1
|
Ren W, Pan Z, Men K, Liang B, Xu Q, Yi J, Dai J. A subregional prediction model for radiation-induced hypothyroidism. BMC Med Imaging 2025; 25:74. [PMID: 40038595 DOI: 10.1186/s12880-025-01619-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2024] [Accepted: 02/25/2025] [Indexed: 03/06/2025] Open
Abstract
BACKGROUND Considering the potential association between radiation-induced hypothyroidism (RHT) and the thyroid subregions as well as the received radiation dose in each subregion, this study aims to develop a subregional prediction model for RHT. METHODS CT images and dose images of 128 patients with nasopharyngeal carcinoma were collected retrospectively. The thyroid subregion was obtained by clustering thyroid voxels and voxel entropy. After extracting 1781 radiomics features and 1767 dosiomics features, a subregional RHT prediction model was established, and its performance was compared with that of the whole thyroid model. The phenotype and dosimetry parameters of each subregion were analyzed by AUC, T test and Delong test. RESULTS Three subregions (S1, S2, S3) were identified. The subregional prediction model was constructed based on 34 radiomics and dosiomics features. According to the Delong test, the prediction performance of the subregional model was significantly superior than that of the whole thyroid model (0.813 VS 0.624, p = 0.038). Subregional analysis suggests that S1 and S3 regions may have higher radiosensitivity than S2 regions. CONCLUSIONS In this study, a subregional model for predicting RHT was established and the radiosensitivity of the relevant subregions was evaluated. The subregion-based RHT prediction model may help to improve radiotherapy plan design for better thyroid function protection.
Collapse
Affiliation(s)
- Wenting Ren
- Department of Radiation Oncology, National Cancer Center/National Clinical Research Center for Cancer/ Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - Ziqi Pan
- Department of Radiation Oncology, National Cancer Center/National Clinical Research Center for Cancer/ Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - Kuo Men
- Department of Radiation Oncology, National Cancer Center/National Clinical Research Center for Cancer/ Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - Bin Liang
- Department of Radiation Oncology, National Cancer Center/National Clinical Research Center for Cancer/ Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - Qingfeng Xu
- Department of Radiation Oncology, National Cancer Center/National Clinical Research Center for Cancer/ Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - Junlin Yi
- Department of Radiation Oncology, National Cancer Center/National Clinical Research Center for Cancer/ Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - Jianrong Dai
- Department of Radiation Oncology, National Cancer Center/National Clinical Research Center for Cancer/ Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China.
| |
Collapse
|
2
|
Nicol AJ, Lam SK, Ching JCF, Tam VCW, Teng X, Zhang J, Lee FKH, Wong KCW, Cai J, Lee SWY. A multi-center, multi-organ, multi-omic prediction model for treatment-induced severe oral mucositis in nasopharyngeal carcinoma. LA RADIOLOGIA MEDICA 2025; 130:161-178. [PMID: 39570458 PMCID: PMC11870888 DOI: 10.1007/s11547-024-01901-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/21/2024] [Accepted: 10/05/2024] [Indexed: 11/22/2024]
Abstract
PURPOSE Oral mucositis (OM) is one of the most prevalent and crippling treatment-related toxicities experienced by nasopharyngeal carcinoma (NPC) patients receiving radiotherapy (RT), posing a tremendous adverse impact on quality of life. This multi-center study aimed to develop and externally validate a multi-omic prediction model for severe OM. METHODS Four hundred and sixty-four histologically confirmed NPC patients were retrospectively recruited from two public hospitals in Hong Kong. Model development was conducted on one institution (n = 363), and the other was reserved for external validation (n = 101). Severe OM was defined as the occurrence of CTCAE grade 3 or higher OM during RT. Two predictive models were constructed: 1) conventional clinical and DVH features and 2) a multi-omic approach including clinical, radiomic and dosiomic features. RESULTS The multi-omic model, consisting of chemotherapy status and radiomic and dosiomic features, outperformed the conventional model in internal and external validation, achieving AUC scores of 0.67 [95% CI: (0.61, 0.73)] and 0.65 [95% CI: (0.53, 0.77)], respectively, compared to the conventional model with 0.63 [95% CI: (0.56, 0.69)] and 0.56 [95% CI: (0.44, 0.67)], respectively. In multivariate analysis, only the multi-omic model signature was significantly correlated with severe OM in external validation (p = 0.017), demonstrating the independent predictive value of the multi-omic approach. CONCLUSION A multi-omic model with combined clinical, radiomic and dosiomic features achieved superior pre-treatment prediction of severe OM. Further exploration is warranted to facilitate improved clinical decision-making and enable more effective and personalized care for the prevention and management of OM in NPC patients.
Collapse
Affiliation(s)
- Alexander James Nicol
- Department of Health Technology and Informatics, The Hong Kong Polytechnic University, Room Y910, 9/F, Block Y, Lee Shau Kee Building, Hung Hom, Kowloon, Hong Kong, China
| | - Sai-Kit Lam
- Department of Biomedical Engineering, The Hong Kong Polytechnic University, Hung Hom, Hong Kong, China
| | - Jerry Chi Fung Ching
- Department of Health Technology and Informatics, The Hong Kong Polytechnic University, Room Y910, 9/F, Block Y, Lee Shau Kee Building, Hung Hom, Kowloon, Hong Kong, China
| | - Victor Chi Wing Tam
- Department of Health Technology and Informatics, The Hong Kong Polytechnic University, Room Y910, 9/F, Block Y, Lee Shau Kee Building, Hung Hom, Kowloon, Hong Kong, China
| | - Xinzhi Teng
- Department of Health Technology and Informatics, The Hong Kong Polytechnic University, Room Y910, 9/F, Block Y, Lee Shau Kee Building, Hung Hom, Kowloon, Hong Kong, China
| | - Jiang Zhang
- Department of Health Technology and Informatics, The Hong Kong Polytechnic University, Room Y910, 9/F, Block Y, Lee Shau Kee Building, Hung Hom, Kowloon, Hong Kong, China
| | - Francis Kar Ho Lee
- Department of Clinical Oncology, Queen Elizabeth Hospital, Yau Ma Tei, Hong Kong, China
| | - Kenneth C W Wong
- Department of Clinical Oncology, Prince of Wales Hospital, Sha Tin, Hong Kong, China
| | - Jing Cai
- Department of Health Technology and Informatics, The Hong Kong Polytechnic University, Room Y910, 9/F, Block Y, Lee Shau Kee Building, Hung Hom, Kowloon, Hong Kong, China
- The Hong Kong Polytechnic University Shenzhen Research Institute, Shenzhen, 518000, China
| | - Shara Wee Yee Lee
- Department of Health Technology and Informatics, The Hong Kong Polytechnic University, Room Y910, 9/F, Block Y, Lee Shau Kee Building, Hung Hom, Kowloon, Hong Kong, China.
| |
Collapse
|
3
|
Huang YC, Huang SM, Yeh JH, Chang TC, Tsan DL, Lin CY, Tu SJ. Utility of CT Radiomics and Delta Radiomics for Survival Evaluation in Locally Advanced Nasopharyngeal Carcinoma with Concurrent Chemoradiotherapy. Diagnostics (Basel) 2024; 14:941. [PMID: 38732355 PMCID: PMC11083477 DOI: 10.3390/diagnostics14090941] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Revised: 04/23/2024] [Accepted: 04/26/2024] [Indexed: 05/13/2024] Open
Abstract
BACKGROUND A high incidence rate of nasopharyngeal carcinoma (NPC) has been observed in Southeast Asia compared to other parts of the world. Radiomics is a computational tool to predict outcomes and may be used as a prognostic biomarker for advanced NPC treated with concurrent chemoradiotherapy. Recently, radiomic analysis of the peripheral tumor microenvironment (TME), which is the region surrounding the gross tumor volume (GTV), has shown prognostic usefulness. In this study, not only was gross tumor volume (GTVt) analyzed but also tumor peripheral regions (GTVp) were explored in terms of the TME concept. Both radiomic features and delta radiomic features were analyzed using CT images acquired in a routine radiotherapy process. METHODS A total of 50 patients with NPC stages III, IVA, and IVB were enrolled between September 2004 and February 2014. Survival models were built using Cox regression with clinical factors (i.e., gender, age, overall stage, T stage, N stage, and treatment dose) and radiomic features. Radiomic features were extracted from GTVt and GTVp. GTVp was created surrounding GTVt for TME consideration. Furthermore, delta radiomics, which is the longitudinal change in quantitative radiomic features, was utilized for analysis. Finally, C-index values were computed using leave-one-out cross-validation (LOOCV) to evaluate the performances of all prognosis models. RESULTS Models were built for three different clinical outcomes, including overall survival (OS), local recurrence-free survival (LRFS), and progression-free survival (PFS). The range of the C-index in clinical factor models was (0.622, 0.729). All radiomics models, including delta radiomics models, were in the range of (0.718, 0.872). Among delta radiomics models, GTVt and GTVp were in the range of (0.833, 0.872) and (0.799, 0.834), respectively. CONCLUSIONS Radiomic analysis on the proximal region surrounding the gross tumor volume of advanced NPC patients for survival outcome evaluation was investigated, and preliminary positive results were obtained. Radiomic models and delta radiomic models demonstrated performance that was either superior to or comparable with that of conventional clinical models.
Collapse
Affiliation(s)
- Yen-Cho Huang
- Department of Radiation Oncology, Keelung Chang Gung Memorial Hospital, Keelung 20445, Taiwan; (Y.-C.H.); (S.-M.H.); (J.-H.Y.)
- Department of Medical Imaging and Radiological Sciences, College of Medicine, Chang Gung University, Tao-Yuan 33302, Taiwan
| | - Shih-Ming Huang
- Department of Radiation Oncology, Keelung Chang Gung Memorial Hospital, Keelung 20445, Taiwan; (Y.-C.H.); (S.-M.H.); (J.-H.Y.)
| | - Jih-Hsiang Yeh
- Department of Radiation Oncology, Keelung Chang Gung Memorial Hospital, Keelung 20445, Taiwan; (Y.-C.H.); (S.-M.H.); (J.-H.Y.)
| | - Tung-Chieh Chang
- Department of Radiation Oncology, Linkuo Chang Gung Memorial Hospital, Tao-Yuan 33305, Taiwan; (T.-C.C.); (D.-L.T.)
| | - Din-Li Tsan
- Department of Radiation Oncology, Linkuo Chang Gung Memorial Hospital, Tao-Yuan 33305, Taiwan; (T.-C.C.); (D.-L.T.)
| | - Chien-Yu Lin
- Department of Medical Imaging and Radiological Sciences, College of Medicine, Chang Gung University, Tao-Yuan 33302, Taiwan
- Department of Radiation Oncology, Linkuo Chang Gung Memorial Hospital, Tao-Yuan 33305, Taiwan; (T.-C.C.); (D.-L.T.)
- Particle Physics and Beam Delivery Core Laboratory, Linkou Chang Gung Memorial Hospital, Tao-Yuan 33305, Taiwan
| | - Shu-Ju Tu
- Department of Medical Imaging and Radiological Sciences, College of Medicine, Chang Gung University, Tao-Yuan 33302, Taiwan
- Department of Medical Imaging and Intervention, Linkou Chang Gung Memorial Hospital, Tao-Yuan 33305, Taiwan
- Department of Nuclear Medicine, Linkou Chang Gung Memorial Hospital, Tao-Yuan 33305, Taiwan
| |
Collapse
|
4
|
Quan KR, Lin WR, Hong JB, Lin YH, Chen KQ, Chen JH, Cheng PJ. A machine learning approach for predicting radiation-induced hypothyroidism in patients with nasopharyngeal carcinoma undergoing tomotherapy. Sci Rep 2024; 14:8436. [PMID: 38600141 PMCID: PMC11006930 DOI: 10.1038/s41598-024-59249-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Accepted: 04/08/2024] [Indexed: 04/12/2024] Open
Abstract
The purpose of this study was to establish an integrated predictive model that combines clinical features, DVH, radiomics, and dosiomics features to predict RIHT in patients receiving tomotherapy for nasopharyngeal carcinoma. Data from 219 patients with nasopharyngeal carcinoma were randomly divided into a training cohort (n = 175) and a test cohort (n = 44) in an 8:2 ratio. RIHT is defined as serum thyroid-stimulating hormone (TSH) greater than 5.6 μU/mL, with or without a decrease in free thyroxine (FT4). Clinical features, 27 DVH features, 107 radiomics features and 107 dosiomics features were extracted for each case and included in the model construction. The least absolute shrinkage and selection operator (LASSO) regression method was used to select the most relevant features. The eXtreme Gradient Boosting (XGBoost) was then employed to train separate models using the selected features from clinical, DVH, radiomics and dosiomics data. Finally, a combined model incorporating all features was developed. The models were evaluated using receiver operating characteristic (ROC) curves and decision curve analysis. In the test cohort, the area under the receiver operating characteristic curve (AUC) for the clinical, DVH, radiomics, dosiomics and combined models were 0.798 (95% confidence interval [CI], 0.656-0.941), 0.673 (0.512-0.834), 0.714 (0.555-0.873), 0.698 (0.530-0.848) and 0.842 (0.724-0.960), respectively. The combined model exhibited higher AUC values compared to other models. The decision curve analysis demonstrated that the combined model had superior clinical utility within the threshold probability range of 1% to 79% when compared to the other models. This study has successfully developed a predictive model that combines multiple features. The performance of the combined model is superior to that of single-feature models, allowing for early prediction of RIHT in patients with nasopharyngeal carcinoma after tomotherapy.
Collapse
Affiliation(s)
- Ke-Run Quan
- Department of Radiation Oncology, Xiangtan Central Hospital, Xiangtan, 411100, Hunan, China
| | - Wen-Rong Lin
- Department of Radiation Oncology, Clinical Oncology School of Fujian Medical University, Fujian Cancer Hospital, Fuzhou, 350014, Fujian, China
| | - Jia-Biao Hong
- Department of Radiation Oncology, Clinical Oncology School of Fujian Medical University, Fujian Cancer Hospital, Fuzhou, 350014, Fujian, China
| | - Yu-Hao Lin
- Department of Radiation Oncology, Clinical Oncology School of Fujian Medical University, Fujian Cancer Hospital, Fuzhou, 350014, Fujian, China
| | - Kai-Qiang Chen
- Department of Radiation Oncology, Clinical Oncology School of Fujian Medical University, Fujian Cancer Hospital, Fuzhou, 350014, Fujian, China
| | - Ji-Hong Chen
- Department of Radiation Oncology, Clinical Oncology School of Fujian Medical University, Fujian Cancer Hospital, Fuzhou, 350014, Fujian, China.
| | - Pin-Jing Cheng
- School of Nuclear Science and Technology, University of South China, Hengyang, 421001, Hunan, China.
| |
Collapse
|
5
|
Abbaspour S, Barahman M, Abdollahi H, Arabalibeik H, Hajainfar G, Babaei M, Iraji H, Barzegartahamtan M, Ay MR, Mahdavi SR. Multimodality radiomics prediction of radiotherapy-induced the early proctitis and cystitis in rectal cancer patients: a machine learning study. Biomed Phys Eng Express 2023; 10:015017. [PMID: 37995359 DOI: 10.1088/2057-1976/ad0f3e] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Accepted: 11/23/2023] [Indexed: 11/25/2023]
Abstract
Purpose.This study aims to predict radiotherapy-induced rectal and bladder toxicity using computed tomography (CT) and magnetic resonance imaging (MRI) radiomics features in combination with clinical and dosimetric features in rectal cancer patients.Methods.A total of sixty-three patients with locally advanced rectal cancer who underwent three-dimensional conformal radiation therapy (3D-CRT) were included in this study. Radiomics features were extracted from the rectum and bladder walls in pretreatment CT and MR-T2W-weighted images. Feature selection was performed using various methods, including Least Absolute Shrinkage and Selection Operator (Lasso), Minimum Redundancy Maximum Relevance (MRMR), Chi-square (Chi2), Analysis of Variance (ANOVA), Recursive Feature Elimination (RFE), and SelectPercentile. Predictive modeling was carried out using machine learning algorithms, such as K-nearest neighbor (KNN), Support Vector Machine (SVM), Logistic Regression (LR), Decision Tree (DT), Random Forest (RF), Naive Bayes (NB), Gradient Boosting (XGB), and Linear Discriminant Analysis (LDA). The impact of the Laplacian of Gaussian (LoG) filter was investigated with sigma values ranging from 0.5 to 2. Model performance was evaluated in terms of the area under the receiver operating characteristic curve (AUC), accuracy, precision, sensitivity, and specificity.Results.A total of 479 radiomics features were extracted, and 59 features were selected. The pre-MRI T2W model exhibited the highest predictive performance with an AUC: 91.0/96.57%, accuracy: 90.38/96.92%, precision: 90.0/97.14%, sensitivity: 93.33/96.50%, and specificity: 88.09/97.14%. These results were achieved with both original image and LoG filter (sigma = 0.5-1.5) based on LDA/DT-RF classifiers for proctitis and cystitis, respectively. Furthermore, for the CT data, AUC: 90.71/96.0%, accuracy: 90.0/96.92%, precision: 88.14/97.14%, sensitivity: 93.0/96.0%, and specificity: 88.09/97.14% were acquired. The highest values were achieved using XGB/DT-XGB classifiers for proctitis and cystitis with LoG filter (sigma = 2)/LoG filter (sigma = 0.5-2), respectively. MRMR/RFE-Chi2 feature selection methods demonstrated the best performance for proctitis and cystitis in the pre-MRI T2W model. MRMR/MRMR-Lasso yielded the highest model performance for CT.Conclusion.Radiomics features extracted from pretreatment CT and MR images can effectively predict radiation-induced proctitis and cystitis. The study found that LDA, DT, RF, and XGB classifiers, combined with MRMR, RFE, Chi2, and Lasso feature selection algorithms, along with the LoG filter, offer strong predictive performance. With the inclusion of a larger training dataset, these models can be valuable tools for personalized radiotherapy decision-making.
Collapse
Affiliation(s)
- Samira Abbaspour
- Department of Medical Physics and Biomedical Engineering, Tehran University of Medical Sciences, Tehran, Iran
- Research Center for Molecular and Cellular Imaging, Advanced Medical Technologies and Equipment Institute (AMTEI), Imam Khomeini Hospital, Tehran University of Medical Sciences, Tehran, Iran
| | - Maedeh Barahman
- Department of Radiation Oncology, Firoozgar Hospital, Firoozgar Clinical Research Development Center (FCRDC), Iran University of Medical Sciences, Tehran, Iran
| | - Hamid Abdollahi
- Department of Radiology, University of British Columbia, Vancouver, BC, Canada
- Department of Integrative Oncology, BC Cancer Research Institute, Vancouver, BC, Canada
| | - Hossein Arabalibeik
- Research Center for Science and Technology in Medicine (RCSTM), Tehran University of Medical Sciences, Tehran, Iran
| | - Ghasem Hajainfar
- Rajaie Cardiovascular Medical & Research Center, Iran University of Medical Science, Tehran, Iran
| | - Mohammadreza Babaei
- Department of Interventional Radiology, Firouzgar Hospital, Iran University of Medical Sciences, Tehran, Iran
| | - Hamed Iraji
- Department of Interventional Radiology, Firouzgar Hospital, Iran University of Medical Sciences, Tehran, Iran
| | - Mohammadreza Barzegartahamtan
- Clinical Research Development Unit, Loghman Hakim Hospital, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mohammad Reza Ay
- Department of Medical Physics and Biomedical Engineering, Tehran University of Medical Sciences, Tehran, Iran
- Research Center for Molecular and Cellular Imaging, Advanced Medical Technologies and Equipment Institute (AMTEI), Imam Khomeini Hospital, Tehran University of Medical Sciences, Tehran, Iran
| | - Seied Rabi Mahdavi
- Department of Medical Physics, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
- Radiation Biology Research Center, Iran University of Medical Sciences, Tehran, Iran
| |
Collapse
|