1
|
Zhu Y, Deng J, Lu H, Mei Z, Lu Z, Guo J, Chen A, Cao R, Ding X, Wang J, Forgham H, Qiao R, Wang Z. Reverse magnetic resonance tuning nanoplatform with heightened sensitivity for non-invasively multiscale visualizing ferroptosis-based tumor sensitization therapy. Biomaterials 2025; 315:122935. [PMID: 39489017 DOI: 10.1016/j.biomaterials.2024.122935] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2024] [Revised: 10/17/2024] [Accepted: 10/29/2024] [Indexed: 11/05/2024]
Abstract
Ferroptosis-based therapy has garnered considerable attention for its ability to kill drug-resistant cancer cells. Consequently, it holds great significance to assess the therapeutic outcomes by monitoring ferroptosis-related biomarkers, which enables the provision of real-time pathological insights into disease progression. Nevertheless, conventional imaging technology suffers from limitations including reduced sensitivity and difficulty in achieving real-time precise monitoring. Here, we report a tumor acidic-microenvironment-responsive nanoplatform with "Reverse Magnetic Resonance Tuning (ReMRT)" property and effective combined chemodynamic therapy (CDT) through the loading of chemotherapeutic drugs. This reverse MR mapping change is correlated with iron ion, reactive oxygen species (ROS) generation and drug release, etc., contributing to the precise monitoring of chemo-CDT effectiveness. Furthermore, the ReMRT nanoplatform presents as a highly efficacious combined chemo-CDT agent, and when this nanoplatform is used in conjunction with the "Area Reconstruction" method, it can afford a significant sensitivity (95.1-fold) in multiscale visualization of therapeutic, compared with the conventional MR R1/R2 values. The high-sensitive biological quantitative imaging provides a novel strategy for MR-guided multiscale dynamic tumor-related ferroptosis therapy.
Collapse
Affiliation(s)
- Yi Zhu
- Department of Radiology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200080, China
| | - Jiali Deng
- Department of Radiology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200080, China; School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai, 200093, China
| | - Hongwei Lu
- Department of Biomedical Engineering, College of Engineering, Shantou University, Shantou, 515063, China
| | - Zhu Mei
- Shanghai Key Laboratory of Pancreatic Diseases, Department of Gastroenterology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200080, China
| | - Ziwei Lu
- Department of Radiology, the First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, 215006, China
| | - Jiajing Guo
- Department of Radiology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200080, China
| | - An Chen
- Department of Radiology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200080, China
| | - Rong Cao
- Department of Radiology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200080, China
| | - Xinyi Ding
- Department of Radiology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200080, China
| | - Jingyi Wang
- Department of Radiology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200080, China; School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai, 200093, China
| | - Helen Forgham
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, Brisbane, QLD, 4072, Australia
| | - Ruirui Qiao
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, Brisbane, QLD, 4072, Australia
| | - Zhongling Wang
- Department of Radiology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200080, China.
| |
Collapse
|
2
|
Masroori Z, Haseli S, Abbaspour E, Pouramini A, Azhideh A, Fathi M, Kafi F, Chalian M. Patellar Non-Traumatic Pathologies: A Pictorial Review of Radiologic Findings. Diagnostics (Basel) 2024; 14:2828. [PMID: 39767189 PMCID: PMC11675855 DOI: 10.3390/diagnostics14242828] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2024] [Revised: 12/05/2024] [Accepted: 12/10/2024] [Indexed: 01/11/2025] Open
Abstract
Patellar pathologies are a common cause of knee dysfunction, with Patellofemoral Pain Syndrome (PFPS) alone responsible for 25% of knee-related visits to sports medicine clinics. Non-traumatic conditions, while often overlooked, can also lead to significant discomfort and functional limitations, highlighting the importance of accurate and timely diagnosis for effective management and prevention of complications. This pictorial review examines the radiologic characteristics of various non-traumatic patellar disorders, focusing on imaging modalities such as radiography, computed tomography (CT), and magnetic resonance imaging (MRI). Key diagnostic markers, including patellar tilt, tibial tuberosity-trochlear groove distance (TT-TG), and congruence angle (CA), are discussed for their significance in non-traumatic pathology identification. Furthermore, this review highlights specific radiologic features for a range of non-traumatic patellar conditions, including patellar tendinopathy, chondromalacia patellae, and trochlear dysplasia, emphasizing how distinct radiologic findings facilitate precise diagnosis and clinical assessment. Ultimately, it provides a practical guide for clinicians in diagnosing non-traumatic patellar pathologies through a comprehensive review of key radiologic features while also discussing advancements in imaging technologies and management strategies to support accurate diagnosis and effective clinical decision-making.
Collapse
Affiliation(s)
- Zahra Masroori
- Department of Radiology, Division of Musculoskeletal Imaging and Intervention, University of Washington, Seattle, WA 98105, USA
| | - Sara Haseli
- Department of Radiology, Division of Musculoskeletal Imaging and Intervention, University of Washington, Seattle, WA 98105, USA
- OncoRad Research Core, Department of Radiology, University of Washington/Fred Hutchinson Cancer Center, Seattle, WA 98195, USA
| | - Elahe Abbaspour
- Department of Radiology, Division of Musculoskeletal Imaging and Intervention, University of Washington, Seattle, WA 98105, USA
| | - Alireza Pouramini
- Department of Radiology, Division of Musculoskeletal Imaging and Intervention, University of Washington, Seattle, WA 98105, USA
| | - Arash Azhideh
- Department of Radiology, Division of Musculoskeletal Imaging and Intervention, University of Washington, Seattle, WA 98105, USA
| | - Marjan Fathi
- Department of Radiology, Division of Musculoskeletal Imaging and Intervention, University of Washington, Seattle, WA 98105, USA
| | - Fatemeh Kafi
- Department of Radiology, Division of Musculoskeletal Imaging and Intervention, University of Washington, Seattle, WA 98105, USA
| | - Majid Chalian
- Department of Radiology, Division of Musculoskeletal Imaging and Intervention, University of Washington, Seattle, WA 98105, USA
- OncoRad Research Core, Department of Radiology, University of Washington/Fred Hutchinson Cancer Center, Seattle, WA 98195, USA
| |
Collapse
|
3
|
Coletti C, Naaktgeboren R, Tourais J, Van De Steeg-Henzen C, Weingärtner S. Generalized inhomogeneity-resilient relaxation along a fictitious field (girRAFF) for improved robustness in rotating frame relaxometry at 3T. Magn Reson Med 2024; 92:2373-2391. [PMID: 39046914 DOI: 10.1002/mrm.30219] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2023] [Revised: 06/07/2024] [Accepted: 06/26/2024] [Indexed: 07/27/2024]
Abstract
PURPOSE To optimize Relaxation along a Fictitious Field (RAFF) pulses for rotating frame relaxometry with improved robustness in the presence ofB 0 $$ {\mathrm{B}}_0 $$ andB 1 + $$ {\mathrm{B}}_1^{+} $$ field inhomogeneities. METHODS The resilience of RAFF pulses againstB 0 $$ {\mathrm{B}}_0 $$ andB 1 + $$ {\mathrm{B}}_1^{+} $$ inhomogeneities was studied using Bloch simulations. A parameterized extension of the RAFF formulation was introduced and used to derive a generalized inhomogeneity-resilient RAFF (girRAFF) pulse. RAFF and girRAFF preparation efficiency, defined as the ratio of the longitudinal magnetization before and after the preparation (M z ( T p ) / M 0 $$ {M}_z\left({T}_p\right)/{M}_0 $$ ), were simulated and validated in phantom experiments.T RAFF $$ {T}_{\mathrm{RAFF}} $$ andT girRAFF $$ {T}_{\mathrm{girRAFF}} $$ parametric maps were acquired at 3T in phantom, the calf muscle, and the knee cartilage of healthy subjects. The relaxation time maps were analyzed for resilience against artificially induced field inhomogeneities and assessed in terms of in vivo reproducibility. RESULTS Optimized girRAFF preparations yielded improved preparation efficiency (0.95/0.91 simulations/phantom) with respect to RAFF (0.36/0.67 simulations/phantom).T girRAFF $$ {T}_{\mathrm{girRAFF}} $$ preparations showed in phantom/calf 6.0/4.8 times higher resilience toB 0 $$ {\mathrm{B}}_0 $$ inhomogeneities than RAFF, and a 4.7/5.3 improved resilience toB 1 + $$ {\mathrm{B}}_1^{+} $$ inhomogeneities. In the knee cartilage,T girRAFF $$ {T}_{\mathrm{girRAFF}} $$ (53± $$ \pm $$ 14 ms) was higher thanT RAFF $$ {T}_{\mathrm{RAFF}} $$ (42± $$ \pm $$ 11 ms). Moreover, girRAFF preparations yielded 7.6/4.9 times improved reproducibility acrossB 0 $$ {\mathrm{B}}_0 $$ /B 1 + $$ {\mathrm{B}}_1^{+} $$ inhomogeneity conditions, 1.9 times better reproducibility across subjects and 1.2 times across slices compared with RAFF. Dixon-based fat suppression led to a further 15-fold improvement in the robustness of girRAFF to inhomogeneities. CONCLUSIONS RAFF pulses display residual sensitivity to off-resonance and pronounced sensitivity toB 1 + $$ {\mathrm{B}}_1^{+} $$ inhomogeneities. Optimized girRAFF pulses provide increased robustness and may be an appealing alternative for applications where resilience against field inhomogeneities is required.
Collapse
Affiliation(s)
- Chiara Coletti
- Department of Imaging Physics, Delft University of Technology, Delft, The Netherlands
| | - Roeland Naaktgeboren
- Department of Imaging Physics, Delft University of Technology, Delft, The Netherlands
| | - Joao Tourais
- Department of Imaging Physics, Delft University of Technology, Delft, The Netherlands
| | | | - Sebastian Weingärtner
- Department of Imaging Physics, Delft University of Technology, Delft, The Netherlands
- HollandPTC, Delft, The Netherlands
| |
Collapse
|
4
|
Simegn GL, Gagoski B, Song Y, Dean DC, Hupfeld KE, Murali-Manohar S, Davies-Jenkins CW, Simičić D, Wisnowski J, Yedavalli V, Gudmundson AT, Zöllner HJ, Oeltzschner G, Edden RAE. Comparison of test-retest reproducibility of DESPOT and 3D-QALAS for water T 1 and T 2 mapping. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.08.15.608081. [PMID: 39229114 PMCID: PMC11370424 DOI: 10.1101/2024.08.15.608081] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 09/05/2024]
Abstract
Purpose Relaxometry, specifically T 1 and T 2 mapping, has become an essential technique for assessing the properties of biological tissues related to various physiological and pathological conditions. Many techniques are being used to estimate T 1 and T 2 relaxation times, ranging from the traditional inversion or saturation recovery and spin-echo sequences to more advanced methods. Choosing the appropriate method for a specific application is critical since the precision and accuracy of T 1 and T 2 measurements are influenced by a variety of factors including the pulse sequence and its parameters, the inherent properties of the tissue being examined, the MRI hardware, and the image reconstruction. The aim of this study is to evaluate and compare the test-retest reproducibility of two advanced MRI relaxometry techniques (Driven Equilibrium Single Pulse Observation of T 1 and T 2, DESPOT, and 3D Quantification using an interleaved Look-Locker acquisition Sequence with a T 2 preparation pulse, QALAS), for T 1 and T 2 mapping in a healthy volunteer cohort. Methods 10 healthy volunteers underwent brain MRI at 1.3 mm3 isotropic resolution, acquiring DESPOT and QALAS data (~11.8 and ~5 minutes duration, including field maps, respectively), test-retest with subject repositioning, on a 3.0 Tesla Philips Ingenia Elition scanner. To reconstruct the T 1 and T 2 maps, we used an equation-based algorithm for DESPOT and a dictionary-based algorithm that incorporates inversion efficiency and B 1 -field inhomogeneity for QALAS. The test-retest reproducibility was assessed using the coefficient of variation (CoV), intraclass correlation coefficient (ICC) and Bland-Altman plots. Results Our results indicate that both the DESPOT and QALAS techniques demonstrate good levels of test-retest reproducibility for T 1 and T 2 mapping across the brain. Higher whole-brain voxel-to-voxel ICCs are observed in QALAS for T 1 (0.84 ± 0.039) and in DESPOT for T 2 (0.897 ± 0.029). The Bland-Altman plots show smaller bias and variability of T 1 estimates for QALAS (mean of -0.02 s, and upper and lower limits of -0.14 and 0.11 s, 95% CI) than for DESPOT (mean of -0.02 s, and limits of -0.31 and 0.27 s). QALAS also showed less variability (mean 1.08 ms, limits -1.88 to 4.04 ms) for T 2 compared to DESPOT (mean of 2.56 ms, and limits -17.29 to 22.41 ms). The within-subject CoVs for QALAS range from 0.6% (T 2 in CSF) to 5.8% (T 2 in GM), while for DESPOT they range from 2.1% (T 2 in CSF) to 6.7% (T 2 in GM). The between-subject CoVs for QALAS range from 2.5% (T 2 in GM) to 12% (T 2 in CSF), and for DESPOT they range from 3.7% (T 2 in WM) to 9.3% (T 2 in CSF). Conclusion Overall, QALAS demonstrated better reproducibility for T 1 and T 2 measurements than DESPOT, in addition to reduced acquisition time.
Collapse
Affiliation(s)
- Gizeaddis Lamesgin Simegn
- Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- F. M. Kirby Research Center for Functional Brain Imaging, Kennedy Krieger Institute, Baltimore, MD, USA
| | - Borjan Gagoski
- Department of Radiology, Harvard Medical School, Boston, Massachusetts, USA
- Fetal-Neonatal Neuroimaging & Developmental Science Center, Boston Children’s Hospital, Boston, Massachusetts, USA
| | - Yulu Song
- Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- F. M. Kirby Research Center for Functional Brain Imaging, Kennedy Krieger Institute, Baltimore, MD, USA
| | - Douglas C. Dean
- Department of Pediatrics, University of Wisconsin School of Medicine and Public Health, Madison, WI, USA
- Department of Medical Physics, University of Wisconsin School of Medicine and Public Health, Madison, WI, USA
- Waisman Center, University of Wisconsin-Madison, Madison, WI, USA
| | - Kathleen E. Hupfeld
- Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- F. M. Kirby Research Center for Functional Brain Imaging, Kennedy Krieger Institute, Baltimore, MD, USA
| | - Saipavitra Murali-Manohar
- Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- F. M. Kirby Research Center for Functional Brain Imaging, Kennedy Krieger Institute, Baltimore, MD, USA
| | - Christopher W. Davies-Jenkins
- Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- F. M. Kirby Research Center for Functional Brain Imaging, Kennedy Krieger Institute, Baltimore, MD, USA
| | - Dunja Simičić
- Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- F. M. Kirby Research Center for Functional Brain Imaging, Kennedy Krieger Institute, Baltimore, MD, USA
| | - Jessica Wisnowski
- Department of Pediatrics, Division of Neurology, Children’s Hospital Los Angeles and the University of Southern California
| | - Vivek Yedavalli
- Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Aaron T. Gudmundson
- Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- F. M. Kirby Research Center for Functional Brain Imaging, Kennedy Krieger Institute, Baltimore, MD, USA
- The Malone Center for Engineering in Healthcare, Johns Hopkins University, Baltimore, MD, USA
| | - Helge J. Zöllner
- Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- F. M. Kirby Research Center for Functional Brain Imaging, Kennedy Krieger Institute, Baltimore, MD, USA
| | - Georg Oeltzschner
- Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- F. M. Kirby Research Center for Functional Brain Imaging, Kennedy Krieger Institute, Baltimore, MD, USA
| | - Richard A. E. Edden
- Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- F. M. Kirby Research Center for Functional Brain Imaging, Kennedy Krieger Institute, Baltimore, MD, USA
| |
Collapse
|
5
|
Peng X, Xie AM, Fan HG, Zhu HL, Yang D, Wan DE, He F, Luo C, Li H, Shuang F. The clinical application value of 3.0T magnetic resonance T2 mapping imaging in evaluating the degree of acetabular cartilage degeneration in joint replacement surgery running title: MRI and acetabular cartilage degeneration. J Orthop Surg Res 2024; 19:414. [PMID: 39030606 PMCID: PMC11264721 DOI: 10.1186/s13018-024-04898-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Accepted: 07/03/2024] [Indexed: 07/21/2024] Open
Abstract
BACKGROUND To explore and compare the values of 3.0T magnetic resonance imaging (MRI) T2 mapping in evaluating the degree of acetabular cartilage degeneration in hip replacement surgery. METHODS A total of 26 elderly patients with femoral neck fractures who were scanned in 3.0T MRI T2 mapping quantification technique were included. Basing on MRI images, the degree of acetabular cartilage degeneration was classified into Grade 0, 1, 2, 3 and 4, according to the International Cartilage Repair Society (ICRS) scores. In addition, 8 healthy volunteers were included for control group. RESULTS By comparison with health population, T2 relaxation values in the anterior, superior, and posterior regions of acetabular cartilage in patients with femoral neck fracture were obviously increased (P < 0.001). Among the patients with femoral neck fractures, there were 16 hip joint with Grade 1-2 (mild degeneration subgroup) and 10 hip joints with Grade 3-4 (severe degeneration subgroup), accounting for 61.54% and 38.46%, respectively. Additionally, T2 relaxation values in the anterior and superior bands of articular cartilage were positively related to the MRI-based grading (P < 0.05); while there was no significant difference of T2 relaxation values in the posterior areas of articular cartilage between severe degeneration subgroup and mild degeneration subgroup (P > 0.05). Importantly, acetabular cartilage degeneration can be detected through signal changes of T2 mapping pseudo-color images. CONCLUSION 3.0T MRI T2 mapping technology can be used to determine the degree of acetabular cartilage degeneration, which can effectively monitor the disease course.
Collapse
Affiliation(s)
- Xiang Peng
- Department of Orthopedics, The 908th Hospital of Chinese People's Liberation Army Joint Logistics Support Force, No.1028 Jinggangshan Street, Qingyunpu District, Nanchang, 330002, Jiangxi Province, China
| | - An-Min Xie
- Department of Diagnostic Radiology, The 908th Hospital of Chinese People's Liberation Army Joint Logistics Support Force, Nanchang, 330002, Jiangxi Province, China
| | - Hua-Gang Fan
- Department of Diagnostic Radiology, The 908th Hospital of Chinese People's Liberation Army Joint Logistics Support Force, Nanchang, 330002, Jiangxi Province, China
| | - Hong-Liang Zhu
- Department of Orthopedics, The 908th Hospital of Chinese People's Liberation Army Joint Logistics Support Force, No.1028 Jinggangshan Street, Qingyunpu District, Nanchang, 330002, Jiangxi Province, China
| | - Di Yang
- Department of Orthopedics, The 908th Hospital of Chinese People's Liberation Army Joint Logistics Support Force, No.1028 Jinggangshan Street, Qingyunpu District, Nanchang, 330002, Jiangxi Province, China
| | - De-En Wan
- Department of Orthopedics, The 908th Hospital of Chinese People's Liberation Army Joint Logistics Support Force, No.1028 Jinggangshan Street, Qingyunpu District, Nanchang, 330002, Jiangxi Province, China
| | - Fei He
- Department of Quality Management, The 908th Hospital of Chinese People's Liberation Army Joint Logistics Support Force, Nanchang, 330002, Jiangxi Province, China
| | - Chong Luo
- Department of Orthopedics, The 908th Hospital of Chinese People's Liberation Army Joint Logistics Support Force, No.1028 Jinggangshan Street, Qingyunpu District, Nanchang, 330002, Jiangxi Province, China
| | - Hao Li
- Department of Orthopedics, The 908th Hospital of Chinese People's Liberation Army Joint Logistics Support Force, No.1028 Jinggangshan Street, Qingyunpu District, Nanchang, 330002, Jiangxi Province, China.
| | - Feng Shuang
- Department of Orthopedics, The 908th Hospital of Chinese People's Liberation Army Joint Logistics Support Force, No.1028 Jinggangshan Street, Qingyunpu District, Nanchang, 330002, Jiangxi Province, China.
| |
Collapse
|
6
|
Markhardt BK, Hund S, Rosas HG, Symanski JS, Mao L, Spiker AM, Blankenbaker DG. Comparison of MRI and arthroscopy findings for transitional zone cartilage damage in the acetabulum of the hip joint. Skeletal Radiol 2024; 53:1303-1312. [PMID: 38225402 DOI: 10.1007/s00256-024-04563-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Revised: 12/07/2023] [Accepted: 12/26/2023] [Indexed: 01/17/2024]
Abstract
OBJECTIVE To assess the performance of morphologic and hypointense signal changes on MRI to predict grades and types of acetabular cartilage damage in the chondrolabral transitional zone (TZ) of the hip identified at arthroscopy. MATERIALS AND METHODS This retrospective single-center study reviewed conventional 3T MRI hip studies from individuals with symptomatic femoroacetabular impingement (FAI) and subsequent hip arthroscopy surgery within 6 months. Independent review was made by three radiologists for the presence of morphologic damage or a hypointense signal lesion in the TZ on MRI. Fleiss' kappa statistic was used to assess inter-reader agreement. The degree of TZ surfacing damage (modified Outerbridge grades 1-4) and presence of non-surfacing wave sign at arthroscopic surgery were collected. Relationship between sensitivity and lesion grade was examined. RESULTS One hundred thirty-six MRI hip studies from 40 males and 74 females were included (mean age 28.5 years, age range 13-54 years). MRI morphologic lesions had a sensitivity of 64.9-71.6% and specificity of 48.4-67.7% for arthroscopic surfacing lesions, with greater sensitivity seen for higher grade lesions. Low sensitivity was seen for wave sign lesions (34.5-51.7%). MRI hypointense signal lesions had a sensitivity of 26.3-62% and specificity of 43.8-78.0% for any lesion. Inter-reader agreement was moderate for morphologic lesions (k = 0.601) and poor for hypointense signal lesions (k = 0.097). CONCLUSION Morphologic cartilage damage in the TZ on MRI had moderate sensitivity for any cartilage lesion, better sensitivity for higher grade lesions, and poor sensitivity for wave sign lesions. The diagnostic value of hypointense signal lesions was uncertain.
Collapse
Affiliation(s)
- B Keegan Markhardt
- Department of Radiology, Musculoskeletal Imaging and Intervention, University of Wisconsin-Madison, Madison, WI, USA.
| | - Samuel Hund
- Department of Radiology, Musculoskeletal Section, University of Kansas Medical Center, Kansas City, KS, USA
| | - Humberto G Rosas
- Department of Radiology, Musculoskeletal Imaging and Intervention, University of Wisconsin-Madison, Madison, WI, USA
| | - John S Symanski
- Department of Radiology, Musculoskeletal Imaging and Intervention, University of Wisconsin-Madison, Madison, WI, USA
| | - Lu Mao
- Departments of Biostatistics and Medical Informatics, University of Wisconsin-Madison, Madison, WI, USA
| | - Andrea M Spiker
- Department of Orthopedic Surgery, University of Wisconsin-Madison, Madison, WI, USA
| | - Donna G Blankenbaker
- Department of Radiology, Musculoskeletal Imaging and Intervention, University of Wisconsin-Madison, Madison, WI, USA
| |
Collapse
|
7
|
Qiuling L, Qilin Y, Cheng Y, Minping Z, Kangning W, Enhua X. The application of a novel platform of multiparametric magnetic resonance imaging in a bioenvironmental toxic carbon tetrachloride-induced mouse model of liver fibrosis. ENVIRONMENTAL RESEARCH 2023; 238:117130. [PMID: 37709246 DOI: 10.1016/j.envres.2023.117130] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Revised: 09/04/2023] [Accepted: 09/12/2023] [Indexed: 09/16/2023]
Abstract
The use of multiparametric magnetic resonance imaging (MRI) to distinguish complex histopathological changes in liver fibrosis has not yet been systematically established. The purpose of this study is to gauge the efficacy of a cutting-edge MRI platform for evaluating ecotoxicologically hazardous carbon tetrachloride (CCl4) induced liver fibrosis, while also scrutinizing the relationship between MRI and its histopathological features. Thirty-six mice were randomly divided into 6 groups, each with 6 mice. Control mice received an intraperitoneal injection of olive oil, while the experimental mice received different doses of intraperitoneal injection of CCl4. Both sets underwent this process twice per week over a duration of 5 weeks. MRI measurements encompassed T1WI, T2WI, T1 mapping, T2 mapping, T2* mapping. Liver fibrosis and inflammation were assessed and classified using Metavir and activity scoring systems. CCl4 successfully induced liver fibrosis in mice, showing an increasing extent of liver fibrosis and liver function damage with the increasing dosage of CCl4. Compared with the control group, T1, ΔT1, and T2 in the experimental group were considerably elevated (P < 0.05) than those in the control group. Spearman's correlation showed that the correlation of Native T1 and △T1 with fibrosis (r = 0.712, 0.678) was better than with inflammation (r = 0.688, 0.536). T2 correlation with inflammation (r = 0.803) was superior to fibrosis (r = 0.568). ROC analysis showed that the AUC of Native T1 was highest (0.906), followed by ΔT1 (0.852), while the AUC increased to 0.945 when all relevant MRI parameters were combined. T1 is the most potent MRI parameter for evaluating CCl4-induced liver fibrosis, followed by ΔT1. Meanwhile, T2 may not be suitable for evaluating liver fibrosis but is more suitable for evaluating liver inflammation.
Collapse
Affiliation(s)
- Liao Qiuling
- Department of Radiology, The Second Xiangya Hospital of Central South University, Changsha City, Hunan Province, 410011, China
| | - Yu Qilin
- Department of Radiology, The Second Xiangya Hospital of Central South University, Changsha City, Hunan Province, 410011, China
| | - Yu Cheng
- Department of Radiology, The Second Xiangya Hospital of Central South University, Changsha City, Hunan Province, 410011, China
| | - Zhang Minping
- Department of Radiology, The Second Xiangya Hospital of Central South University, Changsha City, Hunan Province, 410011, China
| | - Wang Kangning
- Department of Urology Surgery, Xiangya Hospital Central South University, Changsha City, Hunan Province, 410008, China.
| | - Xiao Enhua
- Department of Radiology, The Second Xiangya Hospital of Central South University, Changsha City, Hunan Province, 410011, China.
| |
Collapse
|
8
|
Tourais J, Ploem T, van Zadelhoff TA, van de Steeg-Henzen C, Oei EHG, Weingartner S. Rapid Whole-Knee Quantification of Cartilage Using T 1, T 2*, and T RAFF2 Mapping With Magnetic Resonance Fingerprinting. IEEE Trans Biomed Eng 2023; 70:3197-3205. [PMID: 37227911 DOI: 10.1109/tbme.2023.3280115] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
OBJECTIVE Quantitative Magnetic Resonance Imaging (MRI) holds great promise for the early detection of cartilage deterioration. Here, a Magnetic Resonance Fingerprinting (MRF) framework is proposed for comprehensive and rapid quantification of T1, T2*, and TRAFF2 with whole-knee coverage. METHODS A MRF framework was developed to achieve quantification of Relaxation Along a Fictitious Field in the 2nd rotating frame of reference ( TRAFF2) along with T1 and T2*. The proposed sequence acquires 65 measurements of 25 high-resolution slices, interleaved with 7 inversion pulses and 40 RAFF2 trains, for whole-knee quantification in a total acquisition time of 3:25 min. Comparison with reference T1, T2*, and TRAFF2 methods was performed in phantom and in seven healthy subjects at 3 T. Repeatability (test-retest) with and without repositioning was also assessed. RESULTS Phantom measurements resulted in good agreement between MRF and the reference with mean biases of -54, 2, and 5 ms for T1, T2*, and TRAFF2, respectively. Complete characterization of the whole-knee cartilage was achieved for all subjects, and, for the femoral and tibial compartments, a good agreement between MRF and reference measurements was obtained. Across all subjects, the proposed MRF method yielded acceptable repeatability without repositioning ( R2 ≥ 0.94) and with repositioning ( R2 ≥ 0.57) for T1, T2*, and TRAFF2. SIGNIFICANCE The short scan time combined with the whole-knee coverage makes the proposed MRF framework a promising candidate for the early assessment of cartilage degeneration with quantitative MRI, but further research may be warranted to improve repeatability after repositioning and assess clinical value in patients.
Collapse
|
9
|
Frenken M, Radke KL, Schäfer ELE, Valentin B, Wilms LM, Abrar DB, Nebelung S, Martirosian P, Wittsack HJ, Müller-Lutz A. Insights into the Age Dependency of Compositional MR Biomarkers Quantifying the Health Status of Cartilage in Metacarpophalangeal Joints. Diagnostics (Basel) 2023; 13:diagnostics13101746. [PMID: 37238230 DOI: 10.3390/diagnostics13101746] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Revised: 05/10/2023] [Accepted: 05/12/2023] [Indexed: 05/28/2023] Open
Abstract
(1) Background: We aim to investigate age-related changes in cartilage structure and composition in the metacarpophalangeal (MCP) joints using magnetic resonance (MR) biomarkers. (2) Methods: The cartilage tissue of 90 MCP joints from 30 volunteers without any signs of destruction or inflammation was examined using T1, T2, and T1ρ compositional MR imaging techniques on a 3 Tesla clinical scanner and correlated with age. (3) Results: The T1ρ and T2 relaxation times showed a significant correlation with age (T1ρ: Kendall-τ-b = 0.3, p < 0.001; T2: Kendall-τ-b = 0.2, p = 0.01). No significant correlation was observed for T1 as a function of age (T1: Kendall-τ-b = 0.12, p = 0.13). (4) Conclusions: Our data show an increase in T1ρ and T2 relaxation times with age. We hypothesize that this increase is due to age-related changes in cartilage structure and composition. In future examinations of cartilage using compositional MRI, especially T1ρ and T2 techniques, e.g., in patients with osteoarthritis or rheumatoid arthritis, the age of the patients should be taken into account.
Collapse
Affiliation(s)
- Miriam Frenken
- Department of Diagnostic and Interventional Radiology, Medical Faculty, University Hospital of Dusseldorf, D-40225 Dusseldorf, Germany
| | - Karl Ludger Radke
- Department of Diagnostic and Interventional Radiology, Medical Faculty, University Hospital of Dusseldorf, D-40225 Dusseldorf, Germany
| | - Emilia Louisa Ernestine Schäfer
- Department of Diagnostic and Interventional Radiology, Medical Faculty, University Hospital of Dusseldorf, D-40225 Dusseldorf, Germany
| | - Birte Valentin
- Department of Diagnostic and Interventional Radiology, Medical Faculty, University Hospital of Dusseldorf, D-40225 Dusseldorf, Germany
| | - Lena Marie Wilms
- Department of Diagnostic and Interventional Radiology, Medical Faculty, University Hospital of Dusseldorf, D-40225 Dusseldorf, Germany
- Department of Orthopedics and Trauma Surgery, Medical Faculty, University Hospital of Dusseldorf, D-40225 Dusseldorf, Germany
| | - Daniel Benjamin Abrar
- Department of Diagnostic and Interventional Radiology, Medical Faculty, University Hospital of Dusseldorf, D-40225 Dusseldorf, Germany
| | - Sven Nebelung
- Department of Diagnostic and Interventional Radiology, Medical Faculty, University Hospital of Dusseldorf, D-40225 Dusseldorf, Germany
- Department of Diagnostic and Interventional Radiology, University Hospital Aachen, D-52074 Aachen, Germany
| | - Petros Martirosian
- Department of Diagnostic and Interventional Radiology, Medical Faculty, University Hospital of Tübingen, D-72076 Tübingen, Germany
| | - Hans-Jörg Wittsack
- Department of Diagnostic and Interventional Radiology, Medical Faculty, University Hospital of Dusseldorf, D-40225 Dusseldorf, Germany
| | - Anja Müller-Lutz
- Department of Diagnostic and Interventional Radiology, Medical Faculty, University Hospital of Dusseldorf, D-40225 Dusseldorf, Germany
| |
Collapse
|