1
|
Nakajo T, Katayoshi T, Kitajima N, Tsuji K. NAD + overconsumption by poly (ADP-ribose) polymerase (PARP) under oxidative stress induces cytoskeletal disruption in vascular endothelial cell. Biochem Biophys Res Commun 2024; 731:150371. [PMID: 39004065 DOI: 10.1016/j.bbrc.2024.150371] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2024] [Accepted: 07/06/2024] [Indexed: 07/16/2024]
Abstract
Vascular endothelial cytoskeletal disruption leads to increased vascular permeability and is involved in the pathogenesis and progression of various diseases. Oxidative stress can increase vascular permeability by weakening endothelial cell-to-cell junctions and decrease intracellular nicotinamide adenine dinucleotide (NAD+) levels. However, it remains unclear how intracellular NAD+ variations caused by oxidative stress alter the vascular endothelial cytoskeletal organization. In this study, we demonstrated that oxidative stress activates poly (ADP-ribose [ADPr]) polymerase (PARP), which consume large amounts of intracellular NAD+, leading to cytoskeletal disruption in vascular endothelial cells. We found that hydrogen peroxide (H2O2) could transiently disrupt the cytoskeleton and reduce intracellular total NAD levels in human umbilical vein endothelial cells (HUVECs). H2O2 stimulation led to rapid increase in ADPr protein levels in HUVECs. Pharmaceutical PARP inhibition counteracted H2O2-induced total NAD depletion and cytoskeletal disruption, suggesting that NAD+ consumption by PARP induced cytoskeletal disruption. Additionally, supplementation with nicotinamide mononucleotide (NMN), the NAD+ precursor, prevented both intracellular total NAD depletion and cytoskeletal disruption induced by H2O2 in HUVECs. Inhibition of the NAD+ salvage pathway by FK866, a nicotinamide phosphoribosyltransferase inhibitor, maintained H2O2-induced cytoskeletal disruption, suggesting that intracellular NAD+ plays a crucial role in recovery from cytoskeletal disruption. Our findings provide further insights into the potential application of PARP inhibition and NMN supplementation for the treatment and prevention of diseases involving vascular hyperpermeability.
Collapse
Affiliation(s)
- T Nakajo
- DHC Corporation Laboratories, Division 2, 2-42 Hamada, Mihama-ku, Chiba, 261-0025, Japan.
| | - T Katayoshi
- DHC Corporation Laboratories, Division 2, 2-42 Hamada, Mihama-ku, Chiba, 261-0025, Japan.
| | - N Kitajima
- DHC Corporation Laboratories, Division 2, 2-42 Hamada, Mihama-ku, Chiba, 261-0025, Japan.
| | - K Tsuji
- DHC Corporation Laboratories, Division 2, 2-42 Hamada, Mihama-ku, Chiba, 261-0025, Japan.
| |
Collapse
|
2
|
Zhang Z, Cheng B, Du W, Zeng M, He K, Yin T, Shang S, Su T, Han D, Gan X, Wang Z, Liu M, Wang M, Liu J, Zheng Y. The Role of Nicotinamide Mononucleotide Supplementation in Psoriasis Treatment. Antioxidants (Basel) 2024; 13:186. [PMID: 38397784 PMCID: PMC10886094 DOI: 10.3390/antiox13020186] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2023] [Revised: 01/20/2024] [Accepted: 01/30/2024] [Indexed: 02/25/2024] Open
Abstract
Psoriasis is one of several chronic inflammatory skin diseases with a high rate of recurrence, and its pathogenesis remains unclear. Nicotinamide mononucleotide (NMN), as an important precursor of nicotinamide adenine dinucleotide (NAD+), has been reported to be a promising agent in treating various diseases, its positive effects including those induced via its anti-inflammatory and antioxidant properties. For this reason, we have aimed to explore the possible role of NMN in the treatment of psoriasis. Psoriasis models were constructed with imiquimod (IMQ) stimulation for 5 days in vivo and with M5 treatment in keratinocyte cell lines in vitro. NMN treatment during the IMQ application period markedly attenuated excess epidermal proliferation, splenomegaly, and inflammatory responses. According to GEO databases, Sirtuin1 (SIRT1) levels significantly decreased in psoriasis patients' lesion tissues; this was also the case in the IMQ-treated mice, while NMN treatment reversed the SIRT1 decline in the mouse model. Moreover, NMN supplementation also improved the prognoses of the mice after IMQ stimulation, compared to the untreated group with elevated SIRT1 levels. In HEKa and HaCaT cells, the co-culturing of NMN and M5 significantly decreased the expression levels of proinflammation factors, the phosphorylation of NF-κB, stimulator of interferon genes (STING) levels, and reactive oxygen species levels. NMN treatment also recovered the decrease in mitochondrial membrane potential and respiration ability and reduced mtDNA in the cytoplasm, leading to the inhibition of autoimmune inflammation. The knockdown of SIRT1 in vitro eliminated the protective and therapeutic effects of NMN against M5. To conclude, our results indicate that NMN protects against IMQ-induced psoriatic inflammation, oxidative stress, and mitochondrial dysfunction by activating the SIRT1 pathway.
Collapse
Affiliation(s)
- Zhengyi Zhang
- Departement of Dermatology, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an 710061, China; (Z.Z.)
| | - Baochen Cheng
- Departement of Dermatology, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an 710061, China; (Z.Z.)
| | - Wenqian Du
- Departement of Dermatology, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an 710061, China; (Z.Z.)
| | - Mengqi Zeng
- School of Health and Life Sciences, University of Health and Rehabilitation Sciences, Qingdao 266071, China
| | - Ke He
- Departement of Dermatology, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an 710061, China; (Z.Z.)
| | - Tingyi Yin
- Departement of Dermatology, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an 710061, China; (Z.Z.)
| | - Sen Shang
- Center for Mitochondrial Biology and Medicine, The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi’an Jiaotong University, Xi’an 710049, China
| | - Tian Su
- Center for Mitochondrial Biology and Medicine, The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi’an Jiaotong University, Xi’an 710049, China
| | - Dan Han
- Departement of Dermatology, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an 710061, China; (Z.Z.)
| | - Xinyi Gan
- Departement of Dermatology, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an 710061, China; (Z.Z.)
| | - Ziyang Wang
- Departement of Dermatology, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an 710061, China; (Z.Z.)
| | - Meng Liu
- Departement of Dermatology, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an 710061, China; (Z.Z.)
| | - Min Wang
- Departement of Dermatology, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an 710061, China; (Z.Z.)
| | - Jiankang Liu
- Departement of Dermatology, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an 710061, China; (Z.Z.)
- School of Health and Life Sciences, University of Health and Rehabilitation Sciences, Qingdao 266071, China
- Center for Mitochondrial Biology and Medicine, The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi’an Jiaotong University, Xi’an 710049, China
| | - Yan Zheng
- Departement of Dermatology, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an 710061, China; (Z.Z.)
| |
Collapse
|
3
|
Han YC, Wang L, Zhang YD, Zhou AJ, Wang ZP, Dong WH, Wang JP, Wang T, Zou J. Mechanisms Underlying the Therapeutic Effects of Nicotinamide Mononucleotide in Treating High-fat Diet-induced Hypertrophic Cardiomyopathy based on GEO Datasets, Network Pharmacology, and Molecular Docking. Curr Pharm Des 2024; 30:3054-3070. [PMID: 39171590 DOI: 10.2174/0113816128311226240730080713] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Revised: 06/16/2024] [Accepted: 07/03/2024] [Indexed: 08/23/2024]
Abstract
BACKGROUND The beneficial effects of nicotinamide mononucleotide (NMN) on heart disease have been reported, but the effects of NMN on high-fat diet-induced hypertrophic cardiomyopathy (HCM) and its mechanisms of action are unclear. In this study, we systematically explored the effects and mechanism of action of NMN in HCM using network pharmacology and molecular docking. METHODS Active targets of NMN were obtained from SWISS, CNKI, PubMed, DrugBank, BingingDB, and ZINC databases. HCM-related targets were retrieved from GEO datasets combined with GeneCards, OMIM, PharmGKB, and DisGeNET databases. A Protein-protein Interaction (PPI) network was built to screen the core targets. DAVID was used for GO and KEGG pathway enrichment analyses. The tissue and organ distribution of targets was evaluated. Interactions between potential targets and active compounds were assessed by molecular docking. A molecular dynamics simulation was conducted for the optimal core protein-compound complexes obtained by molecular docking. RESULTS In total, 265 active targets of NMN and 3918 potential targets of HCM were identified. A topological analysis of the PPI network revealed 10 core targets. GO and KEGG pathway enrichment analyses indicated that the effects of NMN were mediated by genes related to inflammation, apoptosis, and oxidative stress, as well as the FOXO and PI3K-Akt signaling pathways. Molecular docking and molecular dynamics simulations revealed good binding ability between the active compounds and screened targets. CONCLUSION The possible targets and pathways of NMN in the treatment of HCM have been successfully predicted by this investigation. It provides a novel approach for further investigation into the molecular processes of NMN in HCM treatment.
Collapse
Affiliation(s)
- Yuan-Chun Han
- Hubei Province Key Laboratory of Occupational Hazard Identification and Control, Academy of Nutrition and Health, Institute of Advanced Pharmaceutical Technology, College of Medicine, Wuhan University of Science and Technology, Wuhan 430065, China
| | - Li Wang
- Hubei Province Key Laboratory of Occupational Hazard Identification and Control, Academy of Nutrition and Health, Institute of Advanced Pharmaceutical Technology, College of Medicine, Wuhan University of Science and Technology, Wuhan 430065, China
| | - Yi-Dan Zhang
- Hubei Province Key Laboratory of Occupational Hazard Identification and Control, Academy of Nutrition and Health, Institute of Advanced Pharmaceutical Technology, College of Medicine, Wuhan University of Science and Technology, Wuhan 430065, China
| | - Ao-Jia Zhou
- Hubei Province Key Laboratory of Occupational Hazard Identification and Control, Academy of Nutrition and Health, Institute of Advanced Pharmaceutical Technology, College of Medicine, Wuhan University of Science and Technology, Wuhan 430065, China
| | - Zi-Ping Wang
- Hubei Province Key Laboratory of Occupational Hazard Identification and Control, Academy of Nutrition and Health, Institute of Advanced Pharmaceutical Technology, College of Medicine, Wuhan University of Science and Technology, Wuhan 430065, China
| | - Wen-Huan Dong
- Hubei Province Key Laboratory of Occupational Hazard Identification and Control, Academy of Nutrition and Health, Institute of Advanced Pharmaceutical Technology, College of Medicine, Wuhan University of Science and Technology, Wuhan 430065, China
| | - Jian-Peng Wang
- Hubei Province Key Laboratory of Occupational Hazard Identification and Control, Academy of Nutrition and Health, Institute of Advanced Pharmaceutical Technology, College of Medicine, Wuhan University of Science and Technology, Wuhan 430065, China
| | - Ting Wang
- Hubei Province Key Laboratory of Occupational Hazard Identification and Control, Academy of Nutrition and Health, Institute of Advanced Pharmaceutical Technology, College of Medicine, Wuhan University of Science and Technology, Wuhan 430065, China
- Wuhan Asia General Hospital Affiliated to Wuhan University of Science and Technology, Wuhan 430056, China
| | - Jun Zou
- Department of Pharmacy, Hainan Women and Children's Medical Center, Haikou, Hainan Province 570100, China
| |
Collapse
|
4
|
Ailioaie LM, Ailioaie C, Litscher G. Gut Microbiota and Mitochondria: Health and Pathophysiological Aspects of Long COVID. Int J Mol Sci 2023; 24:17198. [PMID: 38139027 PMCID: PMC10743487 DOI: 10.3390/ijms242417198] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 11/30/2023] [Accepted: 12/03/2023] [Indexed: 12/24/2023] Open
Abstract
The current understanding of long COVID (LC) is still limited. This review highlights key findings regarding the role of gut microbiota, mitochondria, and the main pathophysiological aspects of LC revealed by clinical studies, related to the complex interplay between infection, intestinal dysbiosis, dysfunctional mitochondria, and systemic inflammation generated in a vicious circle, reflecting the molecular and cellular processes from the "leaky gut" to the "leaky electron transport chain (ETC)" into a quantum leap. The heterogeneity of LC has hindered progress in deciphering all the pathophysiological mechanisms, and therefore, the approach must be multidisciplinary, with a special focus not only on symptomatic management but also on addressing the underlying health problems of the patients. It is imperative to further assess and validate the effects of COVID-19 and LC on the gut microbiome and their relationship to infections with other viral agents or pathogens. Further studies are needed to better understand LC and expand the interdisciplinary points of view that are required to accurately diagnose and effectively treat this heterogeneous condition. Given the ability of SARS-CoV-2 to induce autoimmunity in susceptible patients, they should be monitored for symptoms of autoimmune disease after contracting the viral infection. One question remains open, namely, whether the various vaccines developed to end the pandemic will also induce autoimmunity. Recent data highlighted in this review have revealed that the persistence of SARS-CoV-2 and dysfunctional mitochondria in organs such as the heart and, to a lesser extent, the kidneys, liver, and lymph nodes, long after the organism has been able to clear the virus from the lungs, could be an explanation for LC.
Collapse
Affiliation(s)
- Laura Marinela Ailioaie
- Department of Medical Physics, Alexandru Ioan Cuza University, 11 Carol I Boulevard, 700506 Iasi, Romania; (L.M.A.); (C.A.)
| | - Constantin Ailioaie
- Department of Medical Physics, Alexandru Ioan Cuza University, 11 Carol I Boulevard, 700506 Iasi, Romania; (L.M.A.); (C.A.)
| | - Gerhard Litscher
- President of the International Society for Medical Laser Applications (ISLA Transcontinental), German Vice President of the German-Chinese Research Foundation (DCFG) for TCM, Honorary President of the European Federation of Acupuncture and Moxibustion Societies, Honorary Professor of China Beijing International Acupuncture Training Center, China Academy of Chinese Medical Sciences, Former Head of Two Research Units and the TCM Research Center at the Medical University of Graz, Auenbruggerplatz, 8036 Graz, Austria
| |
Collapse
|