1
|
Viscusi G, Gorrasi G. Blueberry extract loaded into rice milk/alginate-based hydrogels as pH-sensitive systems to monitor the freshness of minced chicken. Int J Biol Macromol 2024; 282:137210. [PMID: 39491702 DOI: 10.1016/j.ijbiomac.2024.137210] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Revised: 10/26/2024] [Accepted: 11/01/2024] [Indexed: 11/05/2024]
Abstract
Hydrogel beads from rice milk and blueberry (BB) skins were fabricated as novel bio-based pH-sensitive devices. The encapsulation of BB into rice milk/alginate beads was achieved through a simple methodology. The colourimetric response of beads in different pH media was evaluated along with the proof of reusability, showing appropriate reversibility. The evaluation of the stability of BB-loaded beads in accelerated ageing conditions (4, 25 and 40 °C and under visible/UV light) showed high stability of beads (up to 28 days) even in the presence of harsh conditions. The half-time of cyanidin-3-glucoside decreases at high temperatures and under UV light exposure. The sensitivity to ammonia (NH3) and trimethylamine (TMA), as main spoilage volatiles of protein food products, was evaluated. The detection limits (LOD) for NH3 and TMA were 22.4 ppm and 72.1 ppm, respectively. Finally, the hydrogel beads were applied to monitor the spoilage of minced chicken breast. The colour of the beads, changing from dark reddish to green/yellowish and indicative of a high level of amine, could be detected by the naked eye after 3-5 days. This research proposes a sustainable, low-cost, and simple method to fabricate BB-loaded hydrogel beads as a promising tool for intelligent packaging applications.
Collapse
Affiliation(s)
- Gianluca Viscusi
- Department of Industrial Engineering, University of Salerno, Via Giovanni Paolo II, 132, 84084 Fisciano, SA, Italy.
| | - Giuliana Gorrasi
- Department of Industrial Engineering, University of Salerno, Via Giovanni Paolo II, 132, 84084 Fisciano, SA, Italy
| |
Collapse
|
2
|
Dias-Souza MV, Alves AL, Pagnin S, Veiga AA, Haq IU, Alonazi WB, Dos Santos VL. The activity of hydrolytic enzymes and antibiotics against biofilms of bacteria isolated from industrial-scale cooling towers. Microb Cell Fact 2024; 23:282. [PMID: 39415191 PMCID: PMC11484388 DOI: 10.1186/s12934-024-02502-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Accepted: 08/07/2024] [Indexed: 10/18/2024] Open
Abstract
BACKGROUND Cooling towers (CTs) are crucial to myriad industrial processes, supporting thermal exchange between fluids in heat exchangers using water from lakes and rivers as coolant. However, CT water can sometimes introduce microbial contaminants that adhere to and colonize various surfaces within the CT system. These microorganisms can form biofilms, significantly hindering the system's thermal exchange efficiency. Current treatment strategies employ oxidizing biocides to prevent microbial growth. However, despite their affordability, they do not eliminate biofilms effectively and can lead to corrosive damage within the system. Herein, we aim to devise an anti-biofilm strategy utilizing hydrolytic enzymes (such as α-amylase, glucoamylase, pectin-lyase, cellulase, protease, and DNase) alongside antibiotics (including meropenem, ciprofloxacin, gentamicin, erythromycin, chloramphenicol, and ceftriaxone) to combat microbial growth and biofilm formation in cooling systems. RESULTS All enzymes reduced the development of the biofilms significantly compared to controls (p < 0.05). The polysaccharidases exhibited biomass reduction of 90%, except for pectin-lyase (80%), followed by DNAse and protease at 43% and 49%, respectively. The antibiotics reduced the biofilms of 70% of isolates in concentration of > 2 mg/mL. The minimal biofilm eradication concentration (MBEC) lower than 1 mg/mL was detected for some 7-day-old sessile isolates. The enzymes and antibiotics were also used in combination against biofilms using the modified Chequerboard method. We found six synergistic combinations, with Fractional inhibitory concentrations (FIC) < 0.5, out of the ten tested. In the presence of the enzymatic mixture, MBECs presented a significant decrease (p < 0.05), at least 4-fold for antibiotics and 32-fold for enzymes. Moreover, we characterized high molecular weight (> 12 kDa) exopolysaccharides (EPS) from biofilms of ten isolates, and glycosyl composition analysis indicated a high frequency of glucose, mannose, erythrose, arabinose, and idose across isolates EPS contrasting with rhamnose, allose, and those carbohydrates, which were detected in only one isolate. CONCLUSION The synergistic approach of combining enzymes with antibiotics emerges as a highly effective and innovative strategy for anti-biofilm intervention, highlighting its potential to enhance biofilm management practices.
Collapse
Affiliation(s)
- Marcus Vinícius Dias-Souza
- Applied Microbiology Laboratory, Microbiology Department, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Avenida Antônio Carlos 6627, C.P. 486, Belo Horizonte, Minas Gerais, 31270-901, Brazil
| | - Andrea Lima Alves
- Applied Microbiology Laboratory, Microbiology Department, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Avenida Antônio Carlos 6627, C.P. 486, Belo Horizonte, Minas Gerais, 31270-901, Brazil
| | - Sérgio Pagnin
- Research and Development Center (CENPES), Petróleo Brasileiro S.A., Rio de Janeiro, Brazil
| | - Andrea Azevedo Veiga
- Research and Development Center (CENPES), Petróleo Brasileiro S.A., Rio de Janeiro, Brazil
| | - Ihtisham Ul Haq
- Department of Physical Chemistry and Technology of Polymers, Silesian University of Technology, M. Strzody 9, Gliwice, 44-100, Poland
- Joint Doctoral School, Silesian University of Technology, Akademicka 2A, Gliwice, 44-100, Poland
- Programa de Pós-graduação em Inovação Tecnológica, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, 31270-901, Brazil
| | - Wadi B Alonazi
- Health Administration Department, College of Business Administration, King Saud University, Riyadh, Saudi Arabia
| | - Vera Lúcia Dos Santos
- Applied Microbiology Laboratory, Microbiology Department, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Avenida Antônio Carlos 6627, C.P. 486, Belo Horizonte, Minas Gerais, 31270-901, Brazil.
| |
Collapse
|
3
|
Becerril-Serna L, Aguilar-Uscanga BR, Flores-Soto M, Solís-Pacheco JR, Cisneros-López EO. Design and Characterization of an Antimicrobial Biocomposite for Wound Dressings. MATERIALS (BASEL, SWITZERLAND) 2024; 17:4705. [PMID: 39410276 PMCID: PMC11477543 DOI: 10.3390/ma17194705] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/01/2024] [Revised: 09/20/2024] [Accepted: 09/23/2024] [Indexed: 10/20/2024]
Abstract
Skin wounds, due to their high vulnerability to infections, represent a significant public health issue. These wounds are not only disabling but also entail costly treatments and slow recovery. Consequently, it is crucial to implement new treatments based on bioactive and natural antimicrobial compounds utilizing fibers, polymers, hydrocolloids, and hydrogels to control potential infections and promote wound healing. This study aimed to develop a biocomposite with antimicrobial activity for the treatment of skin wounds, using sodium alginate, bamboo fiber, and a natural antimicrobial as ingredients. The physico-mechanical properties (Young's modulus, tensile strength, elongation at break, moisture absorption, and water vapor permeability) and antimicrobial activity against Escherichia coli, Staphylococcus aureus, and Staphylococcus hominis were determined. The results demonstrated that the designed biocomposite possesses adequate physico-mechanical properties, such as flexibility, strength, and water absorption capacity, in addition to exhibiting antibacterial activity, making it suitable to be used as a dressing in wound treatment.
Collapse
Affiliation(s)
- Leslie Becerril-Serna
- Centro Universitario de Ciencias Extactas e Ingenierías (CUCEI), Universidad de Guadalajara, Blvd. Gral. Marcelino García Barragán 1421, Guadalajara 44430, Mexico; (L.B.-S.); (B.R.A.-U.)
- Jefatura de Investigación, Universidad del Valle de Atemajac (UNIVA), Av. Tepeyac 4800, Zapopan 45050, Mexico
| | - Blanca Rosa Aguilar-Uscanga
- Centro Universitario de Ciencias Extactas e Ingenierías (CUCEI), Universidad de Guadalajara, Blvd. Gral. Marcelino García Barragán 1421, Guadalajara 44430, Mexico; (L.B.-S.); (B.R.A.-U.)
| | - Mario Flores-Soto
- Centro de Investigación Biomédica de Occidente (CIBO), Instituto Mexicano del Seguro Social (IMSS), Sierra Mojada 800, Guadalajara 44340, Mexico;
| | - Josué Raymundo Solís-Pacheco
- Centro Universitario de Ciencias Extactas e Ingenierías (CUCEI), Universidad de Guadalajara, Blvd. Gral. Marcelino García Barragán 1421, Guadalajara 44430, Mexico; (L.B.-S.); (B.R.A.-U.)
| | - Erick Omar Cisneros-López
- Centro Universitario de Ciencias Extactas e Ingenierías (CUCEI), Universidad de Guadalajara, Blvd. Gral. Marcelino García Barragán 1421, Guadalajara 44430, Mexico; (L.B.-S.); (B.R.A.-U.)
| |
Collapse
|
4
|
Vila MMDC, Cinto EC, Pereira AO, Baldo DÂ, Oliveira JM, Balcão VM. An Edible Antibacterial Coating Integrating Lytic Bacteriophage Particles for the Potential Biocontrol of Salmonella enterica in Ripened Cheese. Polymers (Basel) 2024; 16:680. [PMID: 38475362 DOI: 10.3390/polym16050680] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Revised: 02/24/2024] [Accepted: 02/28/2024] [Indexed: 03/14/2024] Open
Abstract
The goal of this research was to create an antibacterial biopolymeric coating integrating lytic bacteriophages against Salmonella enterica for use in ripened cheese. Salmonella enterica is the main pathogen that contaminates food products and the food industry. The food sector still uses costly and non-selective decontamination and disease control methods. Therefore, it is necessary to look for novel pathogen biocontrol technologies. Bacteriophage-based biocontrol seems like a viable option in this situation. The results obtained show promise for food applications since the edible packaging developed (EdiPhage) was successful in maintaining lytic phage viability while preventing the contamination of foodstuff with the aforementioned bacterial pathogen.
Collapse
Affiliation(s)
- Marta M D C Vila
- VBlab-Laboratory of Bacterial Viruses, University of Sorocaba, Sorocaba 18023-000, SP, Brazil
| | - Edjane C Cinto
- VBlab-Laboratory of Bacterial Viruses, University of Sorocaba, Sorocaba 18023-000, SP, Brazil
| | - Arthur O Pereira
- VBlab-Laboratory of Bacterial Viruses, University of Sorocaba, Sorocaba 18023-000, SP, Brazil
| | - Denicezar  Baldo
- LaFiNAU-Laboratory of Applied Nuclear Physics, University of Sorocaba, Sorocaba 18023-000, SP, Brazil
| | - José M Oliveira
- LaFiNAU-Laboratory of Applied Nuclear Physics, University of Sorocaba, Sorocaba 18023-000, SP, Brazil
| | - Victor M Balcão
- VBlab-Laboratory of Bacterial Viruses, University of Sorocaba, Sorocaba 18023-000, SP, Brazil
- Department of Biology and CESAM, University of Aveiro, Campus Universitário de Santiago, P-3810-193 Aveiro, Portugal
| |
Collapse
|
5
|
Zhang L, Sathiyaseelan A, Zhang X, Lu Y, Wang MH. Development and Analysis of Silver Nitroprusside Nanoparticle-Incorporated Sodium Alginate Films for Banana Browning Prevention. NANOMATERIALS (BASEL, SWITZERLAND) 2024; 14:292. [PMID: 38334563 PMCID: PMC10856574 DOI: 10.3390/nano14030292] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Revised: 01/25/2024] [Accepted: 01/27/2024] [Indexed: 02/10/2024]
Abstract
Banana (Musa acuminate) has been popular among consumers worldwide due to its rich nutrients and minerals. However, bananas are highly susceptible to the physical and biological factors that lead to postharvest loss during transportation and storage. In this work, novel sodium alginate (SA) films incorporated with silver nitroprusside nanoparticles (AgNNPs) were prepared to extend the shelf life of bananas through antibacterial and antioxidant coating. The results exhibited that AgNNPs were cubical and that their size was <500 nm, with metal composition being Ag and Fe. Additionally, the incorporation of AgNNPs in the SA film was seen in FE-SEM and zeta analysis, with an average size of about 365.6 nm. Furthermore, the functional and crystalline properties of AgNNPs were assessed through FTIR and XRD. Transmittance testing of the SA-AgNNPs films confirmed they have good UV barrier properties. SA-AgNNPs films exhibited excellent high antibacterial activity against foodborne pathogens including L. monocytogenes, S. enterica, and E. coli at the concentration of 500 µg/mL. Moreover, during the storage of bananas, SA-AgNNPs nanocomposite coatings act as a barrier to microbial contamination and slow down the ripening of bananas. As a result, compared with SA-coated and uncoated bananas, SA-AgNNPs-coated bananas exhibited the lowest weight loss and lowest total bacterial colonies, thus greatly extending their shelf life. Particularly when coated with SA-AgNNPs films, total bacterial colonies (TBC) in the banana peel and pulp were as low as 1.13 × 103 and 51 CUF/g on the ninth day of storage, respectively. Our work offers an efficient strategy to improve the quality of bananas during the postharvest period, with extensive applications in fruit preservation and food packing.
Collapse
Affiliation(s)
- Lina Zhang
- Department of Bio-Health Convergence, Kangwon National University, Chuncheon 24341, Republic of Korea; (L.Z.); (A.S.); (X.Z.); (Y.L.)
| | - Anbazhagan Sathiyaseelan
- Department of Bio-Health Convergence, Kangwon National University, Chuncheon 24341, Republic of Korea; (L.Z.); (A.S.); (X.Z.); (Y.L.)
| | - Xin Zhang
- Department of Bio-Health Convergence, Kangwon National University, Chuncheon 24341, Republic of Korea; (L.Z.); (A.S.); (X.Z.); (Y.L.)
| | - Yuting Lu
- Department of Bio-Health Convergence, Kangwon National University, Chuncheon 24341, Republic of Korea; (L.Z.); (A.S.); (X.Z.); (Y.L.)
| | - Myeong-Hyeon Wang
- Department of Bio-Health Convergence, Kangwon National University, Chuncheon 24341, Republic of Korea; (L.Z.); (A.S.); (X.Z.); (Y.L.)
- KIIT (Kangwon Institute of Inclusive Technology), Kangwon National University, Chuncheon 24341, Republic of Korea
| |
Collapse
|
6
|
Akshaya S, Nathanael AJ. A Review on Hydrophobically Associated Alginates: Approaches and Applications. ACS OMEGA 2024; 9:4246-4262. [PMID: 38313527 PMCID: PMC10831841 DOI: 10.1021/acsomega.3c08619] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 12/12/2023] [Accepted: 12/13/2023] [Indexed: 02/06/2024]
Abstract
Alginates are linear anionic polysaccharides, which are well-known for their biocompatible, nontoxic, and biodegradable nature. The polymer consists of alternating units of β-(1 → 4)-linked D-mannuronic acid (M) and α-(1 → 4)-linked L-guluronic acid (G) that have hydroxyl and carboxyl groups as the main functional groups. As a large number of free carboxyl and hydroxyl groups are present in the polymeric chain, the polymer is predominantly hydrophilic. The food and pharmaceutical industries have been the most extensive utilizers of alginates to produce gelling and thickening agents. However, by imparting hydrophobicity to alginates, the range of applications can be widened. Although there are reviews on alginate and its chemical modifications, reviews focusing on hydrophobically associated alginates have not been presented. The commonly used chemical modifications to incorporate hydrophobicity include esterification, Ugi reaction, reductive amination, and graft copolymerization. The hydrophobically modified alginates play an important role in delivery of hydrophobic drugs and pesticides as the modification increases the affinity toward hydrophobic components and helps in their sustained release. Due to their nontoxic and edible nature, they find use in the food industry as emulsion stabilizer to stabilize oil-in-water emulsions and to improve creaming ability. Further, alginate-based materials such as membranes, aerogels, and films are hydrophobically modified to improve their functionality and applicability to water treatment and food packaging. This Review aims to highlight the important chemical modifications and methods that are done to impart hydrophobicity to alginate, and the applications of hydrophobically modified alginates in different sectors ranging from drug delivery to food packaging are discussed.
Collapse
Affiliation(s)
- Shenbagaraman Akshaya
- Centre
for Biomaterials, Cellular and Molecular Theranostics (CBCMT), Vellore Institute of Technology (VIT), Vellore 632014, Tamil Nadu, India
- School
of Advanced Sciences (SAS), Vellore Institute
of Technology (VIT), Vellore 632014, Tamil Nadu, India
| | - Arputharaj Joseph Nathanael
- Centre
for Biomaterials, Cellular and Molecular Theranostics (CBCMT), Vellore Institute of Technology (VIT), Vellore 632014, Tamil Nadu, India
| |
Collapse
|
7
|
Dorochesi F, Barrientos-Sanhueza C, Díaz-Barrera Á, Cuneo IF. Enhancing Soil Resilience: Bacterial Alginate Hydrogel vs. Algal Alginate in Mitigating Agricultural Challenges. Gels 2023; 9:988. [PMID: 38131972 PMCID: PMC10743275 DOI: 10.3390/gels9120988] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Revised: 12/11/2023] [Accepted: 12/14/2023] [Indexed: 12/23/2023] Open
Abstract
Erosion and tillage changes negatively the soil physical structure, which directly impacts agricultural systems and consequently food security. To mitigate these adverse modifications, different polymeric materials from synthetic and natural sources, have been used as soil conditioners to improve the hydro-mechanical behavior of affected soils. One of the most interesting and used natural polymers is the alginate hydrogel. Although commercially available alginate hydrogels are primarily sourced from algal, they can also be sourced from bacteria. The gelation capacity of these hydrogels is determined by their molecular properties, which, in turn, are influenced by the production conditions. Bacterial alginate hydrogel production offers the advantage of precise control over environmental conditions during cultivation and extraction, thereby maintaining and enhancing their molecular properties. This, in turn, results in higher molecular weight and improved gelation capacity. In this study, we compared the effects of bacterial alginate (BH) and algal alginate (AH) hydrogels over the mechanical, hydraulic, and structural behavior of coarse quartz sand as a model soil. Mechanically, it was observed that the treatment with the lowest concentration of bacteria alginate hydrogel (BH1) reached higher values of yield strength, Young's modulus (E), shear modulus (G) and strain energy (U) than those treatments with algal alginate hydrogel (AH). Furthermore, the increase in the aggregate stability could be associated with the improvement of mechanical parameters. On the other hand, a greater water retention capacity was observed in the BH treatments, as well as a greater decrease in hydraulic conductivity with respect to the AH and control treatments. All these changes could be explained by the formation of bridge-like structures between the sand particles and the hydrogel, and this alteration may result in a shift in the mechanical and wettability characteristics of the treated soils. Finally, our findings emphasize the superior impact of bacterial alginate hydrogel on enhancing the mechanical and hydraulic properties of coarse quartz sand compared to traditional algal alginate. Besides, the use of bacterial alginate hydrogel could be useful to counteract erosion and water scarcity scenarios in agricultural systems.
Collapse
Affiliation(s)
- Flavia Dorochesi
- Facultad de Ciencias Agronómicas y de los Alimentos, Pontificia Universidad Católica de Valparaíso, Valparaíso 2340025, Chile; (F.D.); (C.B.-S.)
| | - Cesar Barrientos-Sanhueza
- Facultad de Ciencias Agronómicas y de los Alimentos, Pontificia Universidad Católica de Valparaíso, Valparaíso 2340025, Chile; (F.D.); (C.B.-S.)
| | - Álvaro Díaz-Barrera
- Escuela de Ingeniería Bioquímica, Pontificia Universidad Católica de Valparaíso, Valparaíso 2340025, Chile;
| | - Italo F. Cuneo
- Facultad de Ciencias Agronómicas y de los Alimentos, Pontificia Universidad Católica de Valparaíso, Valparaíso 2340025, Chile; (F.D.); (C.B.-S.)
| |
Collapse
|
8
|
Janik W, Nowotarski M, Ledniowska K, Biernat N, Abdullah, Shyntum DY, Krukiewicz K, Turczyn R, Gołombek K, Dudek G. Effect of Time on the Properties of Bio-Nanocomposite Films Based on Chitosan with Bio-Based Plasticizer Reinforced with Nanofiber Cellulose. Int J Mol Sci 2023; 24:13205. [PMID: 37686012 PMCID: PMC10487500 DOI: 10.3390/ijms241713205] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Revised: 08/22/2023] [Accepted: 08/23/2023] [Indexed: 09/10/2023] Open
Abstract
The deterioration of the performance of polysaccharide-based films over time, particularly their hydrophilicity and mechanical properties, is one of the main problems limiting their applications in the packaging industry. In the present study, we proposed to improve the performance of chitosan-based films through the use of: (1) nanocellulose as an additive to reduce their hydrophilic nature; (2) bio-based plasticizer to improve their mechanical properties; and (3) chestnut extract as an antimicrobial agent. To evaluate their stability over time, the properties of as-formed films (mechanical, hydrophilic, barrier and antibacterial) were studied immediately after preparation and after 7, 14 and 30 days. In addition, the morphological properties of the films were characterized by scanning electron microscopy, their structure by FTIR, their transparency by UV-Vis and their thermal properties by TGA. The films showed a hydrophobic character (contact angle above 100°), barrier properties to oxygen and carbon dioxide and strong antibacterial activity against Gram-negative (E. coli) and Gram-positive (S. aureus) bacteria. Moreover, the use of nanofillers did not deteriorate the elongation at breaks or the thermal properties of the films, but their addition reduced the transparency. In addition, the results showed that the greatest change in film properties occurred within the first 7 days after sample preparation, after which the properties were found to stabilize.
Collapse
Affiliation(s)
- Weronika Janik
- Łukasiewicz Research Network—Institute of Heavy Organic Synthesis “Blachownia”, 47-225 Kędzierzyn-Koźle, Poland; (W.J.); (K.L.); (N.B.)
- PhD School, Department of Physical Chemistry and Technology of Polymers, Silesian University of Technology, 44-100 Gliwice, Poland;
| | - Michał Nowotarski
- Department of Physical Chemistry and Technology of Polymers, Faculty of Chemistry, Silesian University of Technology, 44-100 Gliwice, Poland; (M.N.); (K.K.); (R.T.)
| | - Kerstin Ledniowska
- Łukasiewicz Research Network—Institute of Heavy Organic Synthesis “Blachownia”, 47-225 Kędzierzyn-Koźle, Poland; (W.J.); (K.L.); (N.B.)
- PhD School, Department of Physical Chemistry and Technology of Polymers, Silesian University of Technology, 44-100 Gliwice, Poland;
| | - Natalia Biernat
- Łukasiewicz Research Network—Institute of Heavy Organic Synthesis “Blachownia”, 47-225 Kędzierzyn-Koźle, Poland; (W.J.); (K.L.); (N.B.)
| | - Abdullah
- PhD School, Department of Physical Chemistry and Technology of Polymers, Silesian University of Technology, 44-100 Gliwice, Poland;
- Department of Physical Chemistry and Technology of Polymers, Faculty of Chemistry, Silesian University of Technology, 44-100 Gliwice, Poland; (M.N.); (K.K.); (R.T.)
| | | | - Katarzyna Krukiewicz
- Department of Physical Chemistry and Technology of Polymers, Faculty of Chemistry, Silesian University of Technology, 44-100 Gliwice, Poland; (M.N.); (K.K.); (R.T.)
- Centre for Organic and Nanohybrid Electronics, Silesian University of Technology, 44-100 Gliwice, Poland
| | - Roman Turczyn
- Department of Physical Chemistry and Technology of Polymers, Faculty of Chemistry, Silesian University of Technology, 44-100 Gliwice, Poland; (M.N.); (K.K.); (R.T.)
- Centre for Organic and Nanohybrid Electronics, Silesian University of Technology, 44-100 Gliwice, Poland
| | - Klaudiusz Gołombek
- Materials Research Laboratory, Faculty of Mechanical Engineering, Silesian University of Technology, 44-100 Gliwice, Poland;
| | - Gabriela Dudek
- Department of Physical Chemistry and Technology of Polymers, Faculty of Chemistry, Silesian University of Technology, 44-100 Gliwice, Poland; (M.N.); (K.K.); (R.T.)
| |
Collapse
|