1
|
Durdu S, Caglar Y, Ozcan K, Saka ET. Antibacterial and surface properties of post-light-activated metal-free phthalocyanine-deposited TiO 2 nanotube smart surfaces. Dalton Trans 2025. [PMID: 39831820 DOI: 10.1039/d4dt03192j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2025]
Abstract
The utilisation of implantable medical devices has become safer and more prevalent since the establishment of sterilisation methods and techniques a century ago. Nevertheless, device-associated infections remain a significant and growing concern, particularly in light of the continued rise in the number of medical device implantations. This underscores the imperative for the development of efficacious prevention and treatment strategies for device-associated infections, as well as further investigation into the design of innovative antibacterial surfaces for medical device applications. The motivation of this work is to investigate the post-light-activated antibacterial photosensitive surfaces fabricated on medical titanium (Ti) surfaces. Thus, in this work, metal-free phthalocyanine (H2Pc)-deposited TiO2 nanotube (TNT) array smart photosensitive surfaces were fabricated on titanium (Ti) surfaces for medical device applications. First, well-ordered nanotube surfaces were produced on titanium using an anodic oxidation (AO) process. Then, H2Pc was accumulated onto TNT surfaces using a physical vapour deposition (PVD-TE) process. H2Pc-deposited TNT surfaces were fabricated on Ti substrates by combining AO and physical vapour deposition (PVD-TE) processes in this work for the first time in the literature. H2Pc was largely coated onto TNT arrays and exhibited elemental homogeneity throughout the whole surface. The contact angle of H2Pc-deposited TNT surfaces was about 89° whereas other Ti and TNT surfaces demonstrated hydrophilic characteristics. Therefore, they exhibited remarkable hydrophobic behavior in terms of antibacterial properties. Importantly, compared to Ti and TNT surfaces, the bacterial inhibition on sunlight-activated H2Pc-deposited TNT surfaces was 94.9% for S. aureus and 97.3% for E. coli, respectively. According to these results, H2Pc-deposited TNT innovative surfaces provided superior antibacterial activity post-light-activation under sunlight due to their photosensitive character.
Collapse
Affiliation(s)
- Salih Durdu
- The Department of Industrial Engineering, Giresun University, 28200, Giresun, Turkey.
- The Department of Genetics and Bioengineering, Giresun University, 28200, Giresun, Turkey
| | - Yasemin Caglar
- The Department of Genetics and Bioengineering, Giresun University, 28200, Giresun, Turkey
| | - Kadriye Ozcan
- The Department of Genetics and Bioengineering, Giresun University, 28200, Giresun, Turkey
| | - Ece Tugba Saka
- The Department of Chemistry, Karadeniz Technical University, 61080, Trabzon, Turkey.
| |
Collapse
|
2
|
Bakitian FA. A Comprehensive Review of the Contemporary Methods for Enhancing Osseointegration and the Antimicrobial Properties of Titanium Dental Implants. Cureus 2024; 16:e68720. [PMID: 39238921 PMCID: PMC11376426 DOI: 10.7759/cureus.68720] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/05/2024] [Indexed: 09/07/2024] Open
Abstract
Titanium dental implants with various restorative options are popular for replacing missing teeth due to their comfortable fit, excellent stability, natural appearance, and impressive track record in clinical settings. However, challenges such as potential issues with osseointegration, peri-implant bone loss, and peri-implantitis might lead to implant failure, causing concern for patients and dental staff. Surface modification has the potential to significantly enhance the success rate of titanium implants and meet the needs of clinical applications. This involves the application of various physical, chemical, and bioactive coatings, as well as adjustments to implant surface topography, offering significant potential for enhancing implant outcomes in terms of osseointegration and antimicrobial properties. Many surface modification methods have been employed to improve titanium implants, showcasing the diversity of approaches in this field including sandblasting, acid etching, plasma spraying, plasma immersion ion implantation, physical vapor deposition, electrophoretic deposition, electrochemical deposition, anodization, microarc oxidation, laser treatments, sol-gel method, layer-by-layer self-assembly technology, and the adsorption of biomolecules. This article provides a comprehensive overview of the surface modification methods for titanium implants to address issues with insufficient osseointegration and implant-related infections. It encompasses the physical, chemical, and biological aspects of these methods to provide researchers and dental professionals with a robust resource to aid them in their study and practical use of dental implant materials, ensuring they are thoroughly knowledgeable and well-prepared for their endeavors.
Collapse
Affiliation(s)
- Fahad A Bakitian
- Department of Restorative Dentistry, Faculty of Dental Medicine, Umm Al-Qura University, Makkah, SAU
| |
Collapse
|
3
|
Wang W, Liu H, Guo Z, Hu Z, Wang K, Leng Y, Yuan C, Li Z, Ge X. Various Antibacterial Strategies Utilizing Titanium Dioxide Nanotubes Prepared via Electrochemical Anodization Biofabrication Method. Biomimetics (Basel) 2024; 9:408. [PMID: 39056849 PMCID: PMC11274689 DOI: 10.3390/biomimetics9070408] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Revised: 06/17/2024] [Accepted: 06/19/2024] [Indexed: 07/28/2024] Open
Abstract
Currently, titanium and its alloys have emerged as the predominant metallic biomaterials for orthopedic implants. Nonetheless, the relatively high post-operative infection rate (2-5%) exacerbates patient discomfort and imposes significant economic costs on society. Hence, urgent measures are needed to enhance the antibacterial properties of titanium and titanium alloy implants. The titanium dioxide nanotube array (TNTA) is gaining increasing attention due to its topographical and photocatalytic antibacterial properties. Moreover, the pores within TNTA serve as excellent carriers for chemical ion doping and drug loading. The fabrication of TNTA on the surface of titanium and its alloys can be achieved through various methods. Studies have demonstrated that the electrochemical anodization method offers numerous significant advantages, such as simplicity, cost-effectiveness, and controllability. This review presents the development process of the electrochemical anodization method and its applications in synthesizing TNTA. Additionally, this article systematically discusses topographical, chemical, drug delivery, and combined antibacterial strategies. It is widely acknowledged that implants should possess a range of favorable biological characteristics. Clearly, addressing multiple needs with a single antibacterial strategy is challenging. Hence, this review proposes systematic research into combined antibacterial strategies to further mitigate post-operative infection risks and enhance implant success rates in the future.
Collapse
Affiliation(s)
- Wuzhi Wang
- Key Laboratory of Mechanism Theory and Equipment Design of Ministry of Education, School of Mechanical Engineering, Tianjin University, Tianjin 300354, China
| | - Hanpeng Liu
- Tianjin Key Laboratory of Composite and Functional Materials, School of Materials Science and Engineering, Tianjin University, Tianjin 300072, China
| | - Zilin Guo
- Key Laboratory of Mechanism Theory and Equipment Design of Ministry of Education, School of Mechanical Engineering, Tianjin University, Tianjin 300354, China
| | - Zijun Hu
- School of Mechanical Engineering, Hebei University of Technology, Tianjin 300401, China
| | - Kefeng Wang
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu 610064, China
| | - Yujia Leng
- School of Precision Instrument and Opto-Electronics Engineering, Tianjin University, Tianjin 300072, China
| | - Caideng Yuan
- School of Chemical Engineering and Technology, Tianjin University, Tianjin 300350, China
| | - Zhaoyang Li
- Tianjin Key Laboratory of Composite and Functional Materials, School of Materials Science and Engineering, Tianjin University, Tianjin 300072, China
| | - Xiang Ge
- Key Laboratory of Mechanism Theory and Equipment Design of Ministry of Education, School of Mechanical Engineering, Tianjin University, Tianjin 300354, China
| |
Collapse
|
4
|
Zeng ZP, Lai CR, Zheng WJ. Ag 2 O-TiO 2 -NTs enhance osteogenic activity in vitro by modulating TNF-α/β-catenin signaling in bone marrow-derived mesenchymal stem cells. Chem Biol Drug Des 2024; 103:e14501. [PMID: 38453253 DOI: 10.1111/cbdd.14501] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Revised: 01/19/2024] [Accepted: 02/26/2024] [Indexed: 03/09/2024]
Abstract
The toxic effects of nanoparticles-silver oxide (Ag2 O) limited its use. However, loading Ag2 O nanoparticles into titanium dioxide (TiO2 ) nanotubes (Ag2 O-TiO2 -NTs) has more efficient biological activity and safety. The aim of this study was to observe the effect of Ag2 O-TiO2 -NTs on osteogenic differentiation of bone marrow-derived mesenchymal stem cells (BMSCs) and its mechanism. The enzyme activity of lactate dehydrogenase (LDH) and the expression of RUNX family transcription factor 2 (Runx2), OPN, OCN in BMSCs were detected by quantitative real time polymerase chain reaction. At 14 days of induction, the mineralization ability and alkaline phosphatase (ALP) activity of cells in each group were observed by Alizarin Red S staining and ALP staining. In addition, the protein levels of tumor necrosis factor-α (TNF-α) and β-catenin in BMSCs of each group were observed by western blot. After 14 days of the induction, the mineralization ability and ALP activity of BMSCs in the Ag2 O-TiO2 -NTs group were significantly enhanced compared with those in the Ag2 O and TiO2 groups. Western blot analysis showed that the BMSCs in the Ag2 O-TiO2 -NTs group exhibited much lower protein level of TNF-α and higher protein level of β-catenin than those in the Ag2 O and TiO2 groups.Ag2 O-TiO2 -NTs enhance the osteogenic activity of BMSCs by modulating TNF-α/β-catenin signaling.
Collapse
Affiliation(s)
- Zhan-Peng Zeng
- Department IV of Orthopedics, Panyu Hospital of Traditional Chinese Medicine, Guangzhou, China
| | - Chang-Rong Lai
- Department IV of Orthopedics, Panyu Hospital of Traditional Chinese Medicine, Guangzhou, China
- Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Wei-Jie Zheng
- Department IV of Orthopedics, Panyu Hospital of Traditional Chinese Medicine, Guangzhou, China
| |
Collapse
|
5
|
Durdu S, Sivlin D, Ozcan K, Kalkan S, Keles O, Usta M. Surface characterization and antibacterial efficiency of well-ordered TiO 2 nanotube surfaces fabricated on titanium foams. Sci Rep 2024; 14:618. [PMID: 38182771 PMCID: PMC10770057 DOI: 10.1038/s41598-024-51339-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Accepted: 01/03/2024] [Indexed: 01/07/2024] Open
Abstract
Titanium (Ti)-based implants are not compatible enough due to their bio-inert character, insufficient antibacterial capabilities and stress-shielding problem for dental and orthopaedic implant applications. Thus, this work focused to fabricate, analyze and improve antibacterial properties titanium dioxide (TiO2) nanotube array surfaces on Ti foam by anodic oxidation (AO) process. The well-ordered nanotube arrays with approximately 75 nm were successfully fabricated at 40 V for 1 h on Ti foams. Ti and O were observed as major elements on AO-coated Ti foam surfaces. In addition, the existence of TiO2 structure was proved on AO-coated foam Ti surfaces. For potential dental and orthopedic implant application, in vitro antibacterial properties were investigated versus Staphylococcus aureus and Escherichia coli. For both bacteria, antibacterial properties of TiO2 nanotube surface were greater than bare Ti foam. The bacterial inhibition versus Staphylococcus aureus and Escherichia coli of TiO2 nanotube surfaces are improved as 53.3% and 69.4% compared to bare Ti foam.
Collapse
Affiliation(s)
- Salih Durdu
- Department of Industrial Engineering, Engineering Faculty, Giresun University, 28200, Giresun, Turkey.
| | - Dila Sivlin
- Department of Materials and Metallurgical Engineering, Istanbul Technical University, 34469, Istanbul, Turkey
| | - Kadriye Ozcan
- Department of Genetics and Bioengineering, Giresun University, 28200, Giresun, Turkey
| | - Selin Kalkan
- Department of Bioprocess Engineering, Giresun University, 28200, Giresun, Turkey
| | - Ozgul Keles
- Department of Materials and Metallurgical Engineering, Istanbul Technical University, 34469, Istanbul, Turkey.
| | - Metin Usta
- Department of Materials Science and Engineering, Gebze Technical University, 41400, Gebze/Kocaeli, Turkey.
- Aluminum Research Center (GTU-AAUM), Gebze Technical University, 41400, Gebze, Turkey.
| |
Collapse
|
6
|
Durdu S, Cihan G, Yalcin E, Cavusoglu K, Altinkok A, Sagcan H, Yurtsever İ, Usta M. Surface characterization, electrochemical properties and in vitro biological properties of Zn-deposited TiO 2 nanotube surfaces. Sci Rep 2023; 13:11423. [PMID: 37452093 PMCID: PMC10349054 DOI: 10.1038/s41598-023-38733-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Accepted: 07/13/2023] [Indexed: 07/18/2023] Open
Abstract
In this work, to improve antibacterial, biocompatible and bioactive properties of commercial pure titanium (cp-Ti) for implant applications, the Zn-deposited nanotube surfaces were fabricated on cp-Ti by using combined anodic oxidation (AO) and physical vapor deposition (PVD-TE) methods. Homogenous elemental distributions were observed through all surfaces. Moreover, Zn-deposited surfaces exhibited hydrophobic character while bare Ti surfaces were hydrophilic. Due to the biodegradable behavior of Zn on the nanotube surface, Zn-deposited nanotube surfaces showed higher corrosion current density than bare cp-Ti surface in SBF conditions as expected. In vitro biological properties such as cell viability, ALP activity, protein adsorption, hemolytic activity and antibacterial activity for Gram-positive and Gram-negative bacteria of all surfaces were investigated in detail. Cell viability, ALP activity and antibacterial properties of Zn-deposited nanotube surfaces were significantly improved with respect to bare cp-Ti. Moreover, hemolytic activity and protein adsorption of Zn-deposited nanotube surfaces were decreased. According to these results; a bioactive, biocompatible and antibacterial Zn-deposited nanotube surfaces produced on cp-Ti by using combined AO and PVD techniques can have potential for orthopedic and dental implant applications.
Collapse
Affiliation(s)
- Salih Durdu
- Industrial Engineering, Faculty of Engineering, Giresun University, Merkez, 28200, Giresun, Turkey.
- Mechanical Engineering, Giresun University, 28200, Giresun, Turkey.
| | - Gizem Cihan
- Department of Biology, Giresun University, 28200, Giresun, Turkey
| | - Emine Yalcin
- Department of Biology, Giresun University, 28200, Giresun, Turkey
| | | | - Atilgan Altinkok
- Turkish Naval Academy, National Defence University, 34940, Istanbul, Turkey
| | - Hasan Sagcan
- Department of Medical Laboratory Techniques, Istanbul Medipol University, Istanbul, Turkey
| | - İlknur Yurtsever
- Department of Medical Laboratory Techniques, Istanbul Medipol University, Istanbul, Turkey
- Pharmacology and Toxicology Department, Boonshoft School of Medicine Ohio, Wright State University, Dayton, USA
| | - Metin Usta
- Materials Science and Engineering, Gebze Technical University, 41400, Gebze, Turkey
- Aluminum Research Center (GTU-AAUM), Gebze Technical University, 41400, Gebze, Turkey
| |
Collapse
|