1
|
Dujon AM, Boutry J, Tissot S, Meliani J, Miltiadous A, Tokolyi J, Ujvari B, Thomas F. The widespread vulnerability of Hydra oligactis to tumourigenesis confirms its value as a model for studying the effects of tumoural processes on the ecology and evolution of species. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 951:175785. [PMID: 39187082 DOI: 10.1016/j.scitotenv.2024.175785] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Revised: 08/21/2024] [Accepted: 08/23/2024] [Indexed: 08/28/2024]
Abstract
Tumoural processes, ubiquitous phenomena in multicellular organisms, influence evolutionary trajectories of all species. To gain a holistic understanding of their impact on species' biology, suitable laboratory models are required. Such models are characterised by a widespread availability, ease of cultivation, and reproducible tumour induction. It is especially important to explore, through experimental approaches, how tumoural processes alter ecosystem functioning. The cnidarian Hydra oligactis is currently emerging as a promising model due to its development of both transmissible and non-transmissible tumours and the wide breadth of experiments that can be conducted with this species (at the individual, population, mechanistic, and evolutionary levels). However, tumoural hydras are, so far, only documented in Europe, and it is not clear if the phenomenon is local or widespread. In this study we demonstrate that Australian hydras from two independent river networks develop tumours in the laboratory consisting of interstitial stem cells and display phenotypic alterations (supernumerary tentacles) akin to European counterparts. This finding confirms the value of this model for ecological and evolutionary research on host-tumour interactions.
Collapse
Affiliation(s)
- Antoine M Dujon
- Deakin University, Geelong, School of Life and Environmental Sciences, Centre for Integrative Ecology, Waurn Ponds, Vic 3216, Australia; CREEC/(CREES), MIVEGEC, Unité Mixte de Recherches, IRD 224-CNRS 5290-Université de Montpellier, Montpellier, France.
| | - Justine Boutry
- CREEC/(CREES), MIVEGEC, Unité Mixte de Recherches, IRD 224-CNRS 5290-Université de Montpellier, Montpellier, France
| | - Sophie Tissot
- CREEC/(CREES), MIVEGEC, Unité Mixte de Recherches, IRD 224-CNRS 5290-Université de Montpellier, Montpellier, France
| | - Jordan Meliani
- CREEC/(CREES), MIVEGEC, Unité Mixte de Recherches, IRD 224-CNRS 5290-Université de Montpellier, Montpellier, France
| | - Anna Miltiadous
- Deakin University, Geelong, School of Life and Environmental Sciences, Centre for Integrative Ecology, Waurn Ponds, Vic 3216, Australia
| | - Jácint Tokolyi
- MTA-DE "Momentum" Ecology, Evolution and Developmental Biology Research Group, Department of Evolutionary Zoology, University of Debrecen, 4032 Debrecen, Hungary
| | - Beata Ujvari
- Deakin University, Geelong, School of Life and Environmental Sciences, Centre for Integrative Ecology, Waurn Ponds, Vic 3216, Australia; CREEC/(CREES), MIVEGEC, Unité Mixte de Recherches, IRD 224-CNRS 5290-Université de Montpellier, Montpellier, France
| | - Frédéric Thomas
- CREEC/(CREES), MIVEGEC, Unité Mixte de Recherches, IRD 224-CNRS 5290-Université de Montpellier, Montpellier, France
| |
Collapse
|
2
|
Tissot S, Meliani J, Chee M, Nedelcu AM, Boutry J, Tökölyi J, Hamede R, Roche B, Ujvari B, Thomas F, Dujon AM. Cancer and One Health: tumor-bearing individuals can act as super spreaders of symbionts in communities. Sci Rep 2024; 14:21283. [PMID: 39261506 PMCID: PMC11390966 DOI: 10.1038/s41598-024-72171-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Accepted: 09/04/2024] [Indexed: 09/13/2024] Open
Abstract
Recent theoretical advances in the One Health approach have suggested that cancer pathologies should be given greater consideration, as cancers often render their hosts more vulnerable to infectious agents, which could turn them into super spreaders within ecosystems. Although biologically plausible, this hypothesis has not yet been validated experimentally. Using a community of cnidarians of the Hydra genus (Hydra oligactis, Hydra viridissima, Hydra vulgaris) and a commensal ciliate species (Kerona pediculus) that colonizes them, we tested whether tumoral polyps of H. oligactis, compared to healthy ones, played an amplifying role in the number of ciliates, potentially resulting in a higher likelihood of infection for other community members through spillovers. Our results indicate that K. pediculus has a higher proliferation rate on tumoral polyps of H. oligactis than on healthy ones, which results in the infestation of other hydras. However, the magnitude of the spillover differed between recipient species. This study provides to our knowledge the first elements of proof of concept that tumoral individuals in communities could act as super spreaders of symbionts within and between species, and thus affect biotic interactions and dynamics in ecosystems.
Collapse
Affiliation(s)
- Sophie Tissot
- CREEC/MIVEGEC, Université de Montpellier, CNRS, IRD, Montpellier, France.
| | - Jordan Meliani
- CREEC/MIVEGEC, Université de Montpellier, CNRS, IRD, Montpellier, France
| | - Matthew Chee
- CREEC/MIVEGEC, Université de Montpellier, CNRS, IRD, Montpellier, France
| | - Aurora M Nedelcu
- Department of Biology, University of New Brunswick, Fredericton, New Brunswick, Canada
| | - Justine Boutry
- CREEC/MIVEGEC, Université de Montpellier, CNRS, IRD, Montpellier, France
| | - Jácint Tökölyi
- MTA-DE "Momentum" Ecology, Evolution and Developmental Biology Research Group, Department of Evolutionary Zoology, University of Debrecen, 4032, Debrecen, Hungary
| | - Rodrigo Hamede
- School of Natural Sciences, University of Tasmania, Hobart, TAS, Australia
| | - Benjamin Roche
- CREEC/MIVEGEC, Université de Montpellier, CNRS, IRD, Montpellier, France
- Departamento de Etología, Fauna Silvestre y Animales de Laboratorio, Facultad de Medicina Veterinaria y Zootecnia, Universidad Nacional Autónoma de México (UNAM), Ciudad de México, México
| | - Beata Ujvari
- School of Life and Environmental Sciences, Deakin University, Waurn Ponds, Victoria, Australia
| | - Frédéric Thomas
- CREEC/MIVEGEC, Université de Montpellier, CNRS, IRD, Montpellier, France
| | - Antoine M Dujon
- CREEC/MIVEGEC, Université de Montpellier, CNRS, IRD, Montpellier, France
- School of Life and Environmental Sciences, Deakin University, Waurn Ponds, Victoria, Australia
| |
Collapse
|
3
|
Tissot S, Meliani J, Boutry J, Brazier L, Tökölyi J, Roche B, Ujvari B, Nedelcu AM, Thomas F, Dujon AM. De novo evolution of transmissible tumours in hydra. Proc Biol Sci 2024; 291:20241636. [PMID: 39288800 PMCID: PMC11407858 DOI: 10.1098/rspb.2024.1636] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Revised: 08/14/2024] [Accepted: 08/14/2024] [Indexed: 09/19/2024] Open
Abstract
While most cancers are not transmissible, there are rare cases where cancer cells can spread between individuals and even across species, leading to epidemics. Despite their significance, the origins of such cancers remain elusive due to late detection in host populations. Using Hydra oligactis, which exhibits spontaneous tumour development that in some strains became vertically transmitted, this study presents the first experimental observation of the evolution of a transmissible tumour. Specifically, we assessed the initial vertical transmission rate of spontaneous tumours and explored the potential for optimizing this rate through artificial selection. One of the hydra strains, which evolved transmissible tumours over five generations, was characterized by analysis of cell type and bacteriome, and assessment of life-history traits. Our findings indicate that tumour transmission can be immediate for some strains and can be enhanced by selection. The resulting tumours are characterized by overproliferation of large interstitial stem cells and are not associated with a specific bacteriome. Furthermore, despite only five generations of transmission, these tumours induced notable alterations in host life-history traits, hinting at a compensatory response. This work, therefore, makes the first contribution to understanding the conditions of transmissible cancer emergence and their short-term consequences for the host.
Collapse
Affiliation(s)
- Sophie Tissot
- CREEC/MIVEGEC, Université de Montpellier, CNRS, IRD, Montpellier, France
| | - Jordan Meliani
- CREEC/MIVEGEC, Université de Montpellier, CNRS, IRD, Montpellier, France
| | - Justine Boutry
- CREEC/MIVEGEC, Université de Montpellier, CNRS, IRD, Montpellier, France
| | - Lionel Brazier
- CREEC/MIVEGEC, Université de Montpellier, CNRS, IRD, Montpellier, France
| | - Jácint Tökölyi
- Department of Evolutionary Zoology, MTA-DE “Momentum” Ecology, Evolution and Developmental Biology Research Group, University of Debrecen, Debrecen4032, Hungary
| | - Benjamin Roche
- CREEC/MIVEGEC, Université de Montpellier, CNRS, IRD, Montpellier, France
- Departamento de Etología, Fauna Silvestre y Animales de Laboratorio, Facultad de Medicina Veterinaria y Zootecnia, Universidad Nacional Autónoma de México (UNAM), Ciudad de México, Mexico
| | - Beata Ujvari
- School of Life and Environmental Sciences, Deakin University, Waurn Ponds, Victoria, Australia
| | - Aurora M. Nedelcu
- Department of Biology, University of New Brunswick, Fredericton, New Brunswick, Canada
| | - Frédéric Thomas
- CREEC/MIVEGEC, Université de Montpellier, CNRS, IRD, Montpellier, France
| | - Antoine M. Dujon
- CREEC/MIVEGEC, Université de Montpellier, CNRS, IRD, Montpellier, France
- School of Life and Environmental Sciences, Deakin University, Waurn Ponds, Victoria, Australia
| |
Collapse
|
4
|
Klaassen H, Tissot S, Meliani J, Boutry J, Miltiadous A, Biro PA, Mitchell DJ, Ujvari B, Schultz A, Thomas F, Dujon AM. Behavioural ecology meets oncology: quantifying the recovery of animal behaviour to a transient exposure to a cancer risk factor. Proc Biol Sci 2024; 291:20232666. [PMID: 38351808 PMCID: PMC10865010 DOI: 10.1098/rspb.2023.2666] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2023] [Accepted: 01/15/2024] [Indexed: 02/16/2024] Open
Abstract
Wildlife is increasingly exposed to sublethal transient cancer risk factors, including mutagenic substances, which activates their anti-cancer defences, promotes tumourigenesis, and may negatively impact populations. Little is known about how exposure to cancer risk factors impacts the behaviour of wildlife. Here, we investigated the effects of a sublethal, short-term exposure to a carcinogen at environmentally relevant concentrations on the activity patterns of wild Girardia tigrina planaria during a two-phase experiment, consisting of a 7-day exposure to cadmium period followed by a 7-day recovery period. To comprehensively explore the effects of the exposure on activity patterns, we employed the double hierarchical generalized linear model framework which explicitly models residual intraindividual variability in addition to the mean and variance of the population. We found that exposed planaria were less active compared to unexposed individuals and were able to recover to pre-exposure activity levels albeit with a reduced variance in activity at the start of the recovery phase. Planaria showing high activity levels were less predictable with larger daily activity variations and higher residual variance. Thus, the shift in behavioural variability induced by an exposure to a cancer risk factor can be quantified using advanced tools from the field of behavioural ecology. This is required to understand how tumourous processes affect the ecology of species.
Collapse
Affiliation(s)
- Hiske Klaassen
- Geelong, School of Life and Environmental Sciences, Centre for Integrative Ecology, Deakin University, Waurn Ponds, Victoria 3216, Australia
- CREEC/CANECEV (CREES), MIVEGEC, IRD 224–CNRS 5290–Université de Montpellier, Montpellier, France
| | - Sophie Tissot
- CREEC/CANECEV (CREES), MIVEGEC, IRD 224–CNRS 5290–Université de Montpellier, Montpellier, France
| | - Jordan Meliani
- CREEC/CANECEV (CREES), MIVEGEC, IRD 224–CNRS 5290–Université de Montpellier, Montpellier, France
| | - Justine Boutry
- CREEC/CANECEV (CREES), MIVEGEC, IRD 224–CNRS 5290–Université de Montpellier, Montpellier, France
| | - Anna Miltiadous
- Geelong, School of Life and Environmental Sciences, Centre for Integrative Ecology, Deakin University, Waurn Ponds, Victoria 3216, Australia
| | - Peter A. Biro
- Geelong, School of Life and Environmental Sciences, Centre for Integrative Ecology, Deakin University, Waurn Ponds, Victoria 3216, Australia
- CREEC/CANECEV (CREES), MIVEGEC, IRD 224–CNRS 5290–Université de Montpellier, Montpellier, France
| | | | - Beata Ujvari
- Geelong, School of Life and Environmental Sciences, Centre for Integrative Ecology, Deakin University, Waurn Ponds, Victoria 3216, Australia
- CREEC/CANECEV (CREES), MIVEGEC, IRD 224–CNRS 5290–Université de Montpellier, Montpellier, France
| | - Aaron Schultz
- Geelong, School of Life and Environmental Sciences, Centre for Integrative Ecology, Deakin University, Waurn Ponds, Victoria 3216, Australia
- CREEC/CANECEV (CREES), MIVEGEC, IRD 224–CNRS 5290–Université de Montpellier, Montpellier, France
| | - Frédéric Thomas
- Geelong, School of Life and Environmental Sciences, Centre for Integrative Ecology, Deakin University, Waurn Ponds, Victoria 3216, Australia
- CREEC/CANECEV (CREES), MIVEGEC, IRD 224–CNRS 5290–Université de Montpellier, Montpellier, France
| | - Antoine M. Dujon
- Geelong, School of Life and Environmental Sciences, Centre for Integrative Ecology, Deakin University, Waurn Ponds, Victoria 3216, Australia
- CREEC/CANECEV (CREES), MIVEGEC, IRD 224–CNRS 5290–Université de Montpellier, Montpellier, France
| |
Collapse
|
5
|
Tissot S, Guimard L, Meliani J, Boutry J, Dujon AM, Capp JP, Tökölyi J, Biro PA, Beckmann C, Fontenille L, Do Khoa N, Hamede R, Roche B, Ujvari B, Nedelcu AM, Thomas F. The impact of food availability on tumorigenesis is evolutionarily conserved. Sci Rep 2023; 13:19825. [PMID: 37963956 PMCID: PMC10645767 DOI: 10.1038/s41598-023-46896-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Accepted: 11/07/2023] [Indexed: 11/16/2023] Open
Abstract
The inability to control cell proliferation results in the formation of tumors in many multicellular lineages. Nonetheless, little is known about the extent of conservation of the biological traits and ecological factors that promote or inhibit tumorigenesis across the metazoan tree. Particularly, changes in food availability have been linked to increased cancer incidence in humans, as an outcome of evolutionary mismatch. Here, we apply evolutionary oncology principles to test whether food availability, regardless of the multicellular lineage considered, has an impact on tumorigenesis. We used two phylogenetically unrelated model systems, the cnidarian Hydra oligactis and the fish Danio rerio, to investigate the impact of resource availability on tumor occurrence and progression. Individuals from healthy and tumor-prone lines were placed on four diets that differed in feeding frequency and quantity. For both models, frequent overfeeding favored tumor emergence, while lean diets appeared more protective. In terms of tumor progression, high food availability promoted it, whereas low resources controlled it, but without having a curative effect. We discuss our results in light of current ideas about the possible conservation of basic processes governing cancer in metazoans (including ancestral life history trade-offs at the cell level) and in the framework of evolutionary medicine.
Collapse
Affiliation(s)
- Sophie Tissot
- CREEC/MIVEGEC, Université de Montpellier, CNRS, IRD, Montpellier, France.
| | - Lena Guimard
- CREEC/MIVEGEC, Université de Montpellier, CNRS, IRD, Montpellier, France
| | - Jordan Meliani
- CREEC/MIVEGEC, Université de Montpellier, CNRS, IRD, Montpellier, France
| | - Justine Boutry
- CREEC/MIVEGEC, Université de Montpellier, CNRS, IRD, Montpellier, France
| | - Antoine M Dujon
- School of Life and Environmental Sciences, Deakin University, Waurn Ponds, VIC, Australia
| | - Jean-Pascal Capp
- Toulouse Biotechnology Institute, University of Toulouse, INSA, CNRS, INRAE, Toulouse, France
| | - Jácint Tökölyi
- MTA-DE "Momentum" Ecology, Evolution and Developmental Biology Research Group, Department of Evolutionary Zoology, University of Debrecen, Debrecen, 4032, Hungary
| | - Peter A Biro
- School of Life and Environmental Sciences, Deakin University, Waurn Ponds, VIC, Australia
| | - Christa Beckmann
- School of Life and Environmental Sciences, Deakin University, Waurn Ponds, VIC, Australia
- School of Science, Western Sydney University, Hawkesbury Campus, Locked Bag 1797, Richmond, NSW, 2753, Australia
- Hawkesbury Institute for the Environment, Western Sydney University, Penrith, NSW, Australia
| | - Laura Fontenille
- AZELEAD, 377 Rue du Professeur Blayac, 34080, Montpellier, France
| | - Nam Do Khoa
- AZELEAD, 377 Rue du Professeur Blayac, 34080, Montpellier, France
| | - Rodrigo Hamede
- School of Natural Sciences, University of Tasmania, Hobart, TAS, Australia
| | - Benjamin Roche
- CREEC/MIVEGEC, Université de Montpellier, CNRS, IRD, Montpellier, France
- Departamento de Etología, Fauna Silvestre y Animales de Laboratorio, Facultad de Medicina Veterinaria y Zootecnia, Universidad Nacional Autónoma de México (UNAM), Mexico City, Mexico
| | - Beata Ujvari
- School of Life and Environmental Sciences, Deakin University, Waurn Ponds, VIC, Australia
| | - Aurora M Nedelcu
- Department of Biology, University of New Brunswick, Fredericton, NB, Canada
| | - Frédéric Thomas
- CREEC/MIVEGEC, Université de Montpellier, CNRS, IRD, Montpellier, France
| |
Collapse
|