132, Indonesia
| | - Yoshitaka Kitamoto
- Department of Materials Science and Engineering, School of Materials and Chemical Technology, Tokyo Institute of Technology, Yokohama 226-8502, Japan
| | - Munawar Khalil
- Department of Chemistry, Faculty of Mathematics and Natural Sciences, Universitas Indonesia, 16424 Depok, West Java, Indonesia; Low Dimension Materials Lab., Department of Chemistry, Faculty of Mathematics and Natural Sciences, Universitas Indonesia, 16424 Depok, West Java, Indonesia.
| |
Collapse
|
2
|
Salari S, Sadeghi-Yarandi M, Golbabaei F. An integrated approach to occupational health risk assessment of manufacturing nanomaterials using Pythagorean Fuzzy AHP and Fuzzy Inference System. Sci Rep 2024; 14:180. [PMID: 38168505 PMCID: PMC10762155 DOI: 10.1038/s41598-023-48885-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2023] [Accepted: 11/30/2023] [Indexed: 01/05/2024] Open
Abstract
Nanomaterials (NMs) have the potential to be hazardous owing to their unique physico-chemical properties. Therefore, the need for Health Risk Assessment (HRA) of NMs is expanding. In this study, a novel HRA was developed by the Pythagorean Fuzzy Health Risk Assessment (PFHRA) approach. Risk is considered to be the outcome of parameters including Occurrence Likelihood (OL), Potential Exposure (PE) and Toxic Effects (TE). In our proposed method, priority weights of sub-factors in Pythagorean Fuzzy-Analytical Hierarchical Process (PF-AHP) were determined by pairwise comparison based on expert judgment. After determining parameter scores, both RM and risk class (i.e., negligible, minor, major and critical) were reported as Fuzzy Inference System (FIS) output. Ultimately, a risk management strategy is presented for NMs manufacturing workplaces. This proposed method provides experts with more flexibility to express their opinions. The PFHRA approach was applied for two scenarios. The production scenario for SiNPs can create minor (5%) and major (95%) occupational health risks; the production scenario for ZnONPs can create minor (100%) concerns. However, the production SiNPs and ZnONPs utilizing the CB Nanotool technique had a major and minor risk class, respectively. The results of the present study confirmed the reliability and applicability of this approach.
Collapse
Affiliation(s)
- Samaneh Salari
- Department of Occupational Health Engineering, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran.
| | - Mohsen Sadeghi-Yarandi
- Department of Occupational Health Engineering, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Farideh Golbabaei
- Department of Occupational Health Engineering, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|