1
|
McCabe A, Quinn GP, Jain S, Ó Dálaigh M, Dean K, Murphy RG, McDade SS. ClassifieR 2.0: expanding interactive gene expression-based stratification to prostate and high-grade serous ovarian cancer. BMC Bioinformatics 2024; 25:362. [PMID: 39574035 PMCID: PMC11580654 DOI: 10.1186/s12859-024-05981-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2024] [Accepted: 11/06/2024] [Indexed: 11/25/2024] Open
Abstract
BACKGROUND Advances in transcriptional profiling methods have enabled the discovery of molecular subtypes within and across traditional tissue-based cancer classifications. Such molecular subgroups hold potential for improving patient outcomes by guiding treatment decisions and revealing physiological distinctions and targetable pathways. Computational methods for stratifying transcriptomic data into molecular subgroups are increasingly abundant. However, assigning samples to these subtypes and other transcriptionally inferred predictions is time-consuming and requires significant bioinformatics expertise. To address this need, we recently reported "ClassifieR," a flexible, interactive cloud application for the functional annotation of colorectal and breast cancer transcriptomes. Here, we report "ClassifieR 2.0" which introduces additional modules for the molecular subtyping of prostate and high-grade serous ovarian cancer (HGSOC). RESULTS ClassifieR 2.0 introduces ClassifieRp and ClassifieRov, two specialised modules specifically designed to address the challenges of prostate and HGSOC molecular classification. ClassifieRp includes sigInfer, a method we developed to infer commercial prognostic prostate gene expression signatures from publicly available gene-lists or indeed any user-uploaded gene-list. ClassifieRov utilizes consensus molecular subtyping methods for HGSOC, including tools like consensusOV, for accurate ovarian cancer stratification. Both modules include functionalities present in the original ClassifieR framework for estimating cellular composition, predicting transcription factor (TF) activity and single sample gene set enrichment analysis (ssGSEA). CONCLUSIONS ClassifieR 2.0 combines molecular subtyping of prostate cancer and HGSOC with commonly used sample annotation tools in a single, user-friendly platform, allowing scientists without bioinformatics training to explore prostate and HGSOC transcriptional data without the need for extensive bioinformatics knowledge or manual data handling to operate various packages. Our sigInfer method within ClassifieRp enables the inference of commercially available gene signatures for prostate cancer, while ClassifieRov incorporates consensus molecular subtyping for HGSOC. Overall, ClassifieR 2.0 aims to make molecular subtyping more accessible to the wider research community. This is crucial for increased understanding of the molecular heterogeneity of these cancers and developing personalised treatment strategies.
Collapse
Affiliation(s)
- Aideen McCabe
- School of Biochemistry and Cell Biology, University College Cork, Cork, Ireland.
- The SFI Centre for Research Training in Genomics Data Science, Galway, Ireland.
| | - Gerard P Quinn
- BlokBio, Ormeau Labs, Belfast, Northern Ireland, UK
- The Patrick G Johnston Centre for Cancer Research, Queen's University Belfast, Belfast, Northern Ireland, UK
| | - Suneil Jain
- The Patrick G Johnston Centre for Cancer Research, Queen's University Belfast, Belfast, Northern Ireland, UK
- Department of Clinical Oncology, Northern Ireland Cancer Centre, Belfast Health and Social Care Trust, Belfast, UK
| | - Micheál Ó Dálaigh
- The SFI Centre for Research Training in Genomics Data Science, Galway, Ireland
- School of Biological and Chemical Sciences, University of Galway, Galway, Ireland
- School of Mathematical and Statistical Sciences, University of Galway, Galway, Ireland
| | - Kellie Dean
- School of Biochemistry and Cell Biology, University College Cork, Cork, Ireland
| | - Ross G Murphy
- The Patrick G Johnston Centre for Cancer Research, Queen's University Belfast, Belfast, Northern Ireland, UK
- The Centre for Genomic Medicine, Ulster University, Coleraine, Northern Ireland, UK
| | - Simon S McDade
- BlokBio, Ormeau Labs, Belfast, Northern Ireland, UK.
- The Patrick G Johnston Centre for Cancer Research, Queen's University Belfast, Belfast, Northern Ireland, UK.
| |
Collapse
|
2
|
Di Carlo E, Sorrentino C. The multifaceted role of the stroma in the healthy prostate and prostate cancer. J Transl Med 2024; 22:825. [PMID: 39238004 PMCID: PMC11378418 DOI: 10.1186/s12967-024-05564-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Accepted: 08/01/2024] [Indexed: 09/07/2024] Open
Abstract
Prostate cancer (PC) is an age-related disease and represents, after lung cancer, the second cause of cancer death in males worldwide. Mortality is due to the metastatic disease, which mainly involves the bones, lungs, and liver. In the last 20 years, the incidence of metastatic PC has increased in Western Countries, and a further increase is expected in the near future, due to the population ageing. Current treatment options, including state of the art cancer immunotherapy, need to be more effective to achieve long-term disease control. The most significant anatomical barrier to overcome to improve the effectiveness of current and newly designed drug strategies consists of the prostatic stroma, in particular the fibroblasts and the extracellular matrix, which are the most abundant components of both the normal and tumor prostatic microenvironment. By weaving a complex communication network with the glandular epithelium, the immune cells, the microbiota, the endothelium, and the nerves, in the healthy prostatic microenvironment, the fibroblasts and the extracellular matrix support organ development and homeostasis. However, during inflammation, ageing and prostate tumorigenesis, they undergo dramatic phenotypic and genotypic changes, which impact on tumor growth and progression and on the development of therapy resistance. Here, we focus on the characteristics and functions of the prostate associated fibroblasts and of the extracellular matrix in health and cancer. We emphasize their roles in shaping tumor behavior and the feasibility of manipulating and/or targeting these stromal components to overcome the limitations of current treatments and to improve precision medicine's chances of success.
Collapse
Affiliation(s)
- Emma Di Carlo
- Department of Medicine and Sciences of Aging, "G. d'Annunzio" University of Chieti- Pescara, Via dei Vestini, Chieti, 66100, Italy.
- Anatomic Pathology and Immuno-Oncology Unit, Center for Advanced Studies and Technology (CAST), "G. d'Annunzio" University of Chieti-Pescara, Via L. Polacchi 11, Chieti, 66100, Italy.
| | - Carlo Sorrentino
- Department of Medicine and Sciences of Aging, "G. d'Annunzio" University of Chieti- Pescara, Via dei Vestini, Chieti, 66100, Italy
- Anatomic Pathology and Immuno-Oncology Unit, Center for Advanced Studies and Technology (CAST), "G. d'Annunzio" University of Chieti-Pescara, Via L. Polacchi 11, Chieti, 66100, Italy
| |
Collapse
|
3
|
Corres-Mendizabal J, Zacchi F, Martín-Martín N, Mateo J, Carracedo A. Metastatic hormone-naïve prostate cancer: a distinct biological entity. Trends Cancer 2024; 10:825-841. [PMID: 39048488 PMCID: PMC11397905 DOI: 10.1016/j.trecan.2024.06.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Revised: 06/11/2024] [Accepted: 06/20/2024] [Indexed: 07/27/2024]
Abstract
Metastatic hormone-naïve prostate cancer (mHNPC) is often the initial form of presentation for metastatic prostate cancer and encompasses a heterogeneous patient population with high inter-patient heterogeneity in prognosis and response to therapy. A more precise treatment of mHNPC, guided by evidence-based biomarkers, remains an unmet medical need. In addition, the limited number of representative laboratory models of mHNPC hampers the translation of basic research into clinical applications. We provide a comprehensive overview of the clinical and biological features that characterize mHNPC, highlight molecular data that could explain the unique prognostic characteristics of mHNPC, and identify key open questions.
Collapse
Affiliation(s)
- Jon Corres-Mendizabal
- Center for Cooperative Research in Biosciences (CIC bioGUNE), Basque Research and Technology Alliance (BRTA), Bizkaia Technology Park, 48160 Derio, Spain
| | - Francesca Zacchi
- Section of Innovation Biomedicine-Oncology Area, Department of Engineering for Innovation Medicine (DIMI), University of Verona and University and Hospital Trust (AOUI) of Verona, Verona, Italy; Vall Hebron Institute of Oncology (VHIO), Vall d'Hebron University Hospital Campus, Barcelona, Spain
| | - Natalia Martín-Martín
- Center for Cooperative Research in Biosciences (CIC bioGUNE), Basque Research and Technology Alliance (BRTA), Bizkaia Technology Park, 48160 Derio, Spain; Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), 28029 Madrid, Spain; Translational Prostate Cancer Research Laboratory, CIC bioGUNE-Basurto, Biobizkaia Health Research Institute, 48903 Barakaldo, Bizkaia, Spain
| | - Joaquin Mateo
- Vall Hebron Institute of Oncology (VHIO), Vall d'Hebron University Hospital Campus, Barcelona, Spain.
| | - Arkaitz Carracedo
- Center for Cooperative Research in Biosciences (CIC bioGUNE), Basque Research and Technology Alliance (BRTA), Bizkaia Technology Park, 48160 Derio, Spain; Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), 28029 Madrid, Spain; Translational Prostate Cancer Research Laboratory, CIC bioGUNE-Basurto, Biobizkaia Health Research Institute, 48903 Barakaldo, Bizkaia, Spain; Ikerbasque, Basque Foundation for Science, Bilbao, Spain; Biochemistry and Molecular Biology Department, University of the Basque Country (UPV/EHU), Bilbao, Spain.
| |
Collapse
|
4
|
Chang MEK, Lange J, Cartier JM, Moore TW, Soriano SM, Albracht B, Krawitzky M, Guturu H, Alavi A, Stukalov A, Zhou X, Elgierari EM, Chu J, Benz R, Cuevas JC, Ferdosi S, Hornburg D, Farokhzad O, Siddiqui A, Batzoglou S, Leach RJ, Liss MA, Kopp RP, Flory MR. A Scaled Proteomic Discovery Study for Prostate Cancer Diagnostic Markers Using Proteograph TM and Trapped Ion Mobility Mass Spectrometry. Int J Mol Sci 2024; 25:8010. [PMID: 39125581 PMCID: PMC11311733 DOI: 10.3390/ijms25158010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Revised: 07/03/2024] [Accepted: 07/09/2024] [Indexed: 08/12/2024] Open
Abstract
There is a significant unmet need for clinical reflex tests that increase the specificity of prostate-specific antigen blood testing, the longstanding but imperfect tool for prostate cancer diagnosis. Towards this endpoint, we present the results from a discovery study that identifies new prostate-specific antigen reflex markers in a large-scale patient serum cohort using differentiating technologies for deep proteomic interrogation. We detect known prostate cancer blood markers as well as novel candidates. Through bioinformatic pathway enrichment and network analysis, we reveal associations of differentially abundant proteins with cytoskeletal, metabolic, and ribosomal activities, all of which have been previously associated with prostate cancer progression. Additionally, optimized machine learning classifier analysis reveals proteomic signatures capable of detecting the disease prior to biopsy, performing on par with an accepted clinical risk calculator benchmark.
Collapse
Affiliation(s)
- Matthew E. K. Chang
- Cancer Early Detection Advanced Research Center, Knight Cancer Institute, Oregon Health and Science University, Portland, OR 97201, USA; (M.E.K.C.); (S.M.S.)
| | - Jane Lange
- Cancer Early Detection Advanced Research Center, Knight Cancer Institute, Oregon Health and Science University, Portland, OR 97201, USA; (M.E.K.C.); (S.M.S.)
| | - Jessie May Cartier
- Cancer Early Detection Advanced Research Center, Knight Cancer Institute, Oregon Health and Science University, Portland, OR 97201, USA; (M.E.K.C.); (S.M.S.)
| | - Travis W. Moore
- Cancer Early Detection Advanced Research Center, Knight Cancer Institute, Oregon Health and Science University, Portland, OR 97201, USA; (M.E.K.C.); (S.M.S.)
| | - Sophia M. Soriano
- Cancer Early Detection Advanced Research Center, Knight Cancer Institute, Oregon Health and Science University, Portland, OR 97201, USA; (M.E.K.C.); (S.M.S.)
| | - Brenna Albracht
- Department of Cell Systems and Anatomy, University of Texas Health San Antonio, San Antonio, TX 78229, USA
| | | | | | | | | | | | | | | | - Ryan Benz
- Seer Inc., Redwood City, CA 94065, USA
| | | | | | | | | | | | | | - Robin J. Leach
- Department of Cell Systems and Anatomy, University of Texas Health San Antonio, San Antonio, TX 78229, USA
| | - Michael A. Liss
- Roger L. & Laura D. Zeller Charitable Foundation in Urologic Oncology, University of Texas Health San Antonio, San Antonio, TX 78229, USA
| | - Ryan P. Kopp
- Cancer Early Detection Advanced Research Center, Knight Cancer Institute, Oregon Health and Science University, Portland, OR 97201, USA; (M.E.K.C.); (S.M.S.)
| | - Mark R. Flory
- Cancer Early Detection Advanced Research Center, Knight Cancer Institute, Oregon Health and Science University, Portland, OR 97201, USA; (M.E.K.C.); (S.M.S.)
| |
Collapse
|
5
|
Talia M, Cesario E, Cirillo F, Scordamaglia D, Di Dio M, Zicarelli A, Mondino AA, Occhiuzzi MA, De Francesco EM, Belfiore A, Miglietta AM, Di Dio M, Capalbo C, Maggiolini M, Lappano R. Cancer-associated fibroblasts (CAFs) gene signatures predict outcomes in breast and prostate tumor patients. J Transl Med 2024; 22:597. [PMID: 38937754 PMCID: PMC11210052 DOI: 10.1186/s12967-024-05413-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Accepted: 06/17/2024] [Indexed: 06/29/2024] Open
Abstract
BACKGROUND Over the last two decades, tumor-derived RNA expression signatures have been developed for the two most commonly diagnosed tumors worldwide, namely prostate and breast tumors, in order to improve both outcome prediction and treatment decision-making. In this context, molecular signatures gained by main components of the tumor microenvironment, such as cancer-associated fibroblasts (CAFs), have been explored as prognostic and therapeutic tools. Nevertheless, a deeper understanding of the significance of CAFs-related gene signatures in breast and prostate cancers still remains to be disclosed. METHODS RNA sequencing technology (RNA-seq) was employed to profile and compare the transcriptome of CAFs isolated from patients affected by breast and prostate tumors. The differentially expressed genes (DEGs) characterizing breast and prostate CAFs were intersected with data from public datasets derived from bulk RNA-seq profiles of breast and prostate tumor patients. Pathway enrichment analyses allowed us to appreciate the biological significance of the DEGs. K-means clustering was applied to construct CAFs-related gene signatures specific for breast and prostate cancer and to stratify independent cohorts of patients into high and low gene expression clusters. Kaplan-Meier survival curves and log-rank tests were employed to predict differences in the outcome parameters of the clusters of patients. Decision-tree analysis was used to validate the clustering results and boosting calculations were then employed to improve the results obtained by the decision-tree algorithm. RESULTS Data obtained in breast CAFs allowed us to assess a signature that includes 8 genes (ITGA11, THBS1, FN1, EMP1, ITGA2, FYN, SPP1, and EMP2) belonging to pro-metastatic signaling routes, such as the focal adhesion pathway. Survival analyses indicated that the cluster of breast cancer patients showing a high expression of the aforementioned genes displays worse clinical outcomes. Next, we identified a prostate CAFs-related signature that includes 11 genes (IL13RA2, GDF7, IL33, CXCL1, TNFRSF19, CXCL6, LIFR, CXCL5, IL7, TSLP, and TNFSF15) associated with immune responses. A low expression of these genes was predictive of poor survival rates in prostate cancer patients. The results obtained were significantly validated through a two-step approach, based on unsupervised (clustering) and supervised (classification) learning techniques, showing a high prediction accuracy (≥ 90%) in independent RNA-seq cohorts. CONCLUSION We identified a huge heterogeneity in the transcriptional profile of CAFs derived from breast and prostate tumors. Of note, the two novel CAFs-related gene signatures might be considered as reliable prognostic indicators and valuable biomarkers for a better management of breast and prostate cancer patients.
Collapse
Affiliation(s)
- Marianna Talia
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, Rende, 87036, Italy
| | - Eugenio Cesario
- Department of Cultures, Education and Society, University of Calabria, Rende, 87036, Italy
| | - Francesca Cirillo
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, Rende, 87036, Italy
| | - Domenica Scordamaglia
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, Rende, 87036, Italy
| | - Marika Di Dio
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, Rende, 87036, Italy
| | - Azzurra Zicarelli
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, Rende, 87036, Italy
| | - Adelina Assunta Mondino
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, Rende, 87036, Italy
| | | | | | - Antonino Belfiore
- Endocrinology, Department of Clinical and Experimental Medicine, University of Catania, Garibaldi-Nesima Hospital, Catania, 95122, Italy
| | - Anna Maria Miglietta
- Breast and General Surgery Unit, Annunziata Hospital Cosenza, Cosenza, 87100, Italy
| | - Michele Di Dio
- Division of Urology, Department of Surgery, Annunziata Hospital, Cosenza, 87100, Italy
| | - Carlo Capalbo
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, Rende, 87036, Italy
- Complex Operative Oncology Unit, Annunziata Hospital Cosenza, Cosenza, 87100, Italy
| | - Marcello Maggiolini
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, Rende, 87036, Italy.
| | - Rosamaria Lappano
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, Rende, 87036, Italy.
| |
Collapse
|
6
|
Booijink R, Terstappen LWMM, Dathathri E, Isebia K, Kraan J, Martens J, Bansal R. Identification of functional and diverse circulating cancer-associated fibroblasts in metastatic castration-naïve prostate cancer patients. Mol Oncol 2024. [PMID: 38634185 DOI: 10.1002/1878-0261.13653] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Revised: 03/08/2024] [Accepted: 04/03/2024] [Indexed: 04/19/2024] Open
Abstract
In prostate cancer (PCa), cancer-associated fibroblasts (CAFs) promote tumor progression, drug resistance, and metastasis. Although circulating tumor cells are studied as prognostic and diagnostic markers, little is known about other circulating cells and their association with PCa metastasis. Here, we explored the presence of circulating CAFs (cCAFs) in metastatic castration-naïve prostate cancer (mCNPC) patients. cCAFs were stained with fibroblast activation protein (FAP), epithelial cell adhesion molecule (EpCAM), and receptor-type tyrosine-protein phosphatase C (CD45), then FAP+EpCAM- cCAFs were enumerated and sorted using fluorescence-activated cell sorting. FAP+EpCAM- cCAFs ranged from 60 to 776 (389 mean ± 229 SD) per 2 × 108 mononuclear cells, whereas, in healthy donors, FAP+ EpCAM- cCAFs ranged from 0 to 71 (28 mean ± 22 SD). The mCNPC-derived cCAFs showed positivity for vimentin and intracellular collagen-I. They were viable and functional after sorting, as confirmed by single-cell collagen-I secretion after 48 h of culturing. Two cCAF subpopulations, FAP+CD45- and FAP+CD45+, were identified, both expressing collagen-I and vimentin, but with distinctly different morphologies. Collectively, this study demonstrates the presence of functional and viable circulating CAFs in mCNPC patients, suggesting the role of these cells in prostate cancer.
Collapse
Affiliation(s)
- Richell Booijink
- Personalized Diagnostics and Therapeutics, Department of Bioengineering Technologies, Technical Medical Centre, Faculty of Science and Technology, University of Twente, Enschede, The Netherlands
| | - Leon W M M Terstappen
- Department of Medical Cell BioPhysics, Technical Medical Centre, Faculty of Science and Technology, University of Twente, Enschede, The Netherlands
- Department of General, Visceral and Pediatric Surgery, University Hospital Düsseldorf, Heinrich-Heine University, Germany
| | - Eshwari Dathathri
- Department of Medical Cell BioPhysics, Technical Medical Centre, Faculty of Science and Technology, University of Twente, Enschede, The Netherlands
| | - Khrystany Isebia
- Department of Medical Oncology, Erasmus MC Cancer Institute, University Medical Center, Rotterdam, The Netherlands
| | - Jaco Kraan
- Department of Medical Oncology, Erasmus MC Cancer Institute, University Medical Center, Rotterdam, The Netherlands
| | - John Martens
- Department of Medical Oncology, Erasmus MC Cancer Institute, University Medical Center, Rotterdam, The Netherlands
| | - Ruchi Bansal
- Personalized Diagnostics and Therapeutics, Department of Bioengineering Technologies, Technical Medical Centre, Faculty of Science and Technology, University of Twente, Enschede, The Netherlands
| |
Collapse
|
7
|
Feng DC, Zhu WZ, Wang J, Li DX, Shi X, Xiong Q, You J, Han P, Qiu S, Wei Q, Yang L. The implications of single-cell RNA-seq analysis in prostate cancer: unraveling tumor heterogeneity, therapeutic implications and pathways towards personalized therapy. Mil Med Res 2024; 11:21. [PMID: 38605399 PMCID: PMC11007901 DOI: 10.1186/s40779-024-00526-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Accepted: 03/25/2024] [Indexed: 04/13/2024] Open
Abstract
In recent years, advancements in single-cell and spatial transcriptomics, which are highly regarded developments in the current era, particularly the emerging integration of single-cell and spatiotemporal transcriptomics, have enabled a detailed molecular comprehension of the complex regulation of cell fate. The insights obtained from these methodologies are anticipated to significantly contribute to the development of personalized medicine. Currently, single-cell technology is less frequently utilized for prostate cancer compared with other types of tumors. Starting from the perspective of RNA sequencing technology, this review outlined the significance of single-cell RNA sequencing (scRNA-seq) in prostate cancer research, encompassing preclinical medicine and clinical applications. We summarize the differences between mouse and human prostate cancer as revealed by scRNA-seq studies, as well as a combination of multi-omics methods involving scRNA-seq to highlight the key molecular targets for the diagnosis, treatment, and drug resistance characteristics of prostate cancer. These studies are expected to provide novel insights for the development of immunotherapy and other innovative treatment strategies for castration-resistant prostate cancer. Furthermore, we explore the potential clinical applications stemming from other single-cell technologies in this review, paving the way for future research in precision medicine.
Collapse
Affiliation(s)
- De-Chao Feng
- Department of Urology, Institute of Urology, West China Hospital, Sichuan University, Chengdu, 610041, China.
- Division of Surgery & Interventional Science, University College London, London, WC1E 6BT, UK.
| | - Wei-Zhen Zhu
- Department of Urology, Institute of Urology, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Jie Wang
- Department of Urology, Institute of Urology, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Deng-Xiong Li
- Department of Urology, Institute of Urology, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Xu Shi
- Department of Urology, Institute of Urology, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Qiao Xiong
- Department of Urology, Institute of Urology, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Jia You
- Department of Urology, Institute of Urology, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Ping Han
- Department of Urology, Institute of Urology, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Shi Qiu
- Department of Urology, Institute of Urology, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Qiang Wei
- Department of Urology, Institute of Urology, West China Hospital, Sichuan University, Chengdu, 610041, China.
| | - Lu Yang
- Department of Urology, Institute of Urology, West China Hospital, Sichuan University, Chengdu, 610041, China.
| |
Collapse
|
8
|
Feng D, Tuo Z, Wang J, Ye L, Li D, Wu R, Wei W, Yang Y, Zhang C. Establishment of novel ferroptosis-related prognostic subtypes correlating with immune dysfunction in prostate cancer patients. Heliyon 2024; 10:e23495. [PMID: 38187257 PMCID: PMC10770465 DOI: 10.1016/j.heliyon.2023.e23495] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Revised: 09/19/2023] [Accepted: 12/05/2023] [Indexed: 01/09/2024] Open
Abstract
Background We aimed to identify two new prognostic subtypes and create a predictive index for prostate cancer (PCa) patients based on ferroptosis database. Methods The nonnegative matrix factorization approach was used to identify molecular subtypes. We investigate the differences between cluster 1 and cluster 2 in terms of clinical features, functional pathways, tumour stemness, tumour heterogeneity, gene mutation and tumour immune microenvironment score after identifying the two molecular subtypes. Colony formation assay and flow cytometry assay were performed. Results The stratification of two clusters was closely connected to BCR-free survival using the nonnegative matrix factorization method, which was validated in the other three datasets. Furthermore, multivariate Cox regression analysis revealed that this classification was an independent risk factor for patients with PCa. Ribosome, aminoacyl tRNA production, oxidative phosphorylation, and Parkinson's disease-related pathways were shown to be highly enriched in cluster 1. In comparison to cluster 2, patients in cluster 1 exhibited significantly reduced CD4+ T cells, CD8+ T cells, neutrophils, dendritic cells and tumor immune microenvironment scores. Only HHLA2 was more abundant in cluster 1. Moreover, we found that P4HB downregulation could significantly inhibit the colony formation ability and contributed to cell apoptosis of C4-2B and DU145 cell lines. Conclusions We discovered two new prognostic subtypes associated with immunological dysfunction in PCa patients based on ferroptosis-related genes and found that P4HB downregulation could significantly inhibit the colony formation ability and contributed to cell apoptosis of PCa cell lines.
Collapse
Affiliation(s)
- Dechao Feng
- Department of Urology, Institute of Urology, West China Hospital, Sichuan University, Chengdu, 610041, China
- Department of Rehabilitation, The Affiliated Hospital of Southwest Medical University, Luzhou, 646000, China
| | - Zhouting Tuo
- Department of Urology, The Second Affiliated Hospital of Anhui Medical University, Hefei, 230601, China
| | - Jie Wang
- Department of Urology, Institute of Urology, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Luxia Ye
- Department of Public Research Platform, Taizhou Hospital of Zhejiang Province Affiliated to Wenzhou Medical University, Linhai, China
| | - Dengxiong Li
- Department of Urology, Institute of Urology, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Ruicheng Wu
- Department of Urology, Institute of Urology, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Wuran Wei
- Department of Urology, Institute of Urology, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Yubo Yang
- Department of Urology, Three Gorges Hospital, Chongqing University, Wanzhou, Chongqing, 404000, China
| | - Chi Zhang
- Department of Rehabilitation, The Affiliated Hospital of Southwest Medical University, Luzhou, 646000, China
| |
Collapse
|
9
|
Feng D, Wang J, Li D, Wu R, Tuo Z, Yu Q, Ye L, Miyamoto A, Yoo KH, Wang C, Cheng Y, Ye X, Zhang C, Wei W. Targeting Prolyl 4-Hydroxylase Subunit Beta (P4HB) in Cancer: New Roads to Travel. Aging Dis 2023; 15:2369-2380. [PMID: 38029391 PMCID: PMC11567247 DOI: 10.14336/ad.2023.1126] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Accepted: 11/26/2023] [Indexed: 12/01/2023] Open
Abstract
Prolyl 4-hydroxylase subunit beta (P4HB) can catalyze the formation, breakage and rearrangement of disulfide bonds through two thioredoxin domains, which is important for the maintenance of oxidizing environment in endoplasmic reticulum. Recently, P4HB has been demonstrated its oncogenic role of tumorigenesis and development in cancers. Therefore, we comprehensively deciphered P4HB in human cancer from various aspects, including pan-cancer analysis and narrative summary. We also provided some possible interacted molecules and the top 10 predicted drugs targeting P4HB to contribute to future research. We proposed that P4HB was a potential target and brought new therapeutic opportunities for cancer patients.
Collapse
Affiliation(s)
- Dechao Feng
- Department of Urology, Institute of Urology, West China Hospital, Sichuan University, Chengdu, China.
- Department of Rehabilitation, The Affiliated Hospital of Southwest Medical University, Luzhou, China.
- Chengdu Basebio Company, China.
| | - Jie Wang
- Department of Urology, Institute of Urology, West China Hospital, Sichuan University, Chengdu, China.
| | - Dengxiong Li
- Department of Urology, Institute of Urology, West China Hospital, Sichuan University, Chengdu, China.
| | - Ruicheng Wu
- Department of Urology, Institute of Urology, West China Hospital, Sichuan University, Chengdu, China.
| | - Zhouting Tuo
- Department of Urology, The Second Affiliated Hospital of Anhui Medical University, Hefei, China.
| | - Qingxin Yu
- Ningbo Diagnostic Pathology Center, Ningbo, Zhejiang, China.
| | - Luxia Ye
- Department of Public Research Platform, Taizhou Hospital of Zhejiang Province Affiliated to Wenzhou Medical University, Linhai, China.
| | - Akira Miyamoto
- Department of Rehabilitation, West Kyushu University, Japan.
| | - Koo Han Yoo
- Department of Urology, Kyung Hee University, South Korea.
| | | | | | - Xing Ye
- Cedars-Sinai Medical Center, Los Angeles, CA, USA.
| | - Chi Zhang
- Department of Rehabilitation, The Affiliated Hospital of Southwest Medical University, Luzhou, China.
| | - Wuran Wei
- Department of Urology, Institute of Urology, West China Hospital, Sichuan University, Chengdu, China.
| |
Collapse
|
10
|
Zheng K, Hai Y, Xi Y, Zhang Y, Liu Z, Chen W, Hu X, Zou X, Hao J. Integrative multi-omics analysis unveils stemness-associated molecular subtypes in prostate cancer and pan-cancer: prognostic and therapeutic significance. J Transl Med 2023; 21:789. [PMID: 37936202 PMCID: PMC10629187 DOI: 10.1186/s12967-023-04683-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Accepted: 10/29/2023] [Indexed: 11/09/2023] Open
Abstract
BACKGROUND Prostate cancer (PCA) is the fifth leading cause of cancer-related deaths worldwide, with limited treatment options in the advanced stages. The immunosuppressive tumor microenvironment (TME) of PCA results in lower sensitivity to immunotherapy. Although molecular subtyping is expected to offer important clues for precision treatment of PCA, there is currently a shortage of dependable and effective molecular typing methods available for clinical practice. Therefore, we aim to propose a novel stemness-based classification approach to guide personalized clinical treatments, including immunotherapy. METHODS An integrative multi-omics analysis of PCA was performed to evaluate stemness-level heterogeneities. Unsupervised hierarchical clustering was used to classify PCAs based on stemness signature genes. To make stemness-based patient classification more clinically applicable, a stemness subtype predictor was jointly developed by using four PCA datasets and 76 machine learning algorithms. RESULTS We identified stemness signatures of PCA comprising 18 signaling pathways, by which we classified PCA samples into three stemness subtypes via unsupervised hierarchical clustering: low stemness (LS), medium stemness (MS), and high stemness (HS) subtypes. HS patients are sensitive to androgen deprivation therapy, taxanes, and immunotherapy and have the highest stemness, malignancy, tumor mutation load (TMB) levels, worst prognosis, and immunosuppression. LS patients are sensitive to platinum-based chemotherapy but resistant to immunotherapy and have the lowest stemness, malignancy, and TMB levels, best prognosis, and the highest immune infiltration. MS patients represent an intermediate status of stemness, malignancy, and TMB levels with a moderate prognosis. We further demonstrated that these three stemness subtypes are conserved across pan-tumor. Additionally, the 9-gene stemness subtype predictor we developed has a comparable capability to 18 signaling pathways to make tumor diagnosis and to predict tumor recurrence, metastasis, progression, prognosis, and efficacy of different treatments. CONCLUSIONS The three stemness subtypes we identified have the potential to be a powerful tool for clinical tumor molecular classification in PCA and pan-cancer, and to guide the selection of immunotherapy or other sensitive treatments for tumor patients.
Collapse
Affiliation(s)
- Kun Zheng
- Department of Urology, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200233, China
| | - Youlong Hai
- Department of Urology, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200233, China
| | - Yue Xi
- Department of Reproductive Medicine, Central Hospital Affiliated to Shandong First Medical University, Jinan, 250013, Shandong, China
| | - Yukun Zhang
- Beijing University of Chinese Medicine East Hospital, Zaozhuang Hospital, Zaozhuang, 277000, Shandong, China
| | - Zheqi Liu
- Department of Oral and Maxillofacial Surgery, Zhongshan Hospital, Fudan University, Shanghai, 200032, China
| | - Wantao Chen
- Shanghai Key Laboratory of Stomatology & Shanghai Research Institute of Stomatology, National Clinical Research Center of Stomatology, Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, China
| | - Xiaoyong Hu
- Department of Urology, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200233, China.
| | - Xin Zou
- Jinshan Hospital Center for Tumor Diagnosis & Therapy, Jinshan Hospital, Fudan University, Shanghai, 201508, China.
- Department of Pathology, Jinshan Hospital, Fudan University, Shanghai, 201508, China.
| | - Jie Hao
- Institute of Clinical Science, Zhongshan Hospital, Fudan University, Shanghai, 200032, China.
| |
Collapse
|
11
|
Feng D, Li L, Li D, Wu R, Zhu W, Wang J, Ye L, Han P. Prolyl 4-hydroxylase subunit beta (P4HB) could serve as a prognostic and radiosensitivity biomarker for prostate cancer patients. Eur J Med Res 2023; 28:245. [PMID: 37480146 PMCID: PMC10362756 DOI: 10.1186/s40001-023-01215-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Accepted: 07/08/2023] [Indexed: 07/23/2023] Open
Abstract
BACKGROUND Prolyl 4-hydroxylase subunit beta (P4HB) has been reported as a suppressor in ferroptosis. However, no known empirical research has focused on exploring relationships between P4HB and prostate cancer (PCa). In this research, we initially examine the function of P4HB in PCa by thorough analysis of numerous databases and proliferation experiment. METHODS We analyzed the correlations of P4HB expression with prognosis, clinical features, mutation genes, tumor heterogeneity, stemness, tumor immune microenvironment and PCa cells using multiple databases and in vitro experiment with R 3.6.3 software and its suitable packages. RESULTS P4HB was significantly upregulated in tumor tissues compared to normal tissues and was closely related to biochemical recurrence-free survival. In terms of clinical correlations, we found that higher P4HB expression was significantly related to older age, higher Gleason score, advanced T stage and residual tumor. Surprisingly, P4HB had highly diagnostic accuracy of radiotherapy resistance (AUC 0.938). TGF beta signaling pathway and dorso ventral axis formation were upregulated in the group of low-expression P4HB. For tumor stemness, P4HB expression was positively related to EREG.EXPss and RNAss, but was negatively associated with ENHss and DNAss with statistical significance. For tumor heterogeneity, P4HB expression was positively related to MATH, but was negatively associated with tumor ploidy and microsatellite instability. For the overall assessment of TME, we observed that P4HB expression was negatively associated with all parameters, including B cells, CD4+ T cells, CD8+ T cells, neutrophils, macrophages, dendritic cells, stromal score, immune score and ESTIMATE score. Spearman analysis showed that P4HB expression was negatively related to TIDE score with statistical significance. In vitro experiment, RT-qPCR and western blot showed that three siRNAs of P4HB were effective on the knockdown of P4HB expression. Furthermore, we observed that the downregulation of P4HB had significant influence on the cell proliferation of six PCa cell lines, including LNCap, C4-2, C4-2B, PC3, DU145 and 22RV1 cells. CONCLUSIONS In this study, we found that P4HB might serve as a prognostic biomarker and predict radiotherapy resistance for PCa patients. Downregulation of P4HB expression could inhibit the cell proliferation of PCa cells.
Collapse
Affiliation(s)
- Dechao Feng
- Department of Urology, Institute of Urology, West China Hospital, Sichuan University, Guoxue Xiang #37, Chengdu, 610041 Sichuan People’s Republic of China
| | - Li Li
- Department of Urology, Institute of Urology, West China Hospital, Sichuan University, Guoxue Xiang #37, Chengdu, 610041 Sichuan People’s Republic of China
| | - Dengxiong Li
- Department of Urology, Institute of Urology, West China Hospital, Sichuan University, Guoxue Xiang #37, Chengdu, 610041 Sichuan People’s Republic of China
| | - Ruicheng Wu
- Department of Urology, Institute of Urology, West China Hospital, Sichuan University, Guoxue Xiang #37, Chengdu, 610041 Sichuan People’s Republic of China
| | - Weizhen Zhu
- Department of Urology, Institute of Urology, West China Hospital, Sichuan University, Guoxue Xiang #37, Chengdu, 610041 Sichuan People’s Republic of China
| | - Jie Wang
- Department of Urology, Institute of Urology, West China Hospital, Sichuan University, Guoxue Xiang #37, Chengdu, 610041 Sichuan People’s Republic of China
| | - Luxia Ye
- Department of Public Research Platform, Taizhou Hospital of Zhejiang Province Affiliated to Wenzhou Medical University, Linhai, China
| | - Ping Han
- Department of Urology, Institute of Urology, West China Hospital, Sichuan University, Guoxue Xiang #37, Chengdu, 610041 Sichuan People’s Republic of China
| |
Collapse
|