1
|
Merriell BD, Manseau M, Wilson PJ. Assessing the suitability of a one-time sampling event for close-kin mark-recapture: A caribou case study. Ecol Evol 2024; 14:e70230. [PMID: 39234160 PMCID: PMC11371883 DOI: 10.1002/ece3.70230] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2024] [Revised: 08/03/2024] [Accepted: 08/12/2024] [Indexed: 09/06/2024] Open
Abstract
Abundance estimation is frequently an objective of conservation and monitoring initiatives for threatened and other managed populations. While abundance estimation via capture-mark-recapture or spatially explicit capture-recapture is now common, such approaches are logistically challenging and expensive for species such as boreal caribou (Rangifer tarandus), which inhabit remote regions, are widely dispersed, and exist at low densities. Fortunately, the recently developed 'close-kin mark-recapture' (CKMR) framework, which uses the number of kin pairs obtained within a sample to generate an abundance estimate, eliminates the need for multiple sampling events. As a result, some caribou managers are interested in using this method to generate an abundance estimate from a single, non-invasive sampling event for caribou populations. We conducted a simulation study using realistic boreal caribou demographic rates and population sizes to assess how population size and the proportion of the population surveyed impact the accuracy and precision of single-survey CKMR-based abundance estimates. Our results indicated that abundance estimates were biased and highly imprecise when very small proportions of the population were sampled, regardless of the population size. However, the larger the population size, the smaller the required proportion of the population surveyed to generate both accurate and reasonably precise estimates. Additionally, we also present a case study in which we used the CKMR framework to generate annual female abundance estimates for a small caribou population in Jasper National Park, Alberta, Canada, from 2006 to 2015 and compared them to existing published capture-mark-recapture-based estimates. Both the accuracy and precision of the annual CKMR-based abundance estimates varied across years and were sensitive to the proportion of pairwise kinship comparisons which yielded a mother-offspring pair. Taken together, our study demonstrates that it is possible to generate CKMR-based abundance estimates from a single sampling event for small caribou populations, so long as a sufficient sampling intensity can be achieved.
Collapse
Affiliation(s)
- Brandon D Merriell
- Environmental and Life Sciences Department Trent University Peterborough Ontario Canada
| | - Micheline Manseau
- Environmental and Life Sciences Department Trent University Peterborough Ontario Canada
- Landscape Science and Technology Division, Environment and Climate Change Canada Ottawa Ontario Canada
| | - Paul J Wilson
- Environmental and Life Sciences Department Trent University Peterborough Ontario Canada
| |
Collapse
|
2
|
Sévêque A, Lonsinger RC, Waits LP, Brzeski KE, Komoroske LM, Ott-Conn CN, Mayhew SL, Norton DC, Petroelje TR, Swenson JD, Morin DJ. Sources of bias in applying close-kin mark-recapture to terrestrial game species with different life histories. Ecology 2024; 105:e4244. [PMID: 38272487 DOI: 10.1002/ecy.4244] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Revised: 10/18/2023] [Accepted: 12/05/2023] [Indexed: 01/27/2024]
Abstract
Close-kin mark-recapture (CKMR) is a method analogous to traditional mark-recapture but without requiring recapture of individuals. Instead, multilocus genotypes (genetic marks) are used to identify related individuals in one or more sampling occasions, which enables the opportunistic use of samples from harvested wildlife. To apply the method accurately, it is important to build appropriate CKMR models that do not violate assumptions linked to the species' and population's biology and sampling methods. In this study, we evaluated the implications of fitting overly simplistic CKMR models to populations with complex reproductive success dynamics or selective sampling. We used forward-in-time, individual-based simulations to evaluate the accuracy and precision of CKMR abundance and survival estimates in species with different longevities, mating systems, and sampling strategies. Simulated populations approximated a range of life histories among game species of North America with lethal sampling to evaluate the potential of using harvested samples to estimate population size. Our simulations show that CKMR can yield nontrivial biases in both survival and abundance estimates, unless influential life history traits and selective sampling are explicitly accounted for in the modeling framework. The number of kin pairs observed in the sample, in combination with the type of kinship used in the model (parent-offspring pairs and/or half-sibling pairs), can affect the precision and/or accuracy of the estimates. CKMR is a promising method that will likely see an increasing number of applications in the field as costs of genetic analysis continue to decline. Our work highlights the importance of applying population-specific CKMR models that consider relevant demographic parameters, individual covariates, and the protocol through which individuals were sampled.
Collapse
Affiliation(s)
- Anthony Sévêque
- Department of Wildlife, Fisheries and Aquaculture, Forest and Wildlife Research Center, Mississippi State University, Mississippi State, Mississippi, USA
| | - Robert C Lonsinger
- U.S. Geological Survey, Oklahoma Cooperative Fish and Wildlife Research Unit, Oklahoma State University, Stillwater, Oklahoma, USA
| | - Lisette P Waits
- Department of Fish and Wildlife Resources, University of Idaho, Moscow, Idaho, USA
| | - Kristin E Brzeski
- College of Forest Resources and Environment Science, Michigan Technological University, Houghton, Michigan, USA
| | - Lisa M Komoroske
- Department of Environmental Conservation, University of Massachusetts Amherst, Amherst, Massachusetts, USA
| | - Caitlin N Ott-Conn
- Wildlife Division, Michigan Department of Natural Resources, Marquette, Michigan, USA
| | - Sarah L Mayhew
- Wildlife Division, Michigan Department of Natural Resources, Lansing, Michigan, USA
| | - D Cody Norton
- Wildlife Division, Michigan Department of Natural Resources, Marquette, Michigan, USA
| | - Tyler R Petroelje
- Wildlife Division, Michigan Department of Natural Resources, Marquette, Michigan, USA
| | - John D Swenson
- Department of Environmental Conservation, University of Massachusetts Amherst, Amherst, Massachusetts, USA
| | - Dana J Morin
- Department of Wildlife, Fisheries and Aquaculture, Forest and Wildlife Research Center, Mississippi State University, Mississippi State, Mississippi, USA
| |
Collapse
|