1
|
Gao K, Xin Q, Jiang H, Secundo F, Mao X. Efficient expression of OUC-Sb-lip2 in Yarrowia lipolytica and its comprehensive utilization in the enrichment of DHA and EPA from fish oil. Food Chem 2024; 460:140572. [PMID: 39089041 DOI: 10.1016/j.foodchem.2024.140572] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2023] [Revised: 07/14/2024] [Accepted: 07/21/2024] [Indexed: 08/03/2024]
Abstract
Lipases are widely used in the modification of functional lipids, particularly in the enrichment of docosahexaenoic acid (DHA) and eicosapentaenoic acid (EPA). In this study, a lipase named OUC-Sb-lip2 was expressed in Yarrowia lipolytica, achieving a promising enzyme activity of 472.6 U/mL by optimizing the culture medium, notably through olive oil supplementation. A significant proportion (58.8%) of the lipase activity was located in the cells, whereas 41.2% was secreted into the supernatant. Both whole-cell and immobilized OUC-Sb-lip2 were used to enrich DHA and EPA from fish oil. The whole-cell approach increased the DHA and EPA contents to 2.59 and 2.55 times that of the original oil, respectively. Similarly, the immobilized OUC-Sb-lip2 resulted in a 2.00-fold increase in DHA and an 1.99-fold increase in EPA after a 6-h hydrolysis period. Whole cell and the immobilized OUC-Sb-lip2 retained 48.7% and 52.7% of their activity after six cycles of reuse, respectively.
Collapse
Affiliation(s)
- Kunpeng Gao
- State Key Laboratory of Marine Food Processing and Safety Control, College of Food Science and Engineering, Ocean University of China, Qingdao 266404, PR China; Qingdao Key Laboratory of Food Biotechnology, Qingdao, 266404, PR China.; Key Laboratory of Biological Processing of Aquatic Products, China National Light Industry, Qingdao 266404, PR China
| | - Qi Xin
- State Key Laboratory of Marine Food Processing and Safety Control, College of Food Science and Engineering, Ocean University of China, Qingdao 266404, PR China; Qingdao Key Laboratory of Food Biotechnology, Qingdao, 266404, PR China.; Key Laboratory of Biological Processing of Aquatic Products, China National Light Industry, Qingdao 266404, PR China
| | - Hong Jiang
- State Key Laboratory of Marine Food Processing and Safety Control, College of Food Science and Engineering, Ocean University of China, Qingdao 266404, PR China; Qingdao Key Laboratory of Food Biotechnology, Qingdao, 266404, PR China.; Key Laboratory of Biological Processing of Aquatic Products, China National Light Industry, Qingdao 266404, PR China..
| | - Francesco Secundo
- Istituto di Scienze e Tecnologie Chimiche "Giulio Natta", Consiglio Nazionale delle Ricerche via Mario Bianco 9, 20131 Milan, Italy
| | - Xiangzhao Mao
- State Key Laboratory of Marine Food Processing and Safety Control, College of Food Science and Engineering, Ocean University of China, Qingdao 266404, PR China; Laboratory for Marine Drugs and Bioproducts of Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266237, PR China.; Qingdao Key Laboratory of Food Biotechnology, Qingdao, 266404, PR China.; Key Laboratory of Biological Processing of Aquatic Products, China National Light Industry, Qingdao 266404, PR China
| |
Collapse
|
2
|
Jovanovic Macura I, Milanovic D, Tesic V, Major T, Perovic M, Adzic M, Ivkovic S. The Impact of High-Dose Fish Oil Supplementation on Mfsd2a, Aqp4, and Amyloid-β Expression in Retinal Blood Vessels of 5xFAD Alzheimer's Mouse Model. Int J Mol Sci 2024; 25:9400. [PMID: 39273347 PMCID: PMC11394872 DOI: 10.3390/ijms25179400] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2024] [Revised: 08/21/2024] [Accepted: 08/27/2024] [Indexed: 09/15/2024] Open
Abstract
In patients with Alzheimer's disease (AD) and in animal models, the increased accumulation of amyloid β (Aβ) in retinal blood vessels strongly correlates with brain amyloid deposits and cognitive decline. The accumulation of Aβ in blood vessels may result from impaired transcytosis and a dysfunctional ocular glymphatic system in AD. High-dose fish oil (FO) supplementation has been shown to significantly change the expression of major facilitator superfamily domain-containing protein 2a (Mfsd2a), a key regulator of transcytosis, and Aquaporin 4 (Aqp4), an essential component of the glymphatic system in the retinas of WT mice. We examined the expression of Mfsd2a and Aqp4 in the retinas of 4-month-old 5xFAD female mice supplemented with high-dose FO for three weeks. There was a significant increase in Mfsd2a expression in 5xFAD retinas supplemented with FO compared to control 5xFAD mice. Additionally, the increase in Aqp4 expression observed in 4-month-old 5xFAD retinas, indicative of an impaired glymphatic system, was significantly decreased. Simultaneously, Aβ accumulation in 5xFAD retinal blood vessels was reduced following FO supplementation. These findings suggest that high-dose FO supplementation could serve as an adjunct in developing new treatments aimed at improving the regulation of transcytosis or the function of the glymphatic system in the AD retina.
Collapse
Affiliation(s)
- Irena Jovanovic Macura
- Institute for Biological Research "Sinisa Stankovic", National Institute of Republic of Serbia, University of Belgrade, 11000 Belgrade, Serbia
| | - Desanka Milanovic
- Institute for Biological Research "Sinisa Stankovic", National Institute of Republic of Serbia, University of Belgrade, 11000 Belgrade, Serbia
| | - Vesna Tesic
- Institute for Biological Research "Sinisa Stankovic", National Institute of Republic of Serbia, University of Belgrade, 11000 Belgrade, Serbia
| | - Tamara Major
- Faculty of Pharmacy, University of Belgrade, 11000 Belgrade, Serbia
| | - Milka Perovic
- Institute for Biological Research "Sinisa Stankovic", National Institute of Republic of Serbia, University of Belgrade, 11000 Belgrade, Serbia
| | - Miroslav Adzic
- Vinca-Institute for Nuclear Sciences, National Institute of Republic of Serbia, University of Belgrade, 11000 Belgrade, Serbia
| | - Sanja Ivkovic
- Vinca-Institute for Nuclear Sciences, National Institute of Republic of Serbia, University of Belgrade, 11000 Belgrade, Serbia
| |
Collapse
|
3
|
Berkowitz BA, Paruchuri A, Stanek J, Abdul-Nabi M, Podolsky RH, Bustos AH, Childers KL, Murphy GG, Stangis K, Roberts R. Biomarker evidence of early vision and rod energy-linked pathophysiology benefits from very low dose DMSO in 5xFAD mice. Acta Neuropathol Commun 2024; 12:85. [PMID: 38822433 PMCID: PMC11140992 DOI: 10.1186/s40478-024-01799-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Accepted: 05/20/2024] [Indexed: 06/03/2024] Open
Abstract
Here, we test whether early visual and OCT rod energy-linked biomarkers indicating pathophysiology in nicotinamide nucleotide transhydrogenase (Nnt)-null 5xFAD mice also occur in Nnt-intact 5xFAD mice and whether these biomarkers can be pharmacologically treated. Four-month-old wild-type or 5xFAD C57BL/6 substrains with either a null (B6J) Nnt or intact Nnt gene (B6NTac) and 5xFAD B6J mice treated for one month with either R-carvedilol + vehicle or only vehicle (0.01% DMSO) were studied. The contrast sensitivity (CS), external limiting membrane-retinal pigment epithelium (ELM-RPE) thickness (a proxy for low pH-triggered water removal), profile shape of the hyperreflective band just posterior to the ELM (i.e., the mitochondrial configuration within photoreceptors per aspect ratio [MCP/AR]), and retinal laminar thickness were measured. Both wild-type substrains showed similar visual performance indices and dark-evoked ELM-RPE contraction. The lack of a light-dark change in B6NTac MCP/AR, unlike in B6J mice, is consistent with relatively greater mitochondrial efficiency. 5xFAD B6J mice, but not 5xFAD B6NTac mice, showed lower-than-WT CS. Light-adapted 5xFAD substrains both showed abnormal ELM-RPE contraction and greater-than-WT MCP/AR contraction. The inner retina and superior outer retina were thinner. Treating 5xFAD B6J mice with R-carvedilol + DMSO or DMSO alone corrected CS and ELM-RPE contraction but not supernormal MCP/AR contraction or laminar thinning. These results provide biomarker evidence for prodromal photoreceptor mitochondrial dysfunction/oxidative stress/oxidative damage, which is unrelated to visual performance, as well as the presence of the Nnt gene. This pathophysiology is druggable in 5xFAD mice.
Collapse
Affiliation(s)
- Bruce A Berkowitz
- Department of Ophthalmology, Visual and Anatomical Sciences, Wayne State University School of Medicine, 540 E. Canfield, Detroit, MI, 48201, USA.
| | - Anuhya Paruchuri
- Department of Ophthalmology, Visual and Anatomical Sciences, Wayne State University School of Medicine, 540 E. Canfield, Detroit, MI, 48201, USA
| | - Josh Stanek
- Department of Ophthalmology, Visual and Anatomical Sciences, Wayne State University School of Medicine, 540 E. Canfield, Detroit, MI, 48201, USA
| | - Mura Abdul-Nabi
- Department of Ophthalmology, Visual and Anatomical Sciences, Wayne State University School of Medicine, 540 E. Canfield, Detroit, MI, 48201, USA
| | - Robert H Podolsky
- Biostatistics and Study Methodology, Children's National Hospital, Silver Spring, MD, USA
| | | | | | - Geoffrey G Murphy
- Department of Molecular and Integrative Physiology, Molecular Behavioral Neuroscience Institute, University of Michigan Medical School, Ann Arbor, MI, USA
- Michigan Neuroscience Institute, University of Michigan Medical School, Ann Arbor, MI, USA
| | - Katherine Stangis
- Michigan Neuroscience Institute, University of Michigan Medical School, Ann Arbor, MI, USA
| | - Robin Roberts
- Department of Ophthalmology, Visual and Anatomical Sciences, Wayne State University School of Medicine, 540 E. Canfield, Detroit, MI, 48201, USA
| |
Collapse
|
4
|
Henrio Marcellin DF, Huang J. Exploring Zika Virus Impact on Endothelial Permeability: Insights into Transcytosis Mechanisms and Vascular Leakage. Viruses 2024; 16:629. [PMID: 38675970 PMCID: PMC11054372 DOI: 10.3390/v16040629] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Revised: 04/03/2024] [Accepted: 04/13/2024] [Indexed: 04/28/2024] Open
Abstract
Treating brain disease is challenging, and the Zika virus (ZIKV) presents a unique obstacle due to its neuroinvasive nature. In this review, we discuss the immunopathogenesis of ZIKV and explore how the virus interacts with the body's immune responses and the role of the protein Mfsd2a in maintaining the integrity of the blood-brain barrier (BBB) during ZIKV neuroinvasion. ZIKV has emerged as a significant public health concern due to its association with severe neurological problems, including microcephaly and Gillain-Barré Syndrome (GBS). Understanding its journey through the brain-particularly its interaction with the placenta and BBB-is crucial. The placenta, which is designed to protect the fetus, becomes a pathway for ZIKV when infected. The BBB is composed of brain endothelial cells, acts as a second barrier, and protects the fetal brain. However, ZIKV finds ways to disrupt these barriers, leading to potential damage. This study explores the mechanisms by which ZIKV enters the CNS and highlights the role of transcytosis, which allows the virus to move through the cells without significantly disrupting the BBB. Although the exact mechanisms of transcytosis are unclear, research suggests that ZIKV may utilize this pathway.
Collapse
Affiliation(s)
| | - Jufang Huang
- Department of Anatomy and Neurobiology, School of Basic Medical Sciences, Central South University, Changsha 410013, China;
| |
Collapse
|
5
|
Ma J, Kitaura H, Ohori F, Noguchi T, Marahleh A, Kinjo R, Kanou K, Ren J, Miura M, Narita K, Mizoguchi I. Generating Bone Marrow Chimeric Mouse Using GPR120 Deficient Mouse for the Study of DHA Inhibitory Effect on Osteoclast Formation and Bone Resorption. Int J Mol Sci 2023; 24:17000. [PMID: 38069322 PMCID: PMC10707107 DOI: 10.3390/ijms242317000] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Revised: 11/22/2023] [Accepted: 11/29/2023] [Indexed: 12/18/2023] Open
Abstract
Docosahexaenoic acid (DHA) is an omega-3 fatty acid that exerts physiological effects via G protein-coupled receptor 120 (GPR120). In our previous studies, we figured out the inhibitory effects of DHA on TNF-α (Tumor necrosis factor-α)-induced osteoclastogenesis via GPR120 in vivo. Moreover, DHA directly suppressed RANKL expression in osteoblasts via GPR120 in vitro. In this study, we generated bone marrow chimeric mice using GPR120 deficient mice (GPR120-KO) to study the inhibitory effects of DHA on bone resorption and osteoclast formation. Bone marrow cells of wild-type (WT) or GPR120-KO mice were transplanted into irradiated recipient mice, which were WT or GPR120 deficient mice. The resulting chimeric mice contained stromal cells from the recipient and bone marrow cells, including osteoclast precursors, from the donor. These chimeric mice were used to perform a series of histological and microfocus computed tomography (micro-CT) analyses after TNF-α injection for induction of osteoclast formation with or without DHA. Osteoclast number and bone resorption were found to be significantly increased in chimeric mice, which did not express GPR120 in stromal cells, compared to chimeric mice, which expressed GPR120 in stromal cells. DHA was also found to suppress specific signaling pathways. We summarized that DHA suppressed TNF-α-induced stromal-dependent osteoclast formation and bone resorption via GPR120.
Collapse
Affiliation(s)
- Jinghan Ma
- Division of Orthodontics and Dentofacial Orthopedics, Tohoku University Graduate School of Dentistry, 4-1, Seiryo-machi, Aoba-ku, Sendai 980-8575, Japan; (J.M.); (F.O.); (T.N.); (R.K.); (K.K.); (J.R.); (M.M.); (K.N.); (I.M.)
| | - Hideki Kitaura
- Division of Orthodontics and Dentofacial Orthopedics, Tohoku University Graduate School of Dentistry, 4-1, Seiryo-machi, Aoba-ku, Sendai 980-8575, Japan; (J.M.); (F.O.); (T.N.); (R.K.); (K.K.); (J.R.); (M.M.); (K.N.); (I.M.)
| | - Fumitoshi Ohori
- Division of Orthodontics and Dentofacial Orthopedics, Tohoku University Graduate School of Dentistry, 4-1, Seiryo-machi, Aoba-ku, Sendai 980-8575, Japan; (J.M.); (F.O.); (T.N.); (R.K.); (K.K.); (J.R.); (M.M.); (K.N.); (I.M.)
| | - Takahiro Noguchi
- Division of Orthodontics and Dentofacial Orthopedics, Tohoku University Graduate School of Dentistry, 4-1, Seiryo-machi, Aoba-ku, Sendai 980-8575, Japan; (J.M.); (F.O.); (T.N.); (R.K.); (K.K.); (J.R.); (M.M.); (K.N.); (I.M.)
| | - Aseel Marahleh
- Frontier Research Institute for Interdisciplinary Sciences, Tohoku University, Sendai 980-8575, Japan;
| | - Ria Kinjo
- Division of Orthodontics and Dentofacial Orthopedics, Tohoku University Graduate School of Dentistry, 4-1, Seiryo-machi, Aoba-ku, Sendai 980-8575, Japan; (J.M.); (F.O.); (T.N.); (R.K.); (K.K.); (J.R.); (M.M.); (K.N.); (I.M.)
| | - Kayoko Kanou
- Division of Orthodontics and Dentofacial Orthopedics, Tohoku University Graduate School of Dentistry, 4-1, Seiryo-machi, Aoba-ku, Sendai 980-8575, Japan; (J.M.); (F.O.); (T.N.); (R.K.); (K.K.); (J.R.); (M.M.); (K.N.); (I.M.)
| | - Jiayi Ren
- Division of Orthodontics and Dentofacial Orthopedics, Tohoku University Graduate School of Dentistry, 4-1, Seiryo-machi, Aoba-ku, Sendai 980-8575, Japan; (J.M.); (F.O.); (T.N.); (R.K.); (K.K.); (J.R.); (M.M.); (K.N.); (I.M.)
| | - Mariko Miura
- Division of Orthodontics and Dentofacial Orthopedics, Tohoku University Graduate School of Dentistry, 4-1, Seiryo-machi, Aoba-ku, Sendai 980-8575, Japan; (J.M.); (F.O.); (T.N.); (R.K.); (K.K.); (J.R.); (M.M.); (K.N.); (I.M.)
| | - Kohei Narita
- Division of Orthodontics and Dentofacial Orthopedics, Tohoku University Graduate School of Dentistry, 4-1, Seiryo-machi, Aoba-ku, Sendai 980-8575, Japan; (J.M.); (F.O.); (T.N.); (R.K.); (K.K.); (J.R.); (M.M.); (K.N.); (I.M.)
| | - Itaru Mizoguchi
- Division of Orthodontics and Dentofacial Orthopedics, Tohoku University Graduate School of Dentistry, 4-1, Seiryo-machi, Aoba-ku, Sendai 980-8575, Japan; (J.M.); (F.O.); (T.N.); (R.K.); (K.K.); (J.R.); (M.M.); (K.N.); (I.M.)
| |
Collapse
|
6
|
Jovanovic Macura I, Zivanovic A, Perovic M, Ciric J, Major T, Kanazir S, Ivkovic S. The Expression of Major Facilitator Superfamily Domain-Containing Protein2a (Mfsd2a) and Aquaporin 4 Is Altered in the Retinas of a 5xFAD Mouse Model of Alzheimer's Disease. Int J Mol Sci 2023; 24:14092. [PMID: 37762391 PMCID: PMC10531902 DOI: 10.3390/ijms241814092] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Revised: 09/03/2023] [Accepted: 09/11/2023] [Indexed: 09/29/2023] Open
Abstract
Cerebral amyloid angiopathy (CAA) is characterized by amyloid β (Aβ) accumulation in the blood vessels and is associated with cognitive impairment in Alzheimer's disease (AD). The increased accumulation of Aβ is also present in the retinal blood vessels and a significant correlation between retinal and brain amyloid deposition was demonstrated in living patients and animal AD models. The Aβ accumulation in the retinal blood vessels can be the result of impaired transcytosis and/or the dysfunctional ocular glymphatic system in AD and during aging. We analyzed the changes in the mRNA and protein expression of major facilitator superfamily domain-containing protein2a (Mfsd2a), the major regulator of transcytosis, and of Aquaporin4 (Aqp4), the key player implicated in the functioning of the glymphatic system, in the retinas of 4- and 12-month-old WT and 5xFAD female mice. A strong decrease in the Mfsd2a mRNA and protein expression was observed in the 4 M and 12 M 5xFAD and 12 M WT retinas. The increase in the expression of srebp1-c could be at least partially responsible for the Mfsd2a decrease in the 4 M 5xFAD retinas. The decrease in the pericyte (CD13+) coverage of retinal blood vessels in the 4 M and 12 M 5xFAD retinas and in the 12 M WT retinas suggests that pericyte loss could be associated with the Mfsd2a downregulation in these experimental groups. The observed increase in Aqp4 expression in 4 M and 12 M 5xFAD and 12 M WT retinas accompanied by the decreased perivascular Aqp4 expression is indicative of the impaired glymphatic system. The findings in this study reveal the impaired Mfsd2a and Aqp4 expression and Aqp4 perivascular mislocalization in retinal blood vessels during physiological (WT) and pathological (5xFAD) aging, indicating their importance as putative targets for the development of new treatments that can improve the regulation of transcytosis or the function of the glymphatic system.
Collapse
Affiliation(s)
- Irena Jovanovic Macura
- Institute for Biological Research “Sinisa Stankovic”, National Institute of Republic of Serbia, University of Belgrade, 11060 Belgrade, Serbia; (I.J.M.); (M.P.); (J.C.); (S.K.)
| | - Ana Zivanovic
- Vinca—Institute for Nuclear Sciences, National Institute of Republic of Serbia, University of Belgrade, 11351 Belgrade, Serbia;
| | - Milka Perovic
- Institute for Biological Research “Sinisa Stankovic”, National Institute of Republic of Serbia, University of Belgrade, 11060 Belgrade, Serbia; (I.J.M.); (M.P.); (J.C.); (S.K.)
| | - Jelena Ciric
- Institute for Biological Research “Sinisa Stankovic”, National Institute of Republic of Serbia, University of Belgrade, 11060 Belgrade, Serbia; (I.J.M.); (M.P.); (J.C.); (S.K.)
| | - Tamara Major
- Faculty of Pharmacy, University of Belgrade, 11221 Belgrade, Serbia;
| | - Selma Kanazir
- Institute for Biological Research “Sinisa Stankovic”, National Institute of Republic of Serbia, University of Belgrade, 11060 Belgrade, Serbia; (I.J.M.); (M.P.); (J.C.); (S.K.)
| | - Sanja Ivkovic
- Vinca—Institute for Nuclear Sciences, National Institute of Republic of Serbia, University of Belgrade, 11351 Belgrade, Serbia;
| |
Collapse
|