1
|
Wu J, Wang Z, Zeng M, He Z, Chen Q, Chen J. Comprehensive Understanding of Laboratory Evolution for Food Enzymes: From Design to Screening Innovations. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:24928-24943. [PMID: 39495102 DOI: 10.1021/acs.jafc.4c08453] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/05/2024]
Abstract
In the field of food processing, enzymes play a pivotal role in improving product quality and flavor, and extending shelf life. However, the exposure of traditional food enzymes to high temperatures during processing often leads to a decrease in activity or even inactivation, limiting the effectiveness of their application under high-temperature conditions. Therefore, the modification of thermostability and activity of enzymes to adapt to extreme conditions through protein engineering has become a key way to improve the efficiency and economic benefits of industrial production. Directed evolution and semirational design strategies in the laboratory have proven to be broadly applicable frameworks for biochemical researchers in the food field, including those who are beginners. In this review, we systematically summarize semirational design strategies and high-throughput screening strategies, and introduce some intuitive computer simulation software to improve the thermostability and enzyme activity of food enzymes. The application of these strategies and techniques provides a comprehensive guide for the optimization of food enzymes. In addition, the latest hot topics of genetically engineered food enzymes in the field of application are discussed.
Collapse
Affiliation(s)
- Junhao Wu
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, Jiangsu 214122, P. R. China
| | - Zhaojun Wang
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, Jiangsu 214122, P. R. China
| | - Maomao Zeng
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, Jiangsu 214122, P. R. China
| | - Zhiyong He
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, Jiangsu 214122, P. R. China
| | - Qiuming Chen
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, Jiangsu 214122, P. R. China
| | - Jie Chen
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, Jiangsu 214122, P. R. China
| |
Collapse
|
2
|
Alves GS, de Andrades D, Salgado JCS, Mariano CB, Berto GL, Segato F, Ayub MAZ, Ward RJ, Alnoch RC, Polizeli MDLTM. Homologous expression, purification, and characterization of a recombinant acetylxylan esterase from Aspergillus nidulans. Int J Biol Macromol 2024; 280:135816. [PMID: 39306183 DOI: 10.1016/j.ijbiomac.2024.135816] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Revised: 09/17/2024] [Accepted: 09/18/2024] [Indexed: 10/14/2024]
Abstract
Acetylxylan esterases (AXEs) are essential enzymes that break down the acetyl groups in acetylated xylan found in plant cell walls polysaccharides. They work synergistically with backbone-depolymerizing xylanolytic enzymes to accelerate the degradation of complex polysaccharides. In this study, we cloned the gene axeA, which encodes the acetylxylan esterase from Aspergillus nidulans FGSC A4 (AxeAN), into the pEXPYR expression vector and introduced it into the high protein-producing strain A. nidulans A773. The purified AxeAN, with a molecular weight of 33.5 kDa as confirmed by SDS-PAGE, was found to be active on ρ-nitrophenyl acetate (ρNPA), exhibiting a remarkably high specific activity (170 U mg-1) at pH 7.0 and 55 °C. AxeAN demonstrated stability over a wide pH range (5.5-9.0), retaining >80% of its initial activity after 24 h. The KM and Vmax were 0.098 mmol L-1 and 320 U mg-1, respectively, using ρNPA as a substrate. We also evaluated the synergistic effect of AxeAN with an endo-1,4-β-xylanase from Malbranchea pulchella (MpXyn10) in the hydrolysis of four different xylans (Birchwood, Beechwood, Oat spelt, and Arabinoxylan) to produce xylooligosaccharides (XOS). The best results were obtained using Birchwood xylan as substrate and MpXyn10-AxeAN as biocatalysts after 24 h of reaction (50 °C), with a XOS-yield of 91%, value 41% higher when compared to MpXyn10 (XOS-yield of 63%). These findings showed the potential of the application of AxeAN, together with other xylanases, to produce xylooligosaccharides with high purity and other products with high added value in the field of lignocellulosic biorefinery.
Collapse
Affiliation(s)
- Gabriela S Alves
- Department of Biochemistry and Immunology, Faculty of Medicine of Ribeirão Preto, University of São Paulo, Ribeirão Preto 14049-900, SP, Brazil
| | - Diandra de Andrades
- Department of Biology, Faculty of Philosophy, Sciences and Letters of Ribeirão Preto, University of São Paulo, Ribeirão Preto 14040-901, SP, Brazil
| | - Jose C S Salgado
- Department of Biology, Faculty of Philosophy, Sciences and Letters of Ribeirão Preto, University of São Paulo, Ribeirão Preto 14040-901, SP, Brazil; Department of Chemistry, Faculty of Philosophy, Sciences and Letters of Ribeirão Preto, University of São Paulo, Ribeirão Preto 14040-900, SP, Brazil
| | - Clara B Mariano
- Department of Biology, Faculty of Philosophy, Sciences and Letters of Ribeirão Preto, University of São Paulo, Ribeirão Preto 14040-901, SP, Brazil
| | - Gabriela Leila Berto
- Department of Biotechnology, Lorena School of Engineering, University of São Paulo, Lorena 12602-810, SP, Brazil
| | - Fernando Segato
- Department of Biotechnology, Lorena School of Engineering, University of São Paulo, Lorena 12602-810, SP, Brazil
| | - Marco Antônio Záchia Ayub
- Laboratory of Biotechnology and Biochemical Engineering (BiotecLab), Institute of Food Science and Technology, Federal University of Rio Grande do Sul, Porto Alegre 91501-970, RS, Brazil
| | - Richard J Ward
- Department of Chemistry, Faculty of Philosophy, Sciences and Letters of Ribeirão Preto, University of São Paulo, Ribeirão Preto 14040-900, SP, Brazil
| | - Robson C Alnoch
- Department of Biochemistry and Immunology, Faculty of Medicine of Ribeirão Preto, University of São Paulo, Ribeirão Preto 14049-900, SP, Brazil; Department of Biology, Faculty of Philosophy, Sciences and Letters of Ribeirão Preto, University of São Paulo, Ribeirão Preto 14040-901, SP, Brazil.
| | - Maria de Lourdes T M Polizeli
- Department of Biochemistry and Immunology, Faculty of Medicine of Ribeirão Preto, University of São Paulo, Ribeirão Preto 14049-900, SP, Brazil; Department of Biology, Faculty of Philosophy, Sciences and Letters of Ribeirão Preto, University of São Paulo, Ribeirão Preto 14040-901, SP, Brazil.
| |
Collapse
|
3
|
Nam KH. Guide to serial synchrotron crystallography. Curr Res Struct Biol 2024; 7:100131. [PMID: 38371325 PMCID: PMC10869752 DOI: 10.1016/j.crstbi.2024.100131] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Revised: 01/24/2024] [Accepted: 02/05/2024] [Indexed: 02/20/2024] Open
Abstract
Serial crystallography (SX) is an emerging technique that can be used to determine the noncryogenic crystal structure of macromolecules while minimizing radiation damage. Applying SX using pump-probe or mix-and-inject techniques enables the observation of time-resolved molecular reactions and dynamics in macromolecules. After the successful demonstration of the SX experimental technique with structure determination in serial femtosecond crystallography using an X-ray free electron laser, this method was adapted to the synchrotron, leading to the development of serial synchrotron crystallography (SSX). SSX offers new opportunities for researchers to leverage SX techniques, contributing to the advancement of structural biology and offering a deeper understanding of the structure and function of macromolecules. This review covers the background and advantages of SSX and its experimental approach. It also discusses important considerations when conducting SSX experiments.
Collapse
Affiliation(s)
- Ki Hyun Nam
- College of General Education, Kookmin University, Seoul, 02707, Republic of Korea
| |
Collapse
|
4
|
Nam KH. Data of serial synchrotron crystallography of xylanase GH11 from Thermoanaerobacterium saccharolyticum. Data Brief 2024; 52:110055. [PMID: 38299100 PMCID: PMC10828573 DOI: 10.1016/j.dib.2024.110055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Revised: 01/08/2024] [Accepted: 01/08/2024] [Indexed: 02/02/2024] Open
Abstract
The endo-1,4-β-xylanase GH11 from the hemicellulose-degrading bacterium Thermoanaerobacterium saccharolyticum (TsaGH11) has been characterized as a thermophilic enzyme. TsaGH11 exhibits its maximum activity at pH 5.0 and 70 °C, along with superior properties towards beechwood xylan, with a Km of 12.9 mg mL⁻¹ and a Kcat of 34,015.3 s⁻¹. The room-temperature and cryogenic crystal structures of TsaGH11 were determined using serial synchrotron crystallography (SSX) and conventional macromolecular crystallography techniques, respectively. The high-resolution crystal structure of TsaGH11 was successfully determined, and the flexibility of the thumb domain at room temperature was elucidated. During SSX data collection, a high density of crystal samples in the sample holder led to an unprecedentedly high multi-crystal hit rate of ∼200 %. Data containing these multi-crystal hits will potentially be a valuable resource for developing indexing algorithms for multi-crystal hit patterns in serial crystallography (SX) data processing. To contribute to developing SX data processing, this paper provides detailed and specific information about the data collection and processing of TsaGH11 obtained through SSX experiments.
Collapse
Affiliation(s)
- Ki Hyun Nam
- College of General Education, Kookmin University, Seoul 02707, South Korea
| |
Collapse
|