1
|
Zhou S, Zhang Q, Xu J, Xiang R, Dong X, Zhou X, Liu Z. CAP superfamily proteins in human: a new target for cancer therapy. Med Oncol 2024; 41:306. [PMID: 39499355 DOI: 10.1007/s12032-024-02548-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2024] [Accepted: 10/23/2024] [Indexed: 11/07/2024]
Abstract
The CAP (Cysteine-rich secretory protein, Antigen 5, and Pathogenesis-related protein 1) superfamily proteins (CAP proteins) are found in all kingdoms of life. The cysteine-rich secreted proteins are prevalent in human organs and tissues and serve as critical signaling molecules within cells, regulating a wide range of biochemical processes in the human body. Due to their involvement in numerous biological processes, CAP proteins have recently attracted significant attention, particularly in the context of tumorigenesis and cancer therapy. This review summarizes the expression patterns and roles of CAP proteins in various cancers. Additionally, it analyzes the mechanisms by which CAP proteins affect cancer cell proliferation and survival, regulate epithelial-mesenchymal transition, influence drug resistance, and regulate epigenetics. The review reveals that CAP proteins play distinct roles in various signaling pathways, such as the MAPK, PI3K-Akt, and p53 pathways, which are crucial for tumor progression. Furthermore, this review summarizes the tumor-inhibiting function of CAP proteins and their potential as cancer biomarkers. These findings suggest that CAP proteins represent a promising new target for innovative cancer diagnosis and treatment.
Collapse
Affiliation(s)
- Shenao Zhou
- The National & Local Joint Engineering Laboratory of Animal Peptide Drug Development, College of Life Sciences, Hunan Normal University, Changsha, 410081, Hunan, China
- Institute of Interdisciplinary Studies, Hunan Normal University, Changsha, 410081, China
- Peptide and Small Molecule Drug R&D Platform, Furong Laboratory, Hunan Normal University, Changsha, 410081, Hunan, China
| | - Qianqian Zhang
- The National & Local Joint Engineering Laboratory of Animal Peptide Drug Development, College of Life Sciences, Hunan Normal University, Changsha, 410081, Hunan, China
- Institute of Interdisciplinary Studies, Hunan Normal University, Changsha, 410081, China
- Peptide and Small Molecule Drug R&D Platform, Furong Laboratory, Hunan Normal University, Changsha, 410081, Hunan, China
| | - Jiawei Xu
- The National & Local Joint Engineering Laboratory of Animal Peptide Drug Development, College of Life Sciences, Hunan Normal University, Changsha, 410081, Hunan, China
- Institute of Interdisciplinary Studies, Hunan Normal University, Changsha, 410081, China
- Peptide and Small Molecule Drug R&D Platform, Furong Laboratory, Hunan Normal University, Changsha, 410081, Hunan, China
| | - Ruiqi Xiang
- The National & Local Joint Engineering Laboratory of Animal Peptide Drug Development, College of Life Sciences, Hunan Normal University, Changsha, 410081, Hunan, China
- Institute of Interdisciplinary Studies, Hunan Normal University, Changsha, 410081, China
- Peptide and Small Molecule Drug R&D Platform, Furong Laboratory, Hunan Normal University, Changsha, 410081, Hunan, China
| | - Xiaoping Dong
- The National & Local Joint Engineering Laboratory of Animal Peptide Drug Development, College of Life Sciences, Hunan Normal University, Changsha, 410081, Hunan, China
- Institute of Interdisciplinary Studies, Hunan Normal University, Changsha, 410081, China
- Peptide and Small Molecule Drug R&D Platform, Furong Laboratory, Hunan Normal University, Changsha, 410081, Hunan, China
| | - Xi Zhou
- The National & Local Joint Engineering Laboratory of Animal Peptide Drug Development, College of Life Sciences, Hunan Normal University, Changsha, 410081, Hunan, China.
- Institute of Interdisciplinary Studies, Hunan Normal University, Changsha, 410081, China.
- Peptide and Small Molecule Drug R&D Platform, Furong Laboratory, Hunan Normal University, Changsha, 410081, Hunan, China.
| | - Zhonghua Liu
- The National & Local Joint Engineering Laboratory of Animal Peptide Drug Development, College of Life Sciences, Hunan Normal University, Changsha, 410081, Hunan, China.
- Institute of Interdisciplinary Studies, Hunan Normal University, Changsha, 410081, China.
- Peptide and Small Molecule Drug R&D Platform, Furong Laboratory, Hunan Normal University, Changsha, 410081, Hunan, China.
| |
Collapse
|
2
|
Li M, Du Y, Zhang X, Zhou W. Research advances of MAL family members in tumorigenesis and tumor progression (Review). Mol Med Rep 2024; 29:57. [PMID: 38362940 PMCID: PMC10884788 DOI: 10.3892/mmr.2024.13181] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Accepted: 01/05/2024] [Indexed: 02/17/2024] Open
Abstract
The myelin and lymphocyte protein (MAL) family is a novel gene family first identified and characterized in 2002. This family is comprised of seven members, including MAL, MAL2, plasmolipin, MALL, myeloid differentiation‑associated marker (MYADM), MYADML2 and CMTM8, which are located on different chromosomes. In addition to exhibiting extensive activity during transcytosis, the MAL family plays a vital role in the neurological, digestive, respiratory, genitourinary and other physiological systems. Furthermore, the intimate association between MAL and the pathogenesis, progression and metastasis of malignancies, attributable to several mechanisms such as DNA methylation has also been elucidated. In the present review, an overview of the structural and functional properties of the MAL family and the latest research findings regarding the relationship between several MAL members and various cancers is provided. Furthermore, the potential clinical and scientific significance of MAL is discussed and directions for future research are summarized.
Collapse
Affiliation(s)
- Mengyao Li
- The Second Clinical Medical College, Lanzhou University, Lanzhou, Gansu 730000, P.R. China
| | - Yan Du
- The Second Clinical Medical College, Lanzhou University, Lanzhou, Gansu 730000, P.R. China
| | - Xianzhuo Zhang
- The First School of Clinical Medicine, Lanzhou University, Lanzhou, Gansu 730000, P.R. China
| | - Wence Zhou
- The Second Clinical Medical College, Lanzhou University, Lanzhou, Gansu 730000, P.R. China
| |
Collapse
|
3
|
Abbas ZK, Naser NH, Atiya RN. IN SILICO STUDY OF NOVEL SULFONAMIDE DERIVATIVES BEARING A 1, 2, 4-TRIAZOLE MOIETY ACT AS CARBONIC ANHYDRASE INHIBITORS WITH PROMISING ANTI-CANCER ACTIVITY. POLSKI MERKURIUSZ LEKARSKI : ORGAN POLSKIEGO TOWARZYSTWA LEKARSKIEGO 2023; 51:527-532. [PMID: 38069854 DOI: 10.36740/merkur202305112] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2023]
Abstract
OBJECTIVE Aim: To evaluate the theoretical binding affinities of four synthetic compounds that target the carbonic anhydrase IX enzyme in solid tumors. PATIENTS AND METHODS Materials and Methods: To accurately depict the molecular structure, we utilized the Chem Draw Professional 12.0 program. We downloaded the carbonic anhydrase IX enzyme (29.25 KDa) (PDB code: 4YWP) from the Protein Data Bank into the Molecular Operating Environment software. Then, the S-score and rmsd were calculated for the proposed compounds. RESULTS Results: The theoretically synthesized compounds demonstrated good binding affinities with the receptor active pockets Sa, Sb, and Sd, with S-scores of -7.6491, -8.3789, and -8.3218, respectively. Substitutions improve compound orientation. The substituted triazoles ring increases flexibility and receptor interaction. In addition, the benzyl chloride derivatives play an important role in the interaction, with varying effects dependent on the groups substituted at position 4 of the benzene ring. CONCLUSION Conclusions: The synthesized compounds Sb with para Br substitution (S-score = -8.37) and Sd with para Cl substitution (S-score = -8.32) are considered the best ones as they exhibit a high affinity for the receptor.
Collapse
Affiliation(s)
- Zainab Kifah Abbas
- PHARMACEUTICAL CHEMISTRY DEPARTMENT, FACULTY OF PHARMACY, KUFA UNIVERSITY, NAJAF, IRAQ
| | - Noor H Naser
- PHARMACEUTICAL CHEMISTRY DEPARTMENT, COLLEGE OF PHARMACY, AL-ZAHRAA UNIVERSITY FOR WOMEN, KARBALA, IRAQ
| | - Rana Neama Atiya
- PHARMACEUTICAL CHEMISTRY DEPARTMENT, FACULTY OF PHARMACY, KUFA UNIVERSITY, NAJAF, IRAQ
| |
Collapse
|