1
|
Jin Z, Mao Y, Guo Q, Yin Y, Kiram A, Zhou D, Yang J, Zhou Z, Xue J, Feng Z, Liu Z, Qiu Y, Fu T, Gan Z, Zhu Z. Imbalanced Skeletal Muscle Mitochondrial Proteostasis Causes Bone Loss. RESEARCH (WASHINGTON, D.C.) 2024; 7:0465. [PMID: 39221030 PMCID: PMC11362843 DOI: 10.34133/research.0465] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/21/2024] [Accepted: 08/09/2024] [Indexed: 09/04/2024]
Abstract
Although microgravity has been implicated in osteoporosis, the precise molecular mechanism remains elusive. Here, we found that microgravity might induce mitochondrial protein buildup in skeletal muscle, alongside reduced levels of LONP1 protein. We revealed that disruptions in mitochondrial proteolysis, induced by the targeted skeletal muscle-specific deletion of the essential mitochondrial protease LONP1 or by the acute inducible deletion of muscle LONP1 in adult mice, cause reduced bone mass and compromised mechanical function. Moreover, the bone loss and weakness phenotypes were recapitulated in skeletal muscle-specific overexpressing ΔOTC mice, a known protein degraded by LONP1. Mechanistically, mitochondrial proteostasis imbalance triggered the mitochondrial unfolded protein response (UPRmt) in muscle, leading to an up-regulation of multiple myokines, including FGF21, which acts as a pro-osteoclastogenic factor. Surprisingly, this mitochondrial proteostasis stress influenced muscle-bone crosstalk independently of ATF4 in skeletal muscle. Furthermore, we established a marked association between serum FGF21 levels and bone health in humans. These findings emphasize the pivotal role of skeletal muscle mitochondrial proteostasis in responding to alterations in loading conditions and in coordinating UPRmt to modulate bone metabolism.
Collapse
Affiliation(s)
- Zhen Jin
- Division of Spine Surgery, Department of Orthopedic Surgery, Nanjing Drum Tower Hospital, Affiliated Hospital of Nanjing University Medical School, MOE Key Laboratory of Model Animal for Disease Study, Model Animal Research Center, Medical School of Nanjing University, Nanjing University, Nanjing, China
- Division of Spine Surgery, Department of Orthopedic Surgery,
Nanjing Drum Tower Hospital Clinical College of Nanjing Medical University, Nanjing, China
| | - Yan Mao
- Division of Spine Surgery, Department of Orthopedic Surgery, Nanjing Drum Tower Hospital, Affiliated Hospital of Nanjing University Medical School, MOE Key Laboratory of Model Animal for Disease Study, Model Animal Research Center, Medical School of Nanjing University, Nanjing University, Nanjing, China
| | - Qiqi Guo
- Division of Spine Surgery, Department of Orthopedic Surgery, Nanjing Drum Tower Hospital, Affiliated Hospital of Nanjing University Medical School, MOE Key Laboratory of Model Animal for Disease Study, Model Animal Research Center, Medical School of Nanjing University, Nanjing University, Nanjing, China
| | - Yujing Yin
- Division of Spine Surgery, Department of Orthopedic Surgery, Nanjing Drum Tower Hospital, Affiliated Hospital of Nanjing University Medical School, MOE Key Laboratory of Model Animal for Disease Study, Model Animal Research Center, Medical School of Nanjing University, Nanjing University, Nanjing, China
| | - Abdukahar Kiram
- Division of Spine Surgery, Department of Orthopedic Surgery, Nanjing Drum Tower Hospital, Affiliated Hospital of Nanjing University Medical School, MOE Key Laboratory of Model Animal for Disease Study, Model Animal Research Center, Medical School of Nanjing University, Nanjing University, Nanjing, China
| | - Danxia Zhou
- Division of Spine Surgery, Department of Orthopedic Surgery, Nanjing Drum Tower Hospital, Affiliated Hospital of Nanjing University Medical School, MOE Key Laboratory of Model Animal for Disease Study, Model Animal Research Center, Medical School of Nanjing University, Nanjing University, Nanjing, China
| | - Jing Yang
- Division of Spine Surgery, Department of Orthopedic Surgery, Nanjing Drum Tower Hospital, Affiliated Hospital of Nanjing University Medical School, MOE Key Laboratory of Model Animal for Disease Study, Model Animal Research Center, Medical School of Nanjing University, Nanjing University, Nanjing, China
| | - Zheng Zhou
- Division of Spine Surgery, Department of Orthopedic Surgery, Nanjing Drum Tower Hospital, Affiliated Hospital of Nanjing University Medical School, MOE Key Laboratory of Model Animal for Disease Study, Model Animal Research Center, Medical School of Nanjing University, Nanjing University, Nanjing, China
| | - Jiachen Xue
- Division of Spine Surgery, Department of Orthopedic Surgery, Nanjing Drum Tower Hospital, Affiliated Hospital of Nanjing University Medical School, MOE Key Laboratory of Model Animal for Disease Study, Model Animal Research Center, Medical School of Nanjing University, Nanjing University, Nanjing, China
| | - Zhenhua Feng
- Division of Spine Surgery, Department of Orthopedic Surgery, Nanjing Drum Tower Hospital, Affiliated Hospital of Nanjing University Medical School, MOE Key Laboratory of Model Animal for Disease Study, Model Animal Research Center, Medical School of Nanjing University, Nanjing University, Nanjing, China
| | - Zhen Liu
- Division of Spine Surgery, Department of Orthopedic Surgery, Nanjing Drum Tower Hospital, Affiliated Hospital of Nanjing University Medical School, MOE Key Laboratory of Model Animal for Disease Study, Model Animal Research Center, Medical School of Nanjing University, Nanjing University, Nanjing, China
- Division of Spine Surgery, Department of Orthopedic Surgery,
Nanjing Drum Tower Hospital Clinical College of Nanjing Medical University, Nanjing, China
| | - Yong Qiu
- Division of Spine Surgery, Department of Orthopedic Surgery, Nanjing Drum Tower Hospital, Affiliated Hospital of Nanjing University Medical School, MOE Key Laboratory of Model Animal for Disease Study, Model Animal Research Center, Medical School of Nanjing University, Nanjing University, Nanjing, China
| | - Tingting Fu
- Division of Spine Surgery, Department of Orthopedic Surgery, Nanjing Drum Tower Hospital, Affiliated Hospital of Nanjing University Medical School, MOE Key Laboratory of Model Animal for Disease Study, Model Animal Research Center, Medical School of Nanjing University, Nanjing University, Nanjing, China
| | - Zhenji Gan
- Division of Spine Surgery, Department of Orthopedic Surgery, Nanjing Drum Tower Hospital, Affiliated Hospital of Nanjing University Medical School, MOE Key Laboratory of Model Animal for Disease Study, Model Animal Research Center, Medical School of Nanjing University, Nanjing University, Nanjing, China
| | - Zezhang Zhu
- Division of Spine Surgery, Department of Orthopedic Surgery, Nanjing Drum Tower Hospital, Affiliated Hospital of Nanjing University Medical School, MOE Key Laboratory of Model Animal for Disease Study, Model Animal Research Center, Medical School of Nanjing University, Nanjing University, Nanjing, China
- Division of Spine Surgery, Department of Orthopedic Surgery,
Nanjing Drum Tower Hospital Clinical College of Nanjing Medical University, Nanjing, China
| |
Collapse
|
2
|
Fletcher B, Phillips R, Faust A, Cook JL, Nuelle JAV. Physical exercise to promote regeneration after peripheral nerve injury in animal models: A systematic review. J Orthop Res 2024; 42:1608-1622. [PMID: 38282091 DOI: 10.1002/jor.25792] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Revised: 11/30/2023] [Accepted: 12/24/2023] [Indexed: 01/30/2024]
Abstract
Peripheral nerve injuries are common injuries that often have a drastic effect on patient's activities of daily living and physical function. While techniques for the surgical repair of these injuries have improved over time, rehabilitation methods following these repairs have been non-standardized and under researched. Electronic searches were conducted in Ovid/Medline and SCOPUS to identify articles that discuss rehabilitation and exercise following peripheral nerve injury in animal models and its effects on peripheral nerve regeneration and recovery of function. Thirty-eight articles met inclusion criteria; all were prospective studies in animal models. This systematic review suggests that exercise is a useful tool in returning autonomy to the individual and has beneficial effects in the recovery from peripheral nerve injury. It is beneficial to use rehabilitation exercises following the repair of peripheral nerve injuries to promote regeneration, and timing of that exercise may be just as important as the exercise prescribed. However, further studies with standardized models and outcome measures need to be conducted before translation to clinical trials.
Collapse
Affiliation(s)
- Bryce Fletcher
- Department of Orthopaedic Surgery, University of Missouri, Columbia, Missouri, USA
| | - Rachel Phillips
- Department of Orthopaedic Surgery, University of Missouri, Columbia, Missouri, USA
| | - Amanda Faust
- Department of Orthopaedic Surgery, University of Missouri, Columbia, Missouri, USA
| | - James L Cook
- Department of Orthopaedic Surgery, University of Missouri, Columbia, Missouri, USA
| | - Julia A V Nuelle
- Department of Orthopaedic Surgery, University of Missouri, Columbia, Missouri, USA
| |
Collapse
|