1
|
Chase EE, Truchon AR, Creasey BA, Wilhelm SW. Time of day of infection shapes development of a eukaryotic algal-Nucleocytoviricota virocell. FEMS Microbiol Ecol 2024; 100:fiae123. [PMID: 39271456 PMCID: PMC11451476 DOI: 10.1093/femsec/fiae123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Revised: 09/04/2024] [Accepted: 09/12/2024] [Indexed: 09/15/2024] Open
Abstract
Aureococcus anophagefferens forms a model host-virus system with the "giant virus" Kratosvirus quantuckense. Studies to define its ribocell (uninfected) and virocell (virus-infected) forms are needed as these states co-occur during algal blooms. Previously, a link between light-derived energy, virus particle production, and virocell formation was noted. We explored how the time of day (morning, midday, or late day) of virus-host contact shaped virocell ontogeny. In parallel, we explored the dependence on light-derived energy in this mixotrophic plankter by inhibiting photosystem II, testing the role of heterotrophic energy in infection dynamics. Using flow cytometry and photochemical assessments, we examined the physiology of infected cells and controls, and estimated virus particle production. We observed differences between ribocell and virocell response to treatments, including reductions in virus particle production during reduced light duration) and PSII inhibition (i.e. "forced heterotrophy"). This work demonstrates the importance of light in shaping the fate of infected cells and provides insight into factors that constrain in situ blooms. Most significantly, we show that time of the solar day when a virus and host come into contact influences viral particle production, and therefore bloom dynamics; a factor that needs to be considered in bloom modeling work.
Collapse
Affiliation(s)
- Emily E Chase
- Department of Microbiology, University of Tennessee, Knoxville, TN 37996, United States
| | - Alexander R Truchon
- Department of Microbiology, University of Tennessee, Knoxville, TN 37996, United States
| | - Brooke A Creasey
- Department of Microbiology, University of Tennessee, Knoxville, TN 37996, United States
| | - Steven W Wilhelm
- Department of Microbiology, University of Tennessee, Knoxville, TN 37996, United States
| |
Collapse
|
2
|
Queiroz VF, Tatara JM, Botelho BB, Rodrigues RAL, Almeida GMDF, Abrahao JS. The consequences of viral infection on protists. Commun Biol 2024; 7:306. [PMID: 38462656 PMCID: PMC10925606 DOI: 10.1038/s42003-024-06001-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2023] [Accepted: 02/29/2024] [Indexed: 03/12/2024] Open
Abstract
Protists encompass a vast widely distributed group of organisms, surpassing the diversity observed in metazoans. Their diverse ecological niches and life forms are intriguing characteristics that render them valuable subjects for in-depth cell biology studies. Throughout history, viruses have played a pivotal role in elucidating complex cellular processes, particularly in the context of cellular responses to viral infections. In this comprehensive review, we provide an overview of the cellular alterations that are triggered in specific hosts following different viral infections and explore intricate biological interactions observed in experimental conditions using different host-pathogen groups.
Collapse
Affiliation(s)
- Victoria Fulgencio Queiroz
- Federal University of Minas Gerais, Institute of Biological Sciences, Department of Microbiology, Belo Horizonte, Minas Gerais, Brazil
| | - Juliana Miranda Tatara
- The Norwegian College of Fishery Science, Faculty of Biosciences, Fisheries and Economics, UiT - The Arctic University of Norway, Tromsø, Norway
| | - Bruna Barbosa Botelho
- Federal University of Minas Gerais, Institute of Biological Sciences, Department of Microbiology, Belo Horizonte, Minas Gerais, Brazil
| | - Rodrigo Araújo Lima Rodrigues
- Federal University of Minas Gerais, Institute of Biological Sciences, Department of Microbiology, Belo Horizonte, Minas Gerais, Brazil
| | - Gabriel Magno de Freitas Almeida
- The Norwegian College of Fishery Science, Faculty of Biosciences, Fisheries and Economics, UiT - The Arctic University of Norway, Tromsø, Norway.
| | - Jonatas Santos Abrahao
- Federal University of Minas Gerais, Institute of Biological Sciences, Department of Microbiology, Belo Horizonte, Minas Gerais, Brazil
| |
Collapse
|
3
|
Takahashi M, Masuda Y, Chiba Y, Urayama SI, Nagasaki K. DsRNA sequencing revealed a previously missed terminal sequence of a +ssRNA virus that infects dinoflagellate Heterocapsa circularisquama. Virus Genes 2024; 60:97-99. [PMID: 38198069 DOI: 10.1007/s11262-023-02046-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Accepted: 12/04/2023] [Indexed: 01/11/2024]
Abstract
Heterocapsa circularisquama RNA virus (HcRNAV) is the only dinoflagellate-infecting RNA virus cultured. However, only two strains of HcRNAV have been registered with complete genome sequences (strains 34 and 109 for UA and CY types, respectively). To extend the genomic information of HcRNAV, we performed full-genome sequencing of an unsequenced strain of HcRNAV (strain A8) using the fragmented and primer-ligated double-stranded RNA (dsRNA) sequencing (FLDS) method. The complete genome of HcRNAV A8 with 4457 nucleotides (nt) was successfully determined, and sequence alignment of the major capsid protein gene suggested that A8 was a UA-type strain, consistent with its intraspecific host specificity. The complete sequence was found to be 80 nt longer at the 5' terminus than the registered sequences of HcRNAV strains (34 and 109), suggesting that FLDS is more reliable for determining the terminal sequence than conventional methods (5' Rapid Amplification of cDNA End). Our study contributes to a better understanding of dinoflagellate-infecting viruses with limited sequence data.
Collapse
Grants
- JP19J00346 Japan Society for the Promotion of Science
- JPMJAX21BD ACT-X, Japan Science and Technology Agency
- JP16H06429 Ministry of Education, Culture, Sports, Science and Technology of Japan
- JP16K21723 Ministry of Education, Culture, Sports, Science and Technology of Japan
- JP16H06437 Ministry of Education, Culture, Sports, Science and Technology of Japan
Collapse
Affiliation(s)
- Michiko Takahashi
- Kochi Medical School, Kochi University, Nankoku, Kochi, 783-8505, Japan
| | - Yuichi Masuda
- Faculty of Agriculture and Marine Science, Kochi University, Nankoku, Kochi, 783-8502, Japan
| | - Yuto Chiba
- Laboratory of Fungal Interaction and Molecular Biology (Donated by IFO), Department of Life and Environmental Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki, 305-8577, Japan
| | - Syun-Ichi Urayama
- Laboratory of Fungal Interaction and Molecular Biology (Donated by IFO), Department of Life and Environmental Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki, 305-8577, Japan
| | - Keizo Nagasaki
- Faculty of Agriculture and Marine Science, Kochi University, Nankoku, Kochi, 783-8502, Japan.
| |
Collapse
|
4
|
Howe-Kerr LI, Knochel AM, Meyer MD, Sims JA, Karrick CE, Grupstra CGB, Veglia AJ, Thurber AR, Vega Thurber RL, Correa AMS. Filamentous virus-like particles are present in coral dinoflagellates across genera and ocean basins. THE ISME JOURNAL 2023; 17:2389-2402. [PMID: 37907732 PMCID: PMC10689786 DOI: 10.1038/s41396-023-01526-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Revised: 09/24/2023] [Accepted: 09/28/2023] [Indexed: 11/02/2023]
Abstract
Filamentous viruses are hypothesized to play a role in stony coral tissue loss disease (SCTLD) through infection of the endosymbiotic dinoflagellates (Family Symbiodiniaceae) of corals. To evaluate this hypothesis, it is critical to understand the global distribution of filamentous virus infections across the genetic diversity of Symbiodiniaceae hosts. Using transmission electron microscopy, we demonstrate that filamentous virus-like particles (VLPs) are present in over 60% of Symbiodiniaceae cells (genus Cladocopium) within Pacific corals (Acropora hyacinthus, Porites c.f. lobata); these VLPs are more prevalent in Symbiodiniaceae of in situ colonies experiencing heat stress. Symbiodiniaceae expelled from A. hyacinthus also contain filamentous VLPs, and these cells are more degraded than their in hospite counterparts. Similar to VLPs reported from SCTLD-affected Caribbean reefs, VLPs range from ~150 to 1500 nm in length and 16-37 nm in diameter and appear to constitute various stages in a replication cycle. Finally, we demonstrate that SCTLD-affected corals containing filamentous VLPs are dominated by diverse Symbiodiniaceae lineages from the genera Breviolum, Cladocopium, and Durusdinium. Although this study cannot definitively confirm or refute the role of filamentous VLPs in SCTLD, it demonstrates that filamentous VLPs are not solely observed in SCTLD-affected corals or reef regions, nor are they solely associated with corals dominated by members of a particular Symbiodiniaceae genus. We hypothesize that filamentous viruses are a widespread, common group that infects Symbiodiniaceae. Genomic characterization of these viruses and empirical tests of the impacts of filamentous virus infection on Symbiodiniaceae and coral colonies should be prioritized.
Collapse
Affiliation(s)
| | - Anna M Knochel
- BioSciences Department, Rice University, Houston, TX, USA
- Department of Biological Sciences, Florida International University, Miami, FL, USA
| | - Matthew D Meyer
- Shared Equipment Authority, Rice University, Houston, TX, USA
| | - Jordan A Sims
- BioSciences Department, Rice University, Houston, TX, USA
- Environmental Science and Policy, George Mason University, Fairfax, VA, USA
| | | | - Carsten G B Grupstra
- BioSciences Department, Rice University, Houston, TX, USA
- Department of Biology, Boston University, Boston, MA, USA
| | - Alex J Veglia
- BioSciences Department, Rice University, Houston, TX, USA
- Department of Biology, University of Puerto Rico, Mayagüez, PR, USA
| | - Andrew R Thurber
- Department of Microbiology, Oregon State University, Corvallis, OR, USA
- College of Earth Ocean and Atmospheric Sciences, Oregon State University, Corvallis, OR, USA
| | | | - Adrienne M S Correa
- BioSciences Department, Rice University, Houston, TX, USA.
- Department of Environmental Science, Policy and Management, University of California, Berkeley, CA, USA.
| |
Collapse
|