1
|
Somagattu P, Chinnannan K, Yammanuru H, Reddy UK, Nimmakayala P. Selenium dynamics in plants: Uptake, transport, toxicity, and sustainable management strategies. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 949:175033. [PMID: 39059668 DOI: 10.1016/j.scitotenv.2024.175033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/03/2024] [Revised: 07/22/2024] [Accepted: 07/23/2024] [Indexed: 07/28/2024]
Abstract
Selenium (Se) plays crucial roles in human, animal, and plant physiology, but its varied plant functions remain complex and not fully understood. While Se deficiency affects over a billion people worldwide, excessive Se levels can be toxic, presenting substantial risks to ecosystem health and public safety. The delicate balance between Se's beneficial and harmful effects necessitates a deeper understanding of its speciation dynamics and how different organisms within ecosystems respond to Se. Since humans primarily consume Se through Se-rich foods, exploring Se's behavior, uptake, and transport within agroecosystems is critical to creating effective management strategies. Traditional physicochemical methods for Se remediation are often expensive and potentially harmful to the environment, pushing the need for more sustainable solutions. In recent years, phytotechnologies have gained traction as a promising approach to Se management by harnessing plants' natural abilities to absorb, accumulate, metabolize, and volatilize Se. These strategies range from boosting Se uptake and tolerance in plants to releasing Se as less toxic volatile compounds or utilizing it as a biofortified supplement, opening up diverse possibilities for managing Se, offering sustainable pathways to improve crop nutritional quality, and protecting human health in different environmental contexts. However, closing the gaps in our understanding of Se dynamics within agricultural systems calls for a united front of interdisciplinary collaboration from biology to environmental science, agriculture, and public health, which has a crucial role to play. Phytotechnologies offer a sustainable bridge between Se deficiency and toxicity, but further research is needed to optimize these methods and explore their potential in various agricultural and environmental settings. By shedding light on Se's multifaceted roles and refining management strategies, this review contributes to developing cost-effective and eco-friendly approaches for Se management in agroecosystems. It aims to lead the way toward a healthier and more sustainable future by balancing the need to address Se deficiency and mitigate the risks of Se toxicity.
Collapse
Affiliation(s)
- Prapooja Somagattu
- Department of Biology, Gus R. Douglass Institute, West Virginia State University, Institute, WV 25112, USA
| | - Karthik Chinnannan
- Department of Biology, Gus R. Douglass Institute, West Virginia State University, Institute, WV 25112, USA
| | - Hyndavi Yammanuru
- Department of Biology, Gus R. Douglass Institute, West Virginia State University, Institute, WV 25112, USA
| | - Umesh K Reddy
- Department of Biology, Gus R. Douglass Institute, West Virginia State University, Institute, WV 25112, USA
| | - Padma Nimmakayala
- Department of Biology, Gus R. Douglass Institute, West Virginia State University, Institute, WV 25112, USA.
| |
Collapse
|
2
|
Tong M, Zhai K, Duan Y, Xia W, Zhao B, Zhang L, Chu J, Yao X. Selenium alleviates the adverse effects of microplastics on kale by regulating photosynthesis, redox homeostasis, secondary metabolism and hormones. Food Chem 2024; 450:139349. [PMID: 38631205 DOI: 10.1016/j.foodchem.2024.139349] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Revised: 03/25/2024] [Accepted: 04/10/2024] [Indexed: 04/19/2024]
Abstract
Kale is a functional food with anti-cancer, antioxidant, and anemia prevention properties. The harmful effects of the emerging pollutant microplastic (MP) on plants have been widely studied, but there is limited research how to mitigate MP damage on plants. Numerous studies have shown that Se is involved in regulating plant resistance to abiotic stresses. The paper investigated impact of MP and Se on kale growth, photosynthesis, reactive oxygen species (ROS) metabolism, phytochemicals, and endogenous hormones. Results revealed that MP triggered a ROS burst, which led to breakdown of antioxidant system in kale, and had significant toxic effects on photosynthetic system, biomass, and accumulation of secondary metabolites, as well as a significant decrease in IAA and a significant increase in GA. Under MP supply, Se mitigated the adverse effects of MP on kale by increasing photosynthetic pigment content, stimulating function of antioxidant system, enhancing secondary metabolite synthesis, and modulating hormonal networks.
Collapse
Affiliation(s)
- Mengting Tong
- School of Life Sciences, Hebei University, Baoding 071002, China
| | - Kuizhi Zhai
- School of Life Sciences, Hebei University, Baoding 071002, China
| | - Yusui Duan
- School of Life Sciences, Hebei University, Baoding 071002, China
| | - Wansheng Xia
- School of Life Sciences, Hebei University, Baoding 071002, China
| | - Bingnan Zhao
- School of Life Sciences, Hebei University, Baoding 071002, China
| | - Lulu Zhang
- School of Life Sciences, Hebei University, Baoding 071002, China
| | - Jianzhou Chu
- School of Life Sciences, Hebei University, Baoding 071002, China.
| | - Xiaoqin Yao
- School of Life Sciences, Hebei University, Baoding 071002, China; Institute of Life Sciences and Green Development, Hebei University, Baoding 071002, China; Key Laboratory of Microbial Diversity Research and Application of Hebei Province, Baoding 071002, China.
| |
Collapse
|
3
|
Jia Y, Chen L, Kang L, Fu X, Zheng S, Wu Y, Wu T, Cai R, Wan X, Wang P, Yin X, Pan C. Nano-Selenium and Glutathione Enhance Cucumber Resistance to Botrytis cinerea by Promoting Jasmonic Acid-Mediated Cucurbitacin Biosynthesis. ACS NANO 2024. [PMID: 39047071 DOI: 10.1021/acsnano.4c05827] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/27/2024]
Abstract
Nano-selenium (Nano-Se), as a biological stimulant, promotes plant growth and development, as well as defense against biotic and abiotic stresses. Glutathione (GSH) is a crucial antioxidant and is also involved in the plant defense response to various stresses. In this study, the efficacy of combined treatment of Nano-Se and GSH (SeG) on the resistance of cucumber plants to Botrytis cinerea was investigated in terms of the plant phenotype, gene expression, and levels of accumulated metabolites using transcriptomic and metabolomic analyses. The exogenous application of SeG significantly enhanced plant growth and increased photosynthetic pigment contents and capacity. Notably, B. cinerea infection was reduced markedly by 41.9% after SeG treatment. At the molecular level, the SeG treatment activated the alpha-linolenic acid metabolic pathway and upregulated the expression of genes responsible for jasmonic acid (JA) synthesis, including LOX (210%), LOX4 (430%), AOS1 (100%), and AOC2 (120%), therefore promoting JA accumulation in cucumber. Intriguingly, the level of cucurbitacin, an important phytoalexin in cucurbitaceous plants, was found to be increased in SeG-treated cucumber plants, as was the expression of cucurbitacin biosynthesis-related genes OSC (107.5%), P450 (440.8%,31.6%), and ACT (414.0%). These genes were also upregulated by JA treatment, suggesting that JA may be an upstream regulator of cucurbitacin biosynthesis. Taken together, this study demonstrated that pretreatment of cucumber plants with SeG could activate the JA signaling pathway and promote cucurbitacin biosynthesis to enhance the resistance of the plants to B. cinerea infection. The findings also indicate that SeG is a promising biostimulant for protecting cucumber plants from B. cinerea infection without growth loss.
Collapse
Affiliation(s)
- Yujiao Jia
- Innovation Center of Pesticide Research, Department of Applied Chemistry, College of Science, China Agricultural University, Beijing 100193, China
- Key Laboratory of National Forestry and Grassland Administration on Pest Chemical Control, China Agricultural University, Beijing 100193, China
| | - Lanqi Chen
- Innovation Center of Pesticide Research, Department of Applied Chemistry, College of Science, China Agricultural University, Beijing 100193, China
- Key Laboratory of National Forestry and Grassland Administration on Pest Chemical Control, China Agricultural University, Beijing 100193, China
| | - Lu Kang
- Institute of Agricultural Quality Standards and Testing Technology, Xinjiang Academy of Agricultural Sciences, Urumqi 830091, China
| | - Xiaorui Fu
- Innovation Center of Pesticide Research, Department of Applied Chemistry, College of Science, China Agricultural University, Beijing 100193, China
- Key Laboratory of National Forestry and Grassland Administration on Pest Chemical Control, China Agricultural University, Beijing 100193, China
| | - Shuyang Zheng
- Innovation Center of Pesticide Research, Department of Applied Chemistry, College of Science, China Agricultural University, Beijing 100193, China
- Key Laboratory of National Forestry and Grassland Administration on Pest Chemical Control, China Agricultural University, Beijing 100193, China
| | - Yangliu Wu
- School of Biological Science and Technology, University of Jinan, Jinan 250022, China
| | - Tong Wu
- Innovation Center of Pesticide Research, Department of Applied Chemistry, College of Science, China Agricultural University, Beijing 100193, China
- Key Laboratory of National Forestry and Grassland Administration on Pest Chemical Control, China Agricultural University, Beijing 100193, China
| | - Runze Cai
- Innovation Center of Pesticide Research, Department of Applied Chemistry, College of Science, China Agricultural University, Beijing 100193, China
- Key Laboratory of National Forestry and Grassland Administration on Pest Chemical Control, China Agricultural University, Beijing 100193, China
| | - Xiaoying Wan
- Innovation Center of Pesticide Research, Department of Applied Chemistry, College of Science, China Agricultural University, Beijing 100193, China
- Key Laboratory of National Forestry and Grassland Administration on Pest Chemical Control, China Agricultural University, Beijing 100193, China
| | - Ping Wang
- Innovation Center of Pesticide Research, Department of Applied Chemistry, College of Science, China Agricultural University, Beijing 100193, China
| | - Xuebin Yin
- Anhui Province Key Laboratory of Functional Agriculture and Functional Food, Anhui Science and Technology University, Chuzhou 239000, China
| | - Canping Pan
- Innovation Center of Pesticide Research, Department of Applied Chemistry, College of Science, China Agricultural University, Beijing 100193, China
- Key Laboratory of National Forestry and Grassland Administration on Pest Chemical Control, China Agricultural University, Beijing 100193, China
| |
Collapse
|
4
|
García-Locascio E, Valenzuela EI, Cervantes-Avilés P. Impact of seed priming with Selenium nanoparticles on germination and seedlings growth of tomato. Sci Rep 2024; 14:6726. [PMID: 38509209 PMCID: PMC10954673 DOI: 10.1038/s41598-024-57049-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Accepted: 03/13/2024] [Indexed: 03/22/2024] Open
Abstract
Poor germination and seedlings growth can lead to significant economic losses for farmers, therefore, sustainable agricultural strategies to improve germination and early growth of crops are urgently needed. The objective of this work was to evaluate selenium nanoparticles (Se NPs) as nanopriming agents for tomato (Solanum lycopersicum) seeds germinated without stress conditions in both trays and Petri dishes. Germination quality, seedlings growth, synergism-antagonism of Se with other elements, and fate of Se NPs, were determined as function of different Se NPs concentrations (1, 10 and 50 ppm). Results indicated that the germination rate in Petri dishes improved with 10 ppm, while germination trays presented the best results at 1 ppm, increasing by 10 and 32.5%, respectively. Therefore, seedlings growth was measured only in germination trays. Proline content decreased up to 22.19% with 10 ppm, while for same treatment, the total antioxidant capacity (TAC) and total chlorophyll content increased up to 38.97% and 21.28%, respectively. Antagonisms between Se with Mg, K, Mn, Zn, Fe, Cu and Mo in the seed were confirmed. In the case of seedlings, the N content decreased as the Se content increased. Transmission Electron Microscopy (TEM) imaging confirmed that Se NPs surrounded the plastids of the seed cells. By this finding, it can be inferred that Se NPs can reach the embryo, which is supported by the antagonism of Se with important nutrients involved in embryogenesis, such as K, Mg and Fe, and resulted in a better germination quality. Moreover, the positive effect of Se NPs on total chlorophyll and TAC, and the negative correlation with proline content with Se content in the seed, can be explained by Se NPs interactions with proplastids and other organelles within the cells, resulting with the highest length and fresh weight when seeds were exposed to 1 ppm.
Collapse
Affiliation(s)
- Ezequiel García-Locascio
- Escuela de Ingeniería y Ciencias, Tecnologico de Monterrey, Reserva Territorial Atlixcáyotl, CP 72453, Puebla, Pue, México
| | - Edgardo I Valenzuela
- Escuela de Ingeniería y Ciencias, Tecnologico de Monterrey, Reserva Territorial Atlixcáyotl, CP 72453, Puebla, Pue, México
| | - Pabel Cervantes-Avilés
- Escuela de Ingeniería y Ciencias, Tecnologico de Monterrey, Reserva Territorial Atlixcáyotl, CP 72453, Puebla, Pue, México.
| |
Collapse
|
5
|
Jia Y, Kang L, Wu Y, Zhou C, Cai R, Zhang H, Li J, Chen Z, Kang D, Zhang L, Pan C. Nano-selenium foliar intervention-induced resistance of cucumber to Botrytis cinerea by activating jasmonic acid biosynthesis and regulating phenolic acid and cucurbitacin. PEST MANAGEMENT SCIENCE 2024; 80:554-568. [PMID: 37733166 DOI: 10.1002/ps.7784] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Revised: 09/08/2023] [Accepted: 09/20/2023] [Indexed: 09/22/2023]
Abstract
PURPOSE AND METHODS Botrytis cinerea is the primary disease affecting cucumber production. It can be managed by applying pesticides and cultivating disease-resistant cucumber strains. However, challenges, such as drug resistance in pathogenic bacteria and changes in physiological strains, are obstacles in the effective management of B. cinerea. Nano-selenium (Nano-Se) has potential in enhancing crop resistance to biological stress, but the exact mechanism for boosting disease resistance remains unclear. Here, we used metabolomics and transcriptomics to examine how Nano-Se, as an immune activator, induces plant resistance. RESULT Compared with the control group, the application of 10.0 mg/L Nano-Se on the cucumber plant's leaf surface resulted in increased levels of chlorophyll, catalase (10.2%), glutathione (326.6%), glutathione peroxidase (52.2%), cucurbitacin (41.40%), and metabolites associated with the phenylpropane synthesis pathway, as well as the total antioxidant capacity (21.3%). Additionally, the expression levels of jasmonic acid (14.8 times) and related synthetic genes, namely LOX (264.1%), LOX4 (224.1%), and AOC2 (309.2%), were up-regulated. A transcription analysis revealed that the CsaV3_4G002860 gene was up-regulated in the KEGG enrichment pathway in response to B. cinerea infection following the 10.0 mg/L Nano-Se treatment. DISCUSSION In conclusion, the activation of the phenylpropane biosynthesis and branched-chain fatty acid pathways by Nano-Se promotes the accumulation of jasmonic acid and cucurbitacin in cucumber plants. This enhancement enables the plants to exhibit resistance against B. cinerea infections. Additionally, this study identified a potential candidate gene for cucumber resistance to B. cinerea induced by Nano-Se, thereby laying a theoretical foundation for further research in this area. © 2023 Society of Chemical Industry.
Collapse
Affiliation(s)
- Yujiao Jia
- Innovation Center of Pesticide Research, Department of Applied Chemistry, College of Science, China Agricultural University, Beijing, China
- Key Laboratory of National Forestry and Grassland Administration on Pest Chemical Control, China Agricultural University, Beijing, China
| | - Lu Kang
- Innovation Center of Pesticide Research, Department of Applied Chemistry, College of Science, China Agricultural University, Beijing, China
- Key Laboratory of National Forestry and Grassland Administration on Pest Chemical Control, China Agricultural University, Beijing, China
- Institute of Agricultural Quality Standards and Testing Technology, Xinjiang Academy of Agricultural Sciences, Urumqi, China
| | - Yangliu Wu
- Innovation Center of Pesticide Research, Department of Applied Chemistry, College of Science, China Agricultural University, Beijing, China
- Key Laboratory of National Forestry and Grassland Administration on Pest Chemical Control, China Agricultural University, Beijing, China
| | - Chunran Zhou
- Innovation Center of Pesticide Research, Department of Applied Chemistry, College of Science, China Agricultural University, Beijing, China
- Key Laboratory of National Forestry and Grassland Administration on Pest Chemical Control, China Agricultural University, Beijing, China
| | - Runze Cai
- Innovation Center of Pesticide Research, Department of Applied Chemistry, College of Science, China Agricultural University, Beijing, China
- Key Laboratory of National Forestry and Grassland Administration on Pest Chemical Control, China Agricultural University, Beijing, China
| | - Hui Zhang
- Innovation Center of Pesticide Research, Department of Applied Chemistry, College of Science, China Agricultural University, Beijing, China
- Key Laboratory of National Forestry and Grassland Administration on Pest Chemical Control, China Agricultural University, Beijing, China
| | - Jiaqi Li
- Innovation Center of Pesticide Research, Department of Applied Chemistry, College of Science, China Agricultural University, Beijing, China
| | - Zhendong Chen
- Vegetable Research Institute, Guangxi Academy of Agricultural Sciences, Nanning, China
| | - Dexian Kang
- Vegetable Research Institute, Guangxi Academy of Agricultural Sciences, Nanning, China
| | - Li Zhang
- Vegetable Research Institute, Guangxi Academy of Agricultural Sciences, Nanning, China
| | - Canping Pan
- Innovation Center of Pesticide Research, Department of Applied Chemistry, College of Science, China Agricultural University, Beijing, China
- Key Laboratory of National Forestry and Grassland Administration on Pest Chemical Control, China Agricultural University, Beijing, China
| |
Collapse
|
6
|
Liu Y, Liu R, Li F, Yu S, Nie Y, Li JQ, Pan C, Zhu W, Zhou Z, Diao J. Nano-selenium repaired the damage caused by fungicides on strawberry flavor quality and antioxidant capacity by regulating ABA biosynthesis and ripening-related transcription factors. PESTICIDE BIOCHEMISTRY AND PHYSIOLOGY 2024; 198:105753. [PMID: 38225097 DOI: 10.1016/j.pestbp.2023.105753] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Revised: 12/17/2023] [Accepted: 12/18/2023] [Indexed: 01/17/2024]
Abstract
Recently, studies have shown that pesticides may have adverse effects on the flavor quality of the fruits, but there is still a lack of appropriate methods to repair the damage. This study investigated the effects and mechanism of applying the emerging material, nano‑selenium, and two fungicides (Boscalid and Pydiflumetofen) alone or together on the flavor quality and antioxidant capacity of strawberries. The results showed that the two fungicides had a negative impact on strawberry color, flavor, antioxidant capacity and different enzymatic systems. The color damage was mainly attributed to the impact on anthocyanin content. Nano‑selenium alleviated the quality losses by increasing sugar-acid ratio, volatiles, anthocyanin levels, enzyme activities and DPPH scavenging ability and reducing ROS levels. Results also showed that these damage and repair processes were related to the regulation of flavor and ripening related transcription factors (including FaRIF, FaSnRK1, FaMYB10, FaMYB1, FaSnRK2.6 and FaABI1), the upregulation of genes on sugar-acid, volatile, and anthocyanin synthesis pathways, as well as the increase of sucrose and ABA signaling molecules. In addition, the application of nano-Se supplemented the selenium content in fruits, and was harmless to human health. This information is crucial for revealing the mechanisms of flavor damage caused by pesticides to strawberry and the repaired of nano‑selenium, and broadens the researching and applying of nano‑selenium in repairing the damage caused by pesticides.
Collapse
Affiliation(s)
- Yuping Liu
- Department of Applied Chemistry, China Agricultural University, Yuanmingyuan west road 2, Beijing 100193, China
| | - Rui Liu
- Department of Applied Chemistry, China Agricultural University, Yuanmingyuan west road 2, Beijing 100193, China
| | - Feifei Li
- The Administrative Office of Beijing Shisanling Forestry Farm, China
| | - Simin Yu
- Department of Applied Chemistry, China Agricultural University, Yuanmingyuan west road 2, Beijing 100193, China
| | - Yufan Nie
- Department of Applied Chemistry, China Agricultural University, Yuanmingyuan west road 2, Beijing 100193, China
| | - Jia-Qi Li
- Department of Applied Chemistry, China Agricultural University, Yuanmingyuan west road 2, Beijing 100193, China
| | - Canping Pan
- Department of Applied Chemistry, China Agricultural University, Yuanmingyuan west road 2, Beijing 100193, China; Key Laboratory of Tropical Fruits and Vegetables Quality and Safety for State Market Regulation, Haikou 570311, China
| | - Wentao Zhu
- Department of Applied Chemistry, China Agricultural University, Yuanmingyuan west road 2, Beijing 100193, China
| | - Zhiqiang Zhou
- Department of Applied Chemistry, China Agricultural University, Yuanmingyuan west road 2, Beijing 100193, China
| | - Jinling Diao
- Department of Applied Chemistry, China Agricultural University, Yuanmingyuan west road 2, Beijing 100193, China.
| |
Collapse
|
7
|
Nie M, Ning N, Chen J, Zhang Y, Li S, Zheng L, Zhang H. Melatonin enhances salt tolerance in sorghum by modulating photosynthetic performance, osmoregulation, antioxidant defense, and ion homeostasis. Open Life Sci 2023; 18:20220734. [PMID: 37872968 PMCID: PMC10590611 DOI: 10.1515/biol-2022-0734] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Revised: 08/23/2023] [Accepted: 08/29/2023] [Indexed: 10/25/2023] Open
Abstract
Melatonin is a potent antioxidant that can prevent plant damage caused by adverse stresses. It remains unclear whether exogenous melatonin can mitigate the effects of salt stress on seed germination and seedling growth of sorghum (Sorghum bicolor (L.) Moench). The aim of this study was to decipher the protective mechanisms of exogenous melatonin (100 μmol/L) on sorghum seedlings under NaCl-induced salt stress (120 mmol/L). Plant morphological, photosynthetic, and physiological characteristics were analyzed at different timepoints after sowing. Results showed that salt stress inhibited seed germination, seedling growth, and plant biomass accumulation by reducing photosynthetic pigment contents, photosynthetic efficiency, root vigor, and mineral uptake. In contrast, seed priming with melatonin enhanced photosynthetic pigment biosynthesis, photosynthetic efficiency, root vigor, and K+ content under salt stress. Melatonin application additionally enhanced the activities of antioxidant enzymes (superoxide dismutase, catalase, ascorbate peroxidase, and glutathione reductase) and increased the levels of non-enzymatic antioxidants (reduced glutathione, ascorbic acid) in the leaves. These changes were accompanied by increase in the leaf contents of soluble sugars, soluble proteins, and proline, as well as decrease in hydrogen peroxide accumulation, malondialdehyde content, and electrolyte leakage. Our findings indicate that exogenous melatonin can alleviate salt stress-induced damage in sorghum seedlings through multifaceted mechanisms, such as improving photosynthetic performance and root vigor, facilitating ion homeostasis and osmoregulation, and promoting antioxidant defense and reactive oxygen species scavenging.
Collapse
Affiliation(s)
- Mengen Nie
- College of Agronomy, Shanxi Agricultural University, 81 Longcheng Street, Taiyuan, Shanxi, 030000, China
| | - Na Ning
- College of Resources Environment and Chemistry, Chuxiong Normal University, 546 Lucheng South Road, Chuxiong, Yunnan, 675000, China
| | - Jing Chen
- College of Agronomy, Shanxi Agricultural University, 81 Longcheng Street, Taiyuan, Shanxi, 030000, China
| | - Yizhong Zhang
- Shanxi Key Laboratory of Sorghum Genetic and Germplasm Innovation, Sorghum Research Institute, Shanxi Agricultural University,238 Yunhua West Street, Jinzhong, Shanxi, 030600, China
| | - Shuangshuang Li
- College of Resources Environment and Chemistry, Chuxiong Normal University, 546 Lucheng South Road, Chuxiong, Yunnan, 675000, China
| | - Lue Zheng
- College of Resources Environment and Chemistry, Chuxiong Normal University, 546 Lucheng South Road, Chuxiong, Yunnan, 675000, China
| | - Haiping Zhang
- Center for Agricultural Gene Resources Research, Shanxi Agricultural University, 81 Longcheng Street, Taiyuan, Shanxi, 030000, China
| |
Collapse
|
8
|
Purwestri YA, Nurbaiti S, Putri SPM, Wahyuni IM, Yulyani SR, Sebastian A, Nuringtyas TR, Yamaguchi N. Seed Halopriming: A Promising Strategy to Induce Salt Tolerance in Indonesian Pigmented Rice. PLANTS (BASEL, SWITZERLAND) 2023; 12:2879. [PMID: 37571030 PMCID: PMC10420915 DOI: 10.3390/plants12152879] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Revised: 07/28/2023] [Accepted: 08/01/2023] [Indexed: 08/13/2023]
Abstract
Unfavorable environmental conditions and climate change impose stress on plants, causing yield losses worldwide. The Indonesian pigmented rice (Oryza sativa L.) cultivars Cempo Ireng Pendek (black rice) and Merah Kalimantan Selatan (red rice) are becoming popular functional foods due to their high anthocyanin contents and have great potential for widespread cultivation. However, their ability to grow on marginal, high-salinity lands is limited. In this study, we investigated whether seed halopriming enhances salt tolerance in the two pigmented rice cultivars. The non-pigmented cultivars IR64, a salt-stress-sensitive cultivar, and INPARI 35, a salt tolerant, were used as control. We pre-treated seeds with a halopriming solution before germination and then exposed the plants to a salt stress of 150 mM NaCl at 21 days after germination using a hydroponic system in a greenhouse. Halopriming was able to mitigate the negative effects of salinity on plant growth, including suppressing reactive oxygen species accumulation, increasing the membrane stability index (up to two-fold), and maintaining photosynthetic pigment contents. Halopriming had different effects on the accumulation of proline, in different rice varieties: the proline content increased in IR64 and Cempo Ireng Pendek but decreased in INPARI 35 and Merah Kalimantan Selatan. Halopriming also had disparate effects in the expression of stress-related genes: OsMYB91 expression was positively correlated with salt treatment, whereas OsWRKY42 and OsWRKY70 expression was negatively correlated with this treatment. These findings highlighted the potential benefits of halopriming in salt-affected agro-ecosystems.
Collapse
Affiliation(s)
- Yekti Asih Purwestri
- Department of Tropical Biology, Faculty of Biology, Universitas Gadjah Mada, Yogyakarta 55281, Indonesia; (S.N.); (T.R.N.)
- Research Center for Biotechnology, Universitas Gadjah Mada, Yogyakarta 55281, Indonesia
| | - Siti Nurbaiti
- Department of Tropical Biology, Faculty of Biology, Universitas Gadjah Mada, Yogyakarta 55281, Indonesia; (S.N.); (T.R.N.)
- Research Center for Biotechnology, Universitas Gadjah Mada, Yogyakarta 55281, Indonesia
| | - Sekar Pelangi Manik Putri
- Biotechnology Master Program, The Graduate School, Universitas Gadjah Mada, Yogyakarta 55281, Indonesia; (S.P.M.P.); (I.M.W.); (S.R.Y.)
| | - Ignasia Margi Wahyuni
- Biotechnology Master Program, The Graduate School, Universitas Gadjah Mada, Yogyakarta 55281, Indonesia; (S.P.M.P.); (I.M.W.); (S.R.Y.)
| | - Siti Roswiyah Yulyani
- Biotechnology Master Program, The Graduate School, Universitas Gadjah Mada, Yogyakarta 55281, Indonesia; (S.P.M.P.); (I.M.W.); (S.R.Y.)
| | - Alfino Sebastian
- Institute of Plant Science and Resources, Okayama University, Okayama 710-0046, Japan;
| | - Tri Rini Nuringtyas
- Department of Tropical Biology, Faculty of Biology, Universitas Gadjah Mada, Yogyakarta 55281, Indonesia; (S.N.); (T.R.N.)
- Research Center for Biotechnology, Universitas Gadjah Mada, Yogyakarta 55281, Indonesia
| | - Nobutoshi Yamaguchi
- Plant Stem Cell Regulation and Floral Patterning Laboratory, Graduate School of Science and Technology, Nara Institute of Science and Technology, Ikoma 630-0101, Japan;
| |
Collapse
|