1
|
Ogasawara K, Sano R, Kominato Y. Review of ABO Expression and Variations based on Transcriptional Regulation of the ABO Blood Group Gene. Transfus Med Hemother 2024; 51:210-224. [PMID: 39135854 PMCID: PMC11318969 DOI: 10.1159/000536556] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Accepted: 01/29/2024] [Indexed: 08/15/2024] Open
Abstract
Background and Summary We review the transcriptional regulation of ABO expression and discuss variants in the promoter and erythroid cell-specific regulatory region in individuals with weak ABO phenotypes such as Bm, Am, B3, and A3. We also review the molecular mechanisms responsible for variations in ABO expression in development and disease including the cell type-specific expression of ABO during erythroid cell differentiation, and reduction of A- or B-antigens in cancer cells or on red blood cells in patients with leukemia. Although the relationship between ABO blood group antigens and diseases has been characterized, the physiological significance of the ABO blood group system remains unclear. Key Messages This review discusses accumulated knowledge of the ABO gene regulation and potential reasons for conservation of ABO during evolution.
Collapse
Affiliation(s)
- Kenichi Ogasawara
- Department of Research and Development, Central Blood Institute, Blood Service Headquarters, Japanese Red Cross Society, Tokyo, Japan
| | - Rie Sano
- Department of Forensic Medicine, Gunma University Graduate School of Medicine, Maebashi, Japan
| | - Yoshihiko Kominato
- Department of Forensic Medicine, Gunma University Graduate School of Medicine, Maebashi, Japan
| |
Collapse
|
2
|
Han JH, Lee H, Kim JK, Yoo J, Park K, Jekarl DW, Kim Y. Clinical significance of decreased or loss of ABO blood group expression in acute myeloid leukaemia: A single-centre retrospective study. Vox Sang 2024; 119:353-362. [PMID: 38245834 DOI: 10.1111/vox.13585] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Revised: 12/12/2023] [Accepted: 12/18/2023] [Indexed: 01/22/2024]
Abstract
BACKGROUND AND OBJECTIVES Decreased or loss of ABO blood group antigen expression has been observed in acute myeloid leukaemia (AML) patients. We studied the clinical significance of this group in AML patients. MATERIALS AND METHODS This was a retrospective, single-centre cohort study in which the data were retrieved from April 2009 to December 2019. A total of 1592 AML patients with normal ABO blood group antigen (Group I) and 65 patients of decreased or loss of ABO blood group antigen (Group II) group were enrolled. Data were collected at the time of initial admission for pathological diagnosis. To interrogate the underlying mechanism, publicly available The Cancer Genome Atlas AML data were downloaded. RESULTS Group II consisted of 3.9% (65/1657) of AML patients. The 90-day survival (D90) probability was higher for Group II with a mean survival of 86.4 days compared to 80.6 days for Group I (p = 0.047). Group II had higher haematocrit (28.6 vs. 27.4%) and lower d-dimer, fibrinogen degradation production and C-reactive protein. Publicly available data revealed that among 11 CpG methylation sites within the ABO gene, 4 sites with elevated methylation level were associated with improved D90 survival probability and demonstrated an inverse correlation with ABO gene expression. Lower expression of the ABO gene showed improved survival trends for D90 (p = 0.058) and 180-day survival (p = 0.072). CONCLUSION AML with decreased expression or loss of ABO blood group showed better early survival during D90. Transfusion support for this subgroup of AML patients should be meticulously performed considering serum typing.
Collapse
Affiliation(s)
- Jay Ho Han
- Department of Laboratory Medicine, Seoul St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul, Korea
| | - Howon Lee
- Department of Laboratory Medicine, Yeouido St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul, Korea
| | - Jae Kwon Kim
- Department of Laboratory Medicine, Seoul St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul, Korea
| | - Jaeeun Yoo
- Department of Laboratory Medicine, Incheon St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul, Korea
| | - Kyuho Park
- Department of Laboratory Medicine, Seoul St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul, Korea
- Department of Laboratory Medicine, Blood Bank Unit, Seoul St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul, Korea
| | - Dong Wook Jekarl
- Department of Laboratory Medicine, Seoul St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul, Korea
- Department of Laboratory Medicine, Blood Bank Unit, Seoul St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul, Korea
- Research and Development Institute for In Vitro Diagnostic Medical Devices, College of Medicine, The Catholic University of Korea, Seoul, Korea
| | - Yonggoo Kim
- Department of Laboratory Medicine, Seoul St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul, Korea
| |
Collapse
|