1
|
Lin Y, Silverman-Dultz A, Bailey M, Cohen DJ. A programmable, open-source robot that scratches cultured tissues to investigate cell migration, healing, and tissue sculpting. CELL REPORTS METHODS 2024; 4:100915. [PMID: 39657682 DOI: 10.1016/j.crmeth.2024.100915] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/18/2024] [Revised: 10/10/2024] [Accepted: 11/13/2024] [Indexed: 12/12/2024]
Abstract
Despite the widespread popularity of the "scratch assay," where a pipette is dragged manually through cultured tissue to create a gap to study cell migration and healing, it carries significant drawbacks. Its heavy reliance on manual technique can complicate quantification, reduce throughput, and limit the versatility and reproducibility. We present an open-source, low-cost, accessible, robotic scratching platform that addresses all of the core issues. Compatible with nearly all standard cell culture dishes and usable directly in a sterile culture hood without specialized training, our robot makes highly reproducible scratches in a variety of complex cultured tissues with high throughput. Moreover, the robot demonstrates precise removal of tissues for sculpting arbitrary tissue and wound shapes, enabling complex co-culture experiments. This system significantly improves the usefulness of the conventional scratch assay and opens up new possibilities in complex tissue engineering for realistic wound healing and migration research.
Collapse
Affiliation(s)
- Yubin Lin
- Department of Electrical and Computer Engineering, Princeton University, Princeton, NJ 08540, USA
| | | | - Madeline Bailey
- School of Engineering and Applied Sciences, Harvard University, Boston, MA 02134, USA
| | - Daniel J Cohen
- Department of Mechanical and Aerospace Engineering, Princeton University, Princeton, NJ 08540, USA; Omenn-Darling Bioengineering Institute, Princeton University, Princeton, NJ 08540, USA.
| |
Collapse
|
2
|
Lin Y, Silverman-Dultz A, Bailey M, Cohen DJ. SCRATCH: A programmable, open-hardware, benchtop robot that automatically scratches cultured tissues to investigate cell migration, healing, and tissue sculpting. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.08.27.609782. [PMID: 39314419 PMCID: PMC11418959 DOI: 10.1101/2024.08.27.609782] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 09/25/2024]
Abstract
Despite the widespread popularity of the 'scratch assay', where a pipette is dragged through cultured tissue to create an injury gap to study cell migration and healing, the manual nature of the assay carries significant drawbacks. So much of the process depends on individual manual technique, which can complicate quantification, reduce throughput, and limit the versatility and reproducibility of the approach. Here, we present a truly open-source, low-cost, accessible, and robotic scratching platform that addresses all of the core issues. Compatible with nearly all standard cell culture dishes and usable directly in a sterile culture hood, our robot makes highly reproducible scratches in a variety of complex cultured tissues with high throughput. Moreover, we demonstrate how scratching can be programmed to precisely remove areas of tissue to sculpt arbitrary tissue and wound shapes, as well as enable truly complex co-culture experiments. This system significantly improves the usefulness of the conventional scratch assay, and opens up new possibilities in complex tissue engineering and cell biological assays for realistic wound healing and migration research.
Collapse
Affiliation(s)
- Yubin Lin
- Department of Electrical and Computer Engineering, Princeton University, Princeton, NJ, 08540
| | | | - Madeline Bailey
- School of Engineering and Applied Sciences, Harvard University, Boston, MA, 02134
| | - Daniel J Cohen
- Department of Mechanical and Aerospace Engineering, Princeton University, Princeton, NJ, 08540
- Omenn-Darling Bioengineering Institute, Princeton University, Princeton, NJ, 08540
| |
Collapse
|
3
|
Zhang Y, Huang S, Cao Y, Li L, Yang J, Zhao M. New Opportunities for Electric Fields in Promoting Wound Healing: Collective Electrotaxis. Adv Wound Care (New Rochelle) 2024. [PMID: 38780799 DOI: 10.1089/wound.2024.0003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/25/2024] Open
Abstract
Significance: It has long been hypothesized that naturally occurring electric fields (EFs) aid wound healing by guiding cell migration. Consequently, the application of EFs has significant potential for promoting wound healing. However, the mechanisms underlying the cellular response to EFs remain unclear. Recent Advances: Although the directed migration of isolated single cells under EFs has been studied for decades, only recently has experimental evidence demonstrated the distinct collective migration of large sheets of keratinocytes and corneal epithelial cells in response to applied EFs. Accumulating evidence suggests that the emergent properties of cell groups in response to EF guidance offer new opportunities for EF-assisted directional migration. Critical Issues: In this review, we provide an overview of the field of collective electrotaxis, highlighting key advances made in recent years. We also discuss advanced engineering strategies utilized to manipulate collective electrotaxis. Future Directions: We outline a series of unanswered questions in this field and propose potential applications of collective electrotaxis in developing electrical stimulation technologies for wound healing.
Collapse
Affiliation(s)
- Yan Zhang
- Department of Occupational and Environmental Health, Hangzhou Normal University School of Public Health, Hangzhou, China
| | - Shiwen Huang
- Department of Occupational and Environmental Health, Hangzhou Normal University School of Public Health, Hangzhou, China
| | - Yifei Cao
- Department of Nutrition and Toxicology, Hangzhou Normal University School of Public Health, Hangzhou, China
| | - Li Li
- Department of Respiratory Medicine, Daping Hospital, Army Medical University (Third Military Medical University), Chongqing, China
| | - Jun Yang
- Department of Nutrition and Toxicology, Hangzhou Normal University School of Public Health, Hangzhou, China
| | - Min Zhao
- Department of Ophthalmology and Vision Science, University of California, Davis, California, USA
- Department of Dermatology, University of California, Davis, California, USA
| |
Collapse
|
4
|
Matter L, Abdullaeva OS, Shaner S, Leal J, Asplund M. Bioelectronic Direct Current Stimulation at the Transition Between Reversible and Irreversible Charge Transfer. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2306244. [PMID: 38460180 PMCID: PMC11251568 DOI: 10.1002/advs.202306244] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 02/06/2024] [Indexed: 03/11/2024]
Abstract
Many biological processes rely on endogenous electric fields (EFs), including tissue regeneration, cell development, wound healing, and cancer metastasis. Mimicking these biological EFs by applying external direct current stimulation (DCS) is therefore the key to many new therapeutic strategies. During DCS, the charge transfer from electrode to tissue relies on a combination of reversible and irreversible electrochemical processes, which may generate toxic or bio-altering substances, including metal ions and reactive oxygen species (ROS). Poly(3,4-ethylenedioxythiophene) (PEDOT) based electrodes are emerging as suitable candidates for DCS to improve biocompatibility compared to metals. This work addresses whether PEDOT electrodes can be tailored to favor reversible biocompatible charge transfer. To this end, different PEDOT formulations and their respective back electrodes are studied using cyclic voltammetry, chronopotentiometry, and direct measurements of H2O2 and O2. This combination of electrochemical methods sheds light on the time dynamics of reversible and irreversible charge transfer and the relationship between capacitance and ROS generation. The results presented here show that although all electrode materials investigated generate ROS, the onset of ROS can be delayed by increasing the electrode's capacitance via PEDOT coating, which has implications for future bioelectronic devices that allow longer reversibly driven pulse durations during DCS.
Collapse
Affiliation(s)
- Lukas Matter
- Department of Microtechnology and NanoscienceChalmers University of TechnologyGothenburgSE 41296Sweden
- Department of Microsystems EngineeringUniversity of FreiburgGeorges‐Köhler‐Allee 20179110FreiburgGermany
- Brainlinks‐Braintools CenterUniversity of FreiburgGeorges‐Köhler‐Allee 20179110FreiburgGermany
- Freiburg Institute for Advanced Studies (FRIAS)University of FreiburgAlbertstraße 1979104FreiburgGermany
| | - Oliya S. Abdullaeva
- Division of Nursing and Medical TechnologyLuleå University of TechnologyLuleåSE 97187Sweden
| | - Sebastian Shaner
- Department of Microsystems EngineeringUniversity of FreiburgGeorges‐Köhler‐Allee 20179110FreiburgGermany
- Brainlinks‐Braintools CenterUniversity of FreiburgGeorges‐Köhler‐Allee 20179110FreiburgGermany
| | - José Leal
- Department of Microsystems EngineeringUniversity of FreiburgGeorges‐Köhler‐Allee 20179110FreiburgGermany
- Brainlinks‐Braintools CenterUniversity of FreiburgGeorges‐Köhler‐Allee 20179110FreiburgGermany
| | - Maria Asplund
- Department of Microtechnology and NanoscienceChalmers University of TechnologyGothenburgSE 41296Sweden
- Department of Microsystems EngineeringUniversity of FreiburgGeorges‐Köhler‐Allee 20179110FreiburgGermany
- Brainlinks‐Braintools CenterUniversity of FreiburgGeorges‐Köhler‐Allee 20179110FreiburgGermany
- Freiburg Institute for Advanced Studies (FRIAS)University of FreiburgAlbertstraße 1979104FreiburgGermany
- Division of Nursing and Medical TechnologyLuleå University of TechnologyLuleåSE 97187Sweden
| |
Collapse
|
5
|
Martina-Perez SF, Breinyn IB, Cohen DJ, Baker RE. Optimal Control of Collective Electrotaxis in Epithelial Monolayers. Bull Math Biol 2024; 86:95. [PMID: 38896328 PMCID: PMC11186957 DOI: 10.1007/s11538-024-01319-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2024] [Accepted: 05/28/2024] [Indexed: 06/21/2024]
Abstract
Epithelial monolayers are some of the best-studied models for collective cell migration due to their abundance in multicellular systems and their tractability. Experimentally, the collective migration of epithelial monolayers can be robustly steered e.g. using electric fields, via a process termed electrotaxis. Theoretically, however, the question of how to design an electric field to achieve a desired spatiotemporal movement pattern is underexplored. In this work, we construct and calibrate an ordinary differential equation model to predict the average velocity of the centre of mass of a cellular monolayer in response to stimulation with an electric field. We use this model, in conjunction with optimal control theory, to derive physically realistic optimal electric field designs to achieve a variety of aims, including maximising the total distance travelled by the monolayer, maximising the monolayer velocity, and keeping the monolayer velocity constant during stimulation. Together, this work is the first to present a unified framework for optimal control of collective monolayer electrotaxis and provides a blueprint to optimally steer collective migration using other external cues.
Collapse
Affiliation(s)
| | - Isaac B Breinyn
- Department of Quantitative and Computational Biology, Princeton University, Princeton, NJ, USA
| | - Daniel J Cohen
- Department of Mechanical and Aerospace Engineering, Princeton University, Princeton, NJ, USA
| | - Ruth E Baker
- Mathematical Institute, University of Oxford, Oxford, UK
| |
Collapse
|
6
|
Martina-Perez SF, Breinyn IB, Cohen DJ, Baker RE. Spatial heterogeneity in collective electrotaxis: continuum modelling and applications to optimal control. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.02.28.580259. [PMID: 38463960 PMCID: PMC10925272 DOI: 10.1101/2024.02.28.580259] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/12/2024]
Abstract
Collective electrotaxis is a phenomenon that occurs when a cellular collective, for example an epithelial monolayer, is subjected to an electric field. Biologically, it is well known that the velocity of migration during the collective electrotaxis of large epithelia exhibits significant spatial heterogeneity. In this work, we demonstrate that the heterogeneity of velocities in the electrotaxing epithelium can be accounted for by a continuum model of cue competition in different tissue regions. Having established a working model of competing migratory cues in the migrating epithelium, we develop and validate a reaction-convection-diffusion model that describes the movement of an epithelial monolayer as it undergoes electrotaxis. We use the model to predict how tissue size and geometry affect the collective migration of MDCK monolayers, and to propose several ways in which electric fields can be designed such that they give rise to a desired spatial pattern of collective migration. We conclude with two examples that demonstrate practical applications of the method in designing bespoke stimulation protocols.
Collapse
Affiliation(s)
| | - Isaac B. Breinyn
- Department of Quantitative and Computational Biology, Princeton University, Princeton, NJ, USA
| | - Daniel J. Cohen
- Department of Mechanical and Aerospace Engineering, Princeton University, Princeton, NJ, USA
| | - Ruth E. Baker
- Mathematical Institute, University of Oxd, Oxford, United Kingdom
| |
Collapse
|
7
|
Martina-Perez SF, Breinyn IB, Cohen DJ, Baker RE. Optimal control of collective electrotaxis in epithelial monolayers. ARXIV 2024:arXiv:2402.08700v1. [PMID: 38410651 PMCID: PMC10896364] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Subscribe] [Scholar Register] [Indexed: 02/28/2024]
Abstract
Epithelial monolayers are some of the best-studied models for collective cell migration due to their abundance in multicellular systems and their tractability. Experimentally, the collective migration of epithelial monolayers can be robustly steered e.g. using electric fields, via a process termed electrotaxis. Theoretically, however, the question of how to design an electric field to achieve a desired spatiotemporal movement pattern is underexplored. In this work, we construct and calibrate an ordinary differential equation model to predict the average velocity of the centre of mass of a cellular monolayer in response to stimulation with an electric field. We use this model, in conjunction with optimal control theory, to derive physically realistic optimal electric field designs to achieve a variety of aims, including maximising the total distance travelled by the monolayer, maximising the monolayer velocity, and keeping the monolayer velocity constant during stimulation. Together, this work is the first to present a unified framework for optimal control of collective monolayer electrotaxis and provides a blueprint to optimally steer collective migration using other external cues.
Collapse
Affiliation(s)
| | - Isaac B Breinyn
- Department of Quantitative and Computational Biology, Princeton University, Princeton, NJ, USA
| | - Daniel J Cohen
- Department of Mechanical and Aerospace Engineering, Princeton University, Princeton, NJ, USA
| | - Ruth E Baker
- Mathematical Institute, University of Oxford, Oxford, United Kingdom
| |
Collapse
|