1
|
Zhou Y, Ren H, Hou X, Dong X, Zhang S, Lv Y, Li C, Yu L. The effect of exercise on balance function in stroke patients: a systematic review and meta-analysis of randomized controlled trials. J Neurol 2024; 271:4751-4768. [PMID: 38834700 DOI: 10.1007/s00415-024-12467-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2024] [Revised: 05/21/2024] [Accepted: 05/22/2024] [Indexed: 06/06/2024]
Abstract
OBJECTIVE A growing body of studies has examined the effect of exercise on balance function in stroke patients, with conflicting findings. This study aimed to investigate the effect of exercise on balance function in stroke patients and to determine the optimal exercise prescription for stroke patients. METHODS We conducted an extensive search across various databases, including PubMed, Web of Science, EBSCO, Cochrane, and Scopus. The search was conducted until March 11th, 2024. Data were pooled using the weighted mean difference (WMD) and 95% confidence interval. RESULTS Twenty-nine studies fulfilled the inclusion criteria. Exercise significantly improved Berg balance scale (BBS, WMD, 5.24, P < 0.00001) and timed up and go test (TUG, WMD, - 2.91, P < 0.00001) in stroke patients. Subgroup analyses showed that aerobic exercise (WMD, 6.71, P = 0.003), exercise conducted ≥ 8 weeks (WMD, 6.43, P < 0.00001), > 3 times per week (WMD, 6.18, P < 0.00001), ≥ 60 min per session (WMD, 6.40, P < 0.0001), and ≥ 180 min per week (WMD, 7.49, P < 0.00001) were more effective in improving BBS. CONCLUSIONS Exercise improved balance function in stroke patients, and aerobic exercise might be the most effective intervention. To improve balance function, this meta-analysis provides clinicians with evidence to recommend that stroke patients participate in a minimum of 8 weeks of exercise at least 3 times per week for more than 60 min per session, with a goal of 180 min per week being achieved by increasing the frequency of exercise.
Collapse
Affiliation(s)
- Yilun Zhou
- Key Laboratory of Physical Fitness and Exercise, Ministry of Education, Beijing Sport University, Beijing, China
- Department of Strength and Conditioning Assessment and Monitoring, Beijing Sport University, Beijing, China
| | - Hao Ren
- Department of Strength and Conditioning Assessment and Monitoring, Beijing Sport University, Beijing, China
| | - Xiao Hou
- School of Sport Sciences, Beijing Sport University, Beijing, China
| | - Xiaosheng Dong
- Centre for Health Management and Policy Research, School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan, China
- National Health Commission of China Key Lab of Health Economics and Policy Research, Shandong University, Jinan, China
| | - Shiyan Zhang
- Department of Strength and Conditioning Assessment and Monitoring, Beijing Sport University, Beijing, China
| | - Yuanyuan Lv
- China Institute of Sport and Health Science, Beijing Sport University, Beijing, China
| | - Cui Li
- School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, China.
| | - Laikang Yu
- Key Laboratory of Physical Fitness and Exercise, Ministry of Education, Beijing Sport University, Beijing, China.
- Department of Strength and Conditioning Assessment and Monitoring, Beijing Sport University, Beijing, China.
| |
Collapse
|
2
|
Connelly N, Welsby E, Lange B, Hordacre B. Virtual Reality Action Observation and Motor Imagery to Enhance Neuroplastic Capacity in the Human Motor Cortex: A Pilot Double-blind, Randomized Cross-over Trial. Neuroscience 2024; 549:92-100. [PMID: 38705350 DOI: 10.1016/j.neuroscience.2024.04.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Revised: 03/13/2024] [Accepted: 04/25/2024] [Indexed: 05/07/2024]
Abstract
Neuroplasticity is important for learning, development and recovery from injury. Therapies that can upregulate neuroplasticity are therefore of interest across a range of fields. We developed a novel virtual reality action observation and motor imagery (VR-AOMI) intervention and evaluated whether it could enhance the efficacy of mechanisms of neuroplasticity in the human motor cortex of healthy adults. A secondary question was to explore predictors of the change in neuroplasticity following VR-AOMI. A pre-registered, pilot randomized controlled cross-over trial was performed. Twenty right-handed adults (13 females; mean age: 23.0 ± 4.53 years) completed two experimental conditions in separate sessions; VR-AOMI and control. We used intermittent theta burst stimulation (iTBS) to induce long term potentiation-like plasticity in the motor cortex and recorded motor evoked potentials at multiple timepoints as a measure of corticospinal excitability. The VR-AOMI task did not significantly increase the change in MEP amplitude following iTBS when compared to the control task (Group × Timepoint interaction p = 0.17). However, regression analysis identified the change in iTBS response following VR-AOMI was significantly predicted by the baseline iTBS response in the control task. Specifically, participants that did not exhibit the expected increase in MEP amplitude following iTBS in the control condition appear to have greater excitability following iTBS in the VR-AOMI condition (r = -0.72, p < 0.001). Engaging in VR-AOMI might enhance capacity for neuroplasticity in some people who typically do not respond to iTBS. VR-AOMI may prime the brain for enhanced neuroplasticity in this sub-group.
Collapse
Affiliation(s)
- Niamh Connelly
- Innovation, Implementation and Clinical Translation (IIMPACT) in Health, Allied Health and Human Performance, University of South Australia, Adelaide, Australia
| | - Ellana Welsby
- Innovation, Implementation and Clinical Translation (IIMPACT) in Health, Allied Health and Human Performance, University of South Australia, Adelaide, Australia
| | - Belinda Lange
- Caring Futures Institute, College of Nursing and Health Sciences, Flinders University, Adelaide, Australia
| | - Brenton Hordacre
- Innovation, Implementation and Clinical Translation (IIMPACT) in Health, Allied Health and Human Performance, University of South Australia, Adelaide, Australia.
| |
Collapse
|
3
|
Li Y, Wang F, Li J, Huo X, Zhang Y. Aerobic exercise improves verbal working memory sub-processes in adolescents: behavioral evidence from an N-back task. PeerJ 2024; 12:e17331. [PMID: 38708349 PMCID: PMC11067889 DOI: 10.7717/peerj.17331] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Accepted: 04/11/2024] [Indexed: 05/07/2024] Open
Abstract
Background Studies on the effects of aerobic exercise on working memory (WM) have mainly concentrated on the overall effects, yet there is little knowledge on how moderate intensity aerobic exercise impacts the sub-processes of verbal WM (VWM) in adolescents. To address this gap, two experiments were conducted to explore the influence of aerobic exercise on the maintenance and updating sub-processes of VWM. Methods In Experiment 1, a mixed experimental design of 2 (exercise habit: high vs. low) × 3 (memory load: 0-back vs. 1-back vs. 2-back) was used to compare VWM and its sub-processes in 40 adolescents. In Experiment 2, a 2 (group: intervention vs. control) × 3 (time point: pretest vs. 1st post-test vs. 18th post-test) × 3 (memory load: 0-back vs. 1-back vs. 2-back) mixed experimental design was used to investigate the acute and long-term effects of moderate intensity aerobic exercise on VWM and its sub-processes in 24 adolescents with low exercise habits. Results The results of Experiment 1 showed that VWM performance and its sub-processes in the high exercise habit group were better than those in the low exercise habit group. The results of Experiment 2 showed that the effects of the long-term exercise intervention were superior to those of the acute exercise intervention, and both were superior to the pretest. Meanwhile, it was found that aerobic exercise intervention had a greater effect size on the updating sub-process of VWM. Conclusion In conclusion, the results indicated that moderate intensity aerobic exercise could enhance the performance of VWM and its sub-processes in adolescents, and long-term intervention showed greater improvement effects compared to acute intervention, especially in the updating sub-process of VWM.
Collapse
Affiliation(s)
- Yue Li
- Department of Psychology, Shaoxing University, Shaoxing, Zhejiang Province, China
- Center for Brain, Mind and Education, Shaoxing University, Shaoxing, Zhejiang Province, China
| | - Fei Wang
- Department of Psychology, Shaoxing University, Shaoxing, Zhejiang Province, China
- Center for Brain, Mind and Education, Shaoxing University, Shaoxing, Zhejiang Province, China
| | - Jingfan Li
- Department of Psychology, Shaoxing University, Shaoxing, Zhejiang Province, China
- Center for Brain, Mind and Education, Shaoxing University, Shaoxing, Zhejiang Province, China
| | - Xing Huo
- Department of Physical Education, Shaoxing University, Shaoxing, Zhejiang Province, China
| | - Yin Zhang
- Department of Psychology, Shaoxing University, Shaoxing, Zhejiang Province, China
- Center for Brain, Mind and Education, Shaoxing University, Shaoxing, Zhejiang Province, China
- Postdoctoral Research Station of Psychology, Henan University, Kaifeng, Henan Province, China
| |
Collapse
|
4
|
De Las Heras B, Rodrigues L, Cristini J, Moncion K, Ploughman M, Tang A, Fung J, Roig M. Measuring Neuroplasticity in Response to Cardiovascular Exercise in People With Stroke: A Critical Perspective. Neurorehabil Neural Repair 2024:15459683231223513. [PMID: 38291890 DOI: 10.1177/15459683231223513] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2024]
Abstract
BACKGROUND Rehabilitative treatments that promote neuroplasticity are believed to improve recovery after stroke. Animal studies have shown that cardiovascular exercise (CE) promotes neuroplasticity but the effects of this intervention on the human brain and its implications for the functional recovery of patients remain unclear. The use of biomarkers has enabled the assessment of cellular and molecular events that occur in the central nervous system after brain injury. Some of these biomarkers have proven to be particularly valuable for the diagnosis of severity, prognosis of recovery, as well as for measuring the neuroplastic response to different treatments after stroke. OBJECTIVES To provide a critical analysis on the current evidence supporting the use of neurophysiological, neuroimaging, and blood biomarkers to assess the neuroplastic response to CE in individuals poststroke. RESULTS Most biomarkers used are responsive to the effects of acute and chronic CE interventions, but the response appears to be variable and is not consistently associated with functional improvements. Small sample sizes, methodological variability, incomplete information regarding patient's characteristics, inadequate standardization of training parameters, and lack of reporting of associations with functional outcomes preclude the quantification of the neuroplastic effects of CE poststroke using biomarkers. CONCLUSION Consensus on the optimal biomarkers to monitor the neuroplastic response to CE is currently lacking. By addressing critical methodological issues, future studies could advance our understanding of the use of biomarkers to measure the impact of CE on neuroplasticity and functional recovery in patients with stroke.
Collapse
Affiliation(s)
- Bernat De Las Heras
- Memory and Motor Rehabilitation Laboratory (MEMORY-LAB), Jewish Rehabilitation Hospital, Laval, QC, Canada
- School of Physical and Occupational Therapy, McGill University, Montreal, QC, Canada
- Feil and Oberfeld Research Centre, Jewish Rehabilitation Hospital, Center for Interdisciplinary Research in Rehabilitation (CRIR), Laval, QC, Canada
| | - Lynden Rodrigues
- Memory and Motor Rehabilitation Laboratory (MEMORY-LAB), Jewish Rehabilitation Hospital, Laval, QC, Canada
- School of Physical and Occupational Therapy, McGill University, Montreal, QC, Canada
- Feil and Oberfeld Research Centre, Jewish Rehabilitation Hospital, Center for Interdisciplinary Research in Rehabilitation (CRIR), Laval, QC, Canada
| | - Jacopo Cristini
- Memory and Motor Rehabilitation Laboratory (MEMORY-LAB), Jewish Rehabilitation Hospital, Laval, QC, Canada
- School of Physical and Occupational Therapy, McGill University, Montreal, QC, Canada
- Feil and Oberfeld Research Centre, Jewish Rehabilitation Hospital, Center for Interdisciplinary Research in Rehabilitation (CRIR), Laval, QC, Canada
| | - Kevin Moncion
- School of Rehabilitation Sciences, Faculty of Health Sciences, McMaster University, Hamilton, ON, Canada
| | - Michelle Ploughman
- Recovery and Performance Laboratory, Faculty of Medicine, Memorial University of Newfoundland, St. John's, NL, Canada
| | - Ada Tang
- School of Rehabilitation Sciences, Faculty of Health Sciences, McMaster University, Hamilton, ON, Canada
| | - Joyce Fung
- School of Physical and Occupational Therapy, McGill University, Montreal, QC, Canada
- Feil and Oberfeld Research Centre, Jewish Rehabilitation Hospital, Center for Interdisciplinary Research in Rehabilitation (CRIR), Laval, QC, Canada
| | - Marc Roig
- Memory and Motor Rehabilitation Laboratory (MEMORY-LAB), Jewish Rehabilitation Hospital, Laval, QC, Canada
- School of Physical and Occupational Therapy, McGill University, Montreal, QC, Canada
- Feil and Oberfeld Research Centre, Jewish Rehabilitation Hospital, Center for Interdisciplinary Research in Rehabilitation (CRIR), Laval, QC, Canada
| |
Collapse
|