1
|
Akmal Shukri AM, Wang SM, Feng C, Chia SL, Mohd Nawi SFA, Citartan M. In silico selection of aptamers against SARS-CoV-2. Analyst 2024. [PMID: 39221970 DOI: 10.1039/d4an00812j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/04/2024]
Abstract
Aptamers are molecular recognition elements that have been extensively deployed in a wide array of applications ranging from diagnostics to therapeutics. Due to their unique properties as compared to antibodies, aptamers were also largely isolated during the COVID-19 pandemic for multiple purposes. Typically generated by conventional SELEX, the inherent drawbacks of the process including the time-consuming, cumbersome and resource-intensive nature catalysed the move to adopt in silico approaches to isolate aptamers. Impressive performances of these in silico-derived aptamers in their respective assays have been documented thus far, bearing testimony to the huge potential of the in silico approaches, akin to the traditional SELEX in isolating aptamers. In this study, we provide an overview of the in silico selection of aptamers against SARS-CoV-2 by providing insights into the basic steps involved, which comprise the selection of the initial single-stranded nucleic acids, determination of the secondary and tertiary structures and in silico approaches that include both rigid docking and molecular dynamics simulations. The different approaches involving aptamers against SARS-CoV-2 were illuminated and the need to verify these aptamers by experimental validation was also emphasized. Cognizant of the need to continuously improve aptamers, the strategies embraced thus far for post-in silico selection modifications were enumerated. Shedding light on the steps involved in the in silico selection can set the stage for further improvisation to augment the functionalities of the aptamers in the future.
Collapse
Affiliation(s)
- Amir Muhaimin Akmal Shukri
- Advanced Medical & Dental Institute (AMDI), Universiti Sains Malaysia, Bertam, 13200 Kepala Batas, Penang, Malaysia.
- Institute of Medical Molecular Biotechnology (IMMB), Faculty of Medicine, Universiti Teknologi MARA, Sungai Buloh Campus, Selangor, Malaysia
| | - Seok Mui Wang
- Institute of Medical Molecular Biotechnology (IMMB), Faculty of Medicine, Universiti Teknologi MARA, Sungai Buloh Campus, Selangor, Malaysia
- Department of Medical Microbiology and Parasitology, Faculty of Medicine, Universiti Teknologi MARA, Sungai Buloh Campus, Selangor, Malaysia.
- Institute of Pathology, Laboratory and Forensic Medicine (I-PPerForM), Universiti Teknologi MARA, Sungai Buloh Campus, Selangor, Malaysia
- Non-Destructive Biomedical and Pharmaceutical Research Center, Smart Manufacturing Research Institute (SMRI), Universiti Teknologi MARA, Puncak Alam Campus, Selangor, Malaysia
| | - Chaoli Feng
- Advanced Medical & Dental Institute (AMDI), Universiti Sains Malaysia, Bertam, 13200 Kepala Batas, Penang, Malaysia.
| | - Suet Lin Chia
- Department of Microbiology, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, UPM Serdang, Selangor, Malaysia
- UPM-MAKNA Cancer Research Laboratory, Institute of Bioscience, Universiti Putra Malaysia, UPM Serdang, Selangor, Malaysia
- Malaysia Genome and Vaccine Institute, National Institutes of Biotechnology Malaysia, Jalan Bangi, Kajang, Selangor, Malaysia
| | - Siti Farah Alwani Mohd Nawi
- Department of Medical Microbiology and Parasitology, Faculty of Medicine, Universiti Teknologi MARA, Sungai Buloh Campus, Selangor, Malaysia.
| | - Marimuthu Citartan
- Advanced Medical & Dental Institute (AMDI), Universiti Sains Malaysia, Bertam, 13200 Kepala Batas, Penang, Malaysia.
| |
Collapse
|
2
|
Park KS, Park TI, Lee JE, Hwang SY, Choi A, Pack SP. Aptamers and Nanobodies as New Bioprobes for SARS-CoV-2 Diagnostic and Therapeutic System Applications. BIOSENSORS 2024; 14:146. [PMID: 38534253 PMCID: PMC10968798 DOI: 10.3390/bios14030146] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 03/10/2024] [Accepted: 03/12/2024] [Indexed: 03/28/2024]
Abstract
The global challenges posed by the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) pandemic have underscored the critical importance of innovative and efficient control systems for addressing future pandemics. The most effective way to control the pandemic is to rapidly suppress the spread of the virus through early detection using a rapid, accurate, and easy-to-use diagnostic platform. In biosensors that use bioprobes, the binding affinity of molecular recognition elements (MREs) is the primary factor determining the dynamic range of the sensing platform. Furthermore, the sensitivity relies mainly on bioprobe quality with sufficient functionality. This comprehensive review investigates aptamers and nanobodies recently developed as advanced MREs for SARS-CoV-2 diagnostic and therapeutic applications. These bioprobes might be integrated into organic bioelectronic materials and devices, with promising enhanced sensitivity and specificity. This review offers valuable insights into advancing biosensing technologies for infectious disease diagnosis and treatment using aptamers and nanobodies as new bioprobes.
Collapse
Affiliation(s)
| | | | | | | | | | - Seung Pil Pack
- Department of Biotechnology and Bioinformatics, Korea University, Sejong 30019, Republic of Korea; (K.S.P.); (T.-I.P.); (J.E.L.); (S.-Y.H.); (A.C.)
| |
Collapse
|