1
|
Gadji M, Kengne-Ouafo JA, Tchouakui M, Wondji MJ, Mugenzi LMJ, Hearn J, Boyomo O, Wondji CS. Genome-wide association studies unveil major genetic loci driving insecticide resistance in Anopheles funestus in four eco-geographical settings across Cameroon. BMC Genomics 2024; 25:1202. [PMID: 39695386 DOI: 10.1186/s12864-024-11148-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2024] [Accepted: 12/11/2024] [Indexed: 12/20/2024] Open
Abstract
BACKGROUND Insecticide resistance is jeopardising malaria control efforts in Africa. Deciphering the evolutionary dynamics of mosquito populations country-wide is essential for designing effective and sustainable national and subnational tailored strategies to accelerate malaria elimination efforts. Here, we employed genome-wide association studies through pooled template sequencing to compare four eco-geographically different populations of the major vector, Anopheles funestus, across a South North transect in Cameroon, aiming to identify genomic signatures of adaptive responses to insecticides. RESULTS Our analysis revealed limited population structure within Northern and Central regions (FST<0.02), suggesting extensive gene flow, while populations from the Littoral/Coastal region exhibited more distinct genetic patterns (FST>0.049). Greater genetic differentiation was observed at known resistance-associated loci, resistance-to-pyrethroids 1 (rp1) (2R chromosome) and CYP9 (X chromosome), with varying signatures of positive selection across populations. Allelic variation between variants underscores the pervasive impact of selection pressures, with rp1 variants more prevalent in Central and Northern populations (FST>0.3), and the CYP9 associated variants more pronounced in the Littoral/Coastal region (FST =0.29). Evidence of selective sweeps was supported by negative Tajima's D and reduced genetic diversity in all populations, particularly in Central (Elende) and Northern (Tibati) regions. Genomic variant analysis identified novel missense mutations and signatures of complex genomic alterations such as duplications, deletions, transposable element (TE) insertions, and chromosomal inversions, all associated with selective sweeps. A 4.3 kb TE insertion was fixed in all populations with Njombe Littoral/Coastal population, showing higher frequency of CYP9K1 (G454A), a known resistance allele and TE upstream compared to elsewhere. CONCLUSION Our study uncovered regional variations in insecticide resistance candidate variants, emphasizing the need for a streamlined DNA-based diagnostic assay for genomic surveillance across Africa. These findings will contribute to the development of tailored resistance management strategies crucial for addressing the dynamic challenges of malaria control in Cameroon.
Collapse
Affiliation(s)
- Mahamat Gadji
- Centre for Research in Infectious Diseases (CRID), P.O. BOX 13591, Yaoundé, Cameroon.
- The University of Yaoundé 1, P.O BOX 812, Yaoundé, Cameroon.
| | - Jonas A Kengne-Ouafo
- Centre for Research in Infectious Diseases (CRID), P.O. BOX 13591, Yaoundé, Cameroon
| | - Magellan Tchouakui
- Centre for Research in Infectious Diseases (CRID), P.O. BOX 13591, Yaoundé, Cameroon
| | - Murielle J Wondji
- Centre for Research in Infectious Diseases (CRID), P.O. BOX 13591, Yaoundé, Cameroon
- Liverpool School of Tropical Medicine, Pembroke Place Liverpool L3 5QA UK, Liverpool, UK
| | - Leon M J Mugenzi
- Syngenta Crop Protection, Werk Stein, Schaffhauserstrasse, Stein, Switzerland
| | - Jack Hearn
- Centre for Epidemiology and Planetary Health, Scotland's Rural College (SRUC), RAVIC, 9 Inverness Campus, Inverness, UK
| | - Onana Boyomo
- The University of Yaoundé 1, P.O BOX 812, Yaoundé, Cameroon
| | - Charles S Wondji
- Centre for Research in Infectious Diseases (CRID), P.O. BOX 13591, Yaoundé, Cameroon.
- Liverpool School of Tropical Medicine, Pembroke Place Liverpool L3 5QA UK, Liverpool, UK.
| |
Collapse
|
2
|
Chrissian C, Stawski ML, Williams AP, Stark RE. Elucidating structure and metabolism of insect biomaterials by solid-state NMR. SOLID STATE NUCLEAR MAGNETIC RESONANCE 2024; 134:101974. [PMID: 39447488 PMCID: PMC11625603 DOI: 10.1016/j.ssnmr.2024.101974] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Revised: 10/08/2024] [Accepted: 10/10/2024] [Indexed: 10/26/2024]
Abstract
Among the many natural biomaterials for which information on atomic-level structure and reorientational motion can offer essential clues to function, insoluble multi-component composites with limited degrees of order are among the most challenging to study. Despite its limited sensitivity, solid-state NMR (ssNMR) is often the technique of choice to ferret out these details in carbon- and nitrogen-rich materials: this spectroscopic approach can probe many biomaterials in their native or near-native states, either with or without the introduction of stable NMR-active isotopes, or with the assistance of dynamic nuclear polarization technology. During a span of close to four decades, such research targets and ssNMR approaches have been exemplified by insects, a diverse and evolutionarily agile group of organisms with global impacts that include ecology, agriculture, and human disease. In this short review, we present case studies on insect cuticles that range from protective exoskeletons and egg capsules to the wing structures that enable flight and showcase nature's awe-inspiring beauty, highlighting the use of ssNMR spectroscopy to profile chemical composition, elucidate macromolecular architecture, and monitor metabolic development in these fascinating biological assemblies.
Collapse
Affiliation(s)
- Christine Chrissian
- Department of Chemistry and Biochemistry, City College of New York and CUNY Institute for Macromolecular Assemblies, New York, NY, 10031, USA
| | - Michael L Stawski
- Department of Chemistry and Biochemistry, City College of New York and CUNY Institute for Macromolecular Assemblies, New York, NY, 10031, USA
| | - Andrew P Williams
- Department of Chemistry and Biochemistry, City College of New York and CUNY Institute for Macromolecular Assemblies, New York, NY, 10031, USA
| | - Ruth E Stark
- Department of Chemistry and Biochemistry, City College of New York and CUNY Institute for Macromolecular Assemblies, New York, NY, 10031, USA; Program in Biochemistry, The Graduate Center of the City University of New York, New York, NY, 10016, USA; Program in Chemistry, The Graduate Center of the City University of New York, New York, NY, 10016, USA.
| |
Collapse
|
3
|
Camacho E, Dong Y, Chrissian C, Cordero RJ, Saravia RG, Anglero-Rodriguez Y, Smith DF, Jacobs E, Hartshorn I, Patiño-Medina JA, DePasquale M, Dziedzic A, Jedlicka A, Smith B, Mlambo G, Tripathi A, Broderick NA, Stark RE, Dimopoulos G, Casadevall A. Dietary L-3,4-dihydroxyphenylalanine (L-DOPA) augments cuticular melanization in Anopheles mosquitos while reducing their lifespan and malaria parasite burden. RESEARCH SQUARE 2024:rs.3.rs-5167892. [PMID: 39483913 PMCID: PMC11527263 DOI: 10.21203/rs.3.rs-5167892/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/03/2024]
Abstract
L-3,4-dihydroxyphenylalanine (L-DOPA), a naturally occurring tyrosine derivative, is prevalent in environments that include mosquito habitats, potentially serving as part of their diet. Given its role as a precursor for melanin synthesis we investigated the effect of dietary L-DOPA on mosquito physiology and immunity to Plasmodium falciparum and Cryptococcus neoformans infection. Dietary L-DOPA was incorporated into mosquito melanin via a non-canonical pathway and had profound transcriptional effects that were associated with enhanced immunity, increased pigmentation, and reduced lifespan. Increased melanization resulted in an enhanced capacity to absorb electromagnetic radiation that affected mosquito temperatures. Bacteria in the mosquito microbiome were sources of dopamine, which is a substrate for melanization. Our results illustrate how an environmentally abundant amino acid analogue can affect mosquito physiology and suggest its potential usefulness as an environmentally friendly vector control agent to reduce malaria transmission, warranting further research and field studies.
Collapse
|
4
|
Saizonou H, Impoinvil LM, Derilus D, Omoke D, Okeyo S, Dada N, Corredor C, Mulder N, Lenhart A, Ochomo E, Djogbénou LS. Transcriptomic analysis of Anopheles gambiae from Benin reveals overexpression of salivary and cuticular proteins associated with cross-resistance to pyrethroids and organophosphates. BMC Genomics 2024; 25:348. [PMID: 38582836 PMCID: PMC10998338 DOI: 10.1186/s12864-024-10261-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Accepted: 03/27/2024] [Indexed: 04/08/2024] Open
Abstract
BACKGROUND Insecticide resistance (IR) is one of the major threats to malaria vector control programs in endemic countries. However, the mechanisms underlying IR are poorly understood. Thus, investigating gene expression patterns related to IR can offer important insights into the molecular basis of IR in mosquitoes. In this study, RNA-Seq was used to characterize gene expression in Anopheles gambiae surviving exposure to pyrethroids (deltamethrin, alphacypermethrin) and an organophosphate (pirimiphos-methyl). RESULTS Larvae of An. gambiae s.s. collected from Bassila and Djougou in Benin were reared to adulthood and phenotyped for IR using a modified CDC intensity bottle bioassay. The results showed that mosquitoes from Djougou were more resistant to pyrethroids (5X deltamethrin: 51.7% mortality; 2X alphacypermethrin: 47.4%) than Bassila (1X deltamethrin: 70.7%; 1X alphacypermethrin: 77.7%), while the latter were more resistant to pirimiphos-methyl (1.5X: 48.3% in Bassila and 1X: 21.5% in Djougou). RNA-seq was then conducted on resistant mosquitoes, non-exposed mosquitoes from the same locations and the laboratory-susceptible An. gambiae s.s. Kisumu strain. The results showed overexpression of detoxification genes, including cytochrome P450s (CYP12F2, CYP12F3, CYP4H15, CYP4H17, CYP6Z3, CYP9K1, CYP4G16, and CYP4D17), carboxylesterase genes (COEJHE5E, COE22933) and glutathione S-transferases (GSTE2 and GSTMS3) in all three resistant mosquito groups analyzed. Genes encoding cuticular proteins (CPR130, CPR10, CPR15, CPR16, CPR127, CPAP3-C, CPAP3-B, and CPR76) were also overexpressed in all the resistant groups, indicating their potential role in cross resistance in An. gambiae. Salivary gland protein genes related to 'salivary cysteine-rich peptide' and 'salivary secreted mucin 3' were also over-expressed and shared across all resistant groups. CONCLUSION Our results suggest that in addition to metabolic enzymes, cuticular and salivary gland proteins could play an important role in cross-resistance to multiple classes of insecticides in Benin. These genes warrant further investigation to validate their functional role in An. gambiae resistance to insecticides.
Collapse
Affiliation(s)
- Helga Saizonou
- Tropical Infectious Diseases Research Centre (TIDRC), University of Abomey-Calavi (UAC), Abomey-Calavi, Benin.
| | - Lucy Mackenzie Impoinvil
- Entomology Branch, Division of Parasitic Diseases and Malaria, Centers for Disease Control and Prevention, Atlanta, GA, USA
| | - Dieunel Derilus
- Entomology Branch, Division of Parasitic Diseases and Malaria, Centers for Disease Control and Prevention, Atlanta, GA, USA
| | - Diana Omoke
- Kenya Medical Research Institute (KEMRI), Centre for Global Health Research (CGHR), Kisumu, Kenya
| | - Stephen Okeyo
- Kenya Medical Research Institute (KEMRI), Centre for Global Health Research (CGHR), Kisumu, Kenya
| | - Nsa Dada
- Tropical Infectious Diseases Research Centre (TIDRC), University of Abomey-Calavi (UAC), Abomey-Calavi, Benin
- School of Life Sciences, Arizona State University, Tempe, AZ, USA
| | - Claudia Corredor
- Entomology Branch, Division of Parasitic Diseases and Malaria, Centers for Disease Control and Prevention, Atlanta, GA, USA
| | - Nicola Mulder
- Human, Heredity, and Health in Africa H3ABionet network, Cape Town, South Africa
| | - Audrey Lenhart
- Entomology Branch, Division of Parasitic Diseases and Malaria, Centers for Disease Control and Prevention, Atlanta, GA, USA
| | - Eric Ochomo
- Kenya Medical Research Institute (KEMRI), Centre for Global Health Research (CGHR), Kisumu, Kenya
- Department of Vector Biology, Liverpool School of Tropical Medicine, Liverpool, UK
| | - Luc S Djogbénou
- Tropical Infectious Diseases Research Centre (TIDRC), University of Abomey-Calavi (UAC), Abomey-Calavi, Benin.
- Regional Institute of Public Health (IRSP), Ouidah, Benin.
- Department of Vector Biology, Liverpool School of Tropical Medicine, Liverpool, UK.
| |
Collapse
|
5
|
Gawali PP, Toragall V, Madhurya L, Yannam SK, Ezhil Vendan S. Physicochemical comparison of chitin characteristics in three major stored-product beetle pests: Implications for biofumigant toxicity. Int J Biol Macromol 2024; 265:130759. [PMID: 38493810 DOI: 10.1016/j.ijbiomac.2024.130759] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Revised: 02/22/2024] [Accepted: 03/07/2024] [Indexed: 03/19/2024]
Abstract
The present study investigates the chitin properties of stored-product insect pests and their association with the fumigant toxicity of garlic essential oil. Chitin isolates of Callosobruchus maculatus, Sitophilus oryzae, and Tribolium castaneum adults were characterized using FT-IR, XRD, EA, SEM-EDS, and NMR techniques. Fumigant toxicity assay was performed under airtight condition in glass vial. The S. oryzae contains highest chitin content (19 %), followed by T. castaneum (10 %) and C. maculatus (8 %). The degree of crystallinity was lower in C. maculatus (67.13 %) than in S. oryzae (77.05 %) and T. castaneum (76.56 %). Morphologically, C. maculatus chitin displayed a flat lamellar surface with pores, while S. oryzae and T. castaneum exhibited densely arranged microfibrils based surfaces. Fumigant toxicity assays revealed varied susceptibility levels, C. maculatus exhibited higher susceptibility (0.27 μL/L air of LC50) compared to S. oryzae and T. castaneum (14.35 and 3.74 μL/L air of LC50, respectively) to garlic essential oil. The higher chitin content, greater crystallinity, and densely arranged structures in S. oryzae might contribute to its tolerance towards fumigant. Additionally, physico-chemical properties and penetration potentiality of the bioactive constituents might be linked to the toxicity in insects. Understanding these relations can enrich knowledge of chitin's role in fumigant toxicity mechanism.
Collapse
Affiliation(s)
- Pratiksha Prabhakar Gawali
- Traditional Foods and Applied Nutrition Department, CSIR-Central Food Technological Research Institute, Mysuru 570 020, India; Academy of Scientific and Innovative Research, Ghaziabad 201 002, India
| | - Veeresh Toragall
- Academy of Scientific and Innovative Research, Ghaziabad 201 002, India; Department of Biochemistry, CSIR-Central Food Technological Research Institute, Mysuru 570 020, India
| | - Lokesh Madhurya
- Food Protectants and Infestation Control Department, CSIR-Central Food Technological Research Institute, Mysore 570 020, India
| | - Sudheer Kumar Yannam
- Traditional Foods and Applied Nutrition Department, CSIR-Central Food Technological Research Institute, Mysuru 570 020, India; Academy of Scientific and Innovative Research, Ghaziabad 201 002, India
| | - Subramanian Ezhil Vendan
- Academy of Scientific and Innovative Research, Ghaziabad 201 002, India; Food Protectants and Infestation Control Department, CSIR-Central Food Technological Research Institute, Mysore 570 020, India.
| |
Collapse
|
6
|
Li Y, Zhang B, Zhang J, Yang N, Yang D, Zou K, Xi Y, Chen G, Zhang X. The inappropriate application of imidacloprid destroys the ability of predatory natural enemies to control pests in the food chain: A case study of the feeding behavior of Orius similis on Frankliniella occidentalis. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 272:116040. [PMID: 38306817 DOI: 10.1016/j.ecoenv.2024.116040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Revised: 01/02/2024] [Accepted: 01/27/2024] [Indexed: 02/04/2024]
Abstract
Insecticides are an indispensable and important tool for agricultural production. However, the inappropriate application of insecticides can cause damage to the food chain and ecosystem. Orius similis is an important predatory and natural enemy of Frankliniella occidentalis. Imidacloprid is widely used to control pests, but will inevitably exert adverse effects on O. similis. In order to determine the effect of different imidacloprid treatments on the ability of O. similis to prey on the 2nd-instar nymphs of F. occidentalis, we determined the toxicity and predation of imidacloprid on different stages of O. similis under contact and ingestion treatments. In addition, we used the Holling disc equation to evaluate the ability of O. similis to search and exhibit predatory activity following contact and ingestion treatments. Analysis showed that the highest LC10 and LC20 values for imidacloprid contact and ingestion toxicity treatment were 17.06 mg/L and 23.74 mg/L, respectively. Both imidacloprid treatments led toa reduction in the predatory of O. similis on prey. The functional responses of the 3rd to 5th instar nymphs, along with female and male O. similis adults to the 2nd-instar nymphs of F. occidentalis were consistent with the Holling type II response following contact and ingestion with imidacloprid. However, following imidacloprid treatment, the handing time (Th) of O. similis with single F. occidentalis was prolonged and the instantaneous attack rate (a) was reduced after imidacloprid treatment. The predatory capacity (a/Th) of female O. similis adults when treated with the LC10 concentration of imidacloprid by ingestion was 52.85; this was lower than that of the LC10 concentration of imidacloprid in the contact treatment (57.67). The extent of predation of O. similis on the 2nd-instar nymphs of F. occidentalis was positively correlated with prey density, although the search effect was negatively correlated with prey density. The most extensive search effect was exhibited by adult O. similis females. Simulations with the Hessell-Varley interference model showed that an increase in the number of O. similis would reduce search efficiency regardless of whether they were treated with imidacloprid or not. Thus, O. similis, especially female adults, exhibited strong potential for controlling the 2nd-instar nymphs of F. occidentalis. The toxicity of ingestion following treatment with the same concentration of imidacloprid in O. similis was greater than that of contact treatment. When using O. similis to control F. occidentalis in the field, we should increase the number of female adults released, and prolong the interval between imidacloprid treatment and O. similis exposure. This strategy will improve the control ability of O. similis, coordinate both chemical and biological control, reduce the impact of pesticides on the environment, and improve the efficiency of agricultural production.
Collapse
Affiliation(s)
- Yiru Li
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, College of Plant Protection, Yunnan Agricultural University, 650201 Kunming, China
| | - Bo Zhang
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, College of Plant Protection, Yunnan Agricultural University, 650201 Kunming, China
| | - Jinlong Zhang
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, College of Plant Protection, Yunnan Agricultural University, 650201 Kunming, China
| | - Nian Yang
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, College of Plant Protection, Yunnan Agricultural University, 650201 Kunming, China
| | - Dan Yang
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, College of Plant Protection, Yunnan Agricultural University, 650201 Kunming, China
| | - Kun Zou
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, College of Plant Protection, Yunnan Agricultural University, 650201 Kunming, China
| | - Yangyan Xi
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, College of Plant Protection, Yunnan Agricultural University, 650201 Kunming, China
| | - Guohua Chen
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, College of Plant Protection, Yunnan Agricultural University, 650201 Kunming, China
| | - Xiaoming Zhang
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, College of Plant Protection, Yunnan Agricultural University, 650201 Kunming, China.
| |
Collapse
|
7
|
Wang Y, Wang X, Brown DJ, An M, Xue RD, Liu N. Insecticide resistance: Status and potential mechanisms in Aedes aegypti. PESTICIDE BIOCHEMISTRY AND PHYSIOLOGY 2023; 195:105577. [PMID: 37666603 DOI: 10.1016/j.pestbp.2023.105577] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Revised: 08/08/2023] [Accepted: 08/09/2023] [Indexed: 09/06/2023]
Abstract
Aedes aegypti, an important vector in the transmission of human diseases, has developed resistance to two commonly used classes of insecticides, pyrethroids and organophosphates, in populations worldwide. This study examined sensitivity/resistance to chlorpyrifos, fenitrothion, malathion, deltamethrin, permethrin, and β-cyfluthrin, along with possible metabolic detoxification and target site insensitivity, in three Aedes aegypti mosquito strains. The resistant strain (PR) had developed high levels of resistance to all three pyrethroid insecticides compared to a susceptible population, with 6, 500-, 3200- and 17,000-fold resistance to permethrin, β-cyfluthrin, and deltamethrin, respectively. A newly emerged Ae. aegypti population collected from St. Augustine, Florida (AeStA) showed elevated levels of resistance to malathion (12-fold) and permethrin (25-fold). Synergists DEF (S,S,S,-tributyl phosphorotrithioate) and DEM (diethyl maleate) showed no or minor effects on insecticide resistance in both the AeStA and PRG20strains, but PBO (piperonyl butoxide) completely abolished resistance to both malathion and permethrin in AeStA and partially suppressed resistance in PR. The voltage-gated sodium channel sequences were examined to explore the mechanism that only partially inhibited the suppression of resistance to PBO in PR. Two mutations, V1016G/I and F1534C substitutions, both of which are associated with the development of pyrethroid resistance, were identified in the PRG20 strain but not in AeStA. These results suggest that while cytochrome P450 mediated detoxification may not be solely responsible, it is the major mechanism governing the development of resistance in AeStA. Both P450 mediated detoxification and target site insensitivity through the mutations in the voltage-gated sodium channel contribute to the high levels of resistance in the PRG20 strain.
Collapse
Affiliation(s)
- Yifan Wang
- Department of Entomology and Plant Pathology, School of Agriculture, Auburn University, Auburn, AL 36849, United States of America.
| | - Xin Wang
- Department of Entomology and Plant Pathology, School of Agriculture, Auburn University, Auburn, AL 36849, United States of America.
| | - Dylan J Brown
- Department of Entomology and Plant Pathology, School of Agriculture, Auburn University, Auburn, AL 36849, United States of America.
| | - Mengru An
- Department of Entomology and Plant Pathology, School of Agriculture, Auburn University, Auburn, AL 36849, United States of America.
| | - Rui-De Xue
- Anastasia Mosquito Control District of St. Johns County, 120 EOC Drive, St. Augustine, FL 32092, United States of America.
| | - Nannan Liu
- Department of Entomology and Plant Pathology, School of Agriculture, Auburn University, Auburn, AL 36849, United States of America.
| |
Collapse
|