1
|
Coppes RP, van Dijk LV. Future of Team-based Basic and Translational Science in Radiation Oncology. Semin Radiat Oncol 2024; 34:370-378. [PMID: 39271272 DOI: 10.1016/j.semradonc.2024.07.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/15/2024]
Abstract
To further optimize radiotherapy, a more personalized treatment towards individual patient's risk profiles, dissecting both patient-specific tumor and normal tissue response to multimodality treatments is needed. Novel developments in radiobiology, using in vitro patient-specific complex tissue resembling 3D models and multiomics approaches at a spatial single-cell level, may provide unprecedented insight into the radiation responses of tumors and normal tissue. Here, we describe the necessary team effort, including all disciplines in radiation oncology, to integrate such data into clinical prediction models and link the relatively "big data" from the clinical practice, allowing accurate patient stratification for personalized treatment approaches.
Collapse
Affiliation(s)
- R P Coppes
- Department of Radiation Oncology, University Medical Center Groningen, University of Groningen, Groningen, Netherlands.; Department of Biomedical Sciences, University Medical Center Groningen, University of Groningen, Groningen, Netherlands..
| | - L V van Dijk
- Department of Radiation Oncology, University Medical Center Groningen, University of Groningen, Groningen, Netherlands
| |
Collapse
|
2
|
Benboubker V, Ramzy GM, Jacobs S, Nowak-Sliwinska P. Challenges in validation of combination treatment strategies for CRC using patient-derived organoids. J Exp Clin Cancer Res 2024; 43:259. [PMID: 39261955 PMCID: PMC11389238 DOI: 10.1186/s13046-024-03173-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2024] [Accepted: 08/23/2024] [Indexed: 09/13/2024] Open
Abstract
Patient-derived organoids (PDOs) established from tissues from various tumor types gave the foundation of ex vivo models to screen and/or validate the activity of many cancer drug candidates. Due to their phenotypic and genotypic similarity to the tumor of which they were derived, PDOs offer results that effectively complement those obtained from more complex models. Yet, their potential for predicting sensitivity to combination therapy remains underexplored. In this review, we discuss the use of PDOs in both validation and optimization of multi-drug combinations for personalized treatment strategies in CRC. Moreover, we present recent advancements in enriching PDOs with diverse cell types, enhancing their ability to mimic the complexity of in vivo environments. Finally, we debate how such sophisticated models are narrowing the gap in personalized medicine, particularly through immunotherapy strategies and discuss the challenges and future direction in this promising field.
Collapse
Affiliation(s)
- Valentin Benboubker
- Molecular Pharmacology Group, School of Pharmaceutical Sciences, University of Geneva, 1 Rue Michel-Servet, Geneva, 4 1211, Switzerland
- Institute of Pharmaceutical Sciences of Western Switzerland, University of Geneva, Geneva, 1211, Switzerland
- Translational Research Center in Oncohaematology, Geneva, 1211, Switzerland
| | - George M Ramzy
- Molecular Pharmacology Group, School of Pharmaceutical Sciences, University of Geneva, 1 Rue Michel-Servet, Geneva, 4 1211, Switzerland
- Institute of Pharmaceutical Sciences of Western Switzerland, University of Geneva, Geneva, 1211, Switzerland
- Translational Research Center in Oncohaematology, Geneva, 1211, Switzerland
- Department of Cell Physiology and Metabolism, Faculty of Medicine, University of Geneva, Geneva, 1211, Switzerland
| | - Sacha Jacobs
- Molecular Pharmacology Group, School of Pharmaceutical Sciences, University of Geneva, 1 Rue Michel-Servet, Geneva, 4 1211, Switzerland
- Institute of Pharmaceutical Sciences of Western Switzerland, University of Geneva, Geneva, 1211, Switzerland
- Translational Research Center in Oncohaematology, Geneva, 1211, Switzerland
| | - Patrycja Nowak-Sliwinska
- Molecular Pharmacology Group, School of Pharmaceutical Sciences, University of Geneva, 1 Rue Michel-Servet, Geneva, 4 1211, Switzerland.
- Institute of Pharmaceutical Sciences of Western Switzerland, University of Geneva, Geneva, 1211, Switzerland.
- Translational Research Center in Oncohaematology, Geneva, 1211, Switzerland.
| |
Collapse
|
3
|
van der Graaff D, Seghers S, Vanclooster P, Deben C, Vandamme T, Prenen H. Advancements in Research and Treatment Applications of Patient-Derived Tumor Organoids in Colorectal Cancer. Cancers (Basel) 2024; 16:2671. [PMID: 39123399 PMCID: PMC11311786 DOI: 10.3390/cancers16152671] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2024] [Revised: 07/20/2024] [Accepted: 07/23/2024] [Indexed: 08/12/2024] Open
Abstract
Colorectal cancer (CRC) remains a significant health burden globally, being the second leading cause of cancer-related mortality. Despite significant therapeutic advancements, resistance to systemic antineoplastic agents remains an important obstacle, highlighting the need for innovative screening tools to tailor patient-specific treatment. This review explores the application of patient-derived tumor organoids (PDTOs), three-dimensional, self-organizing models derived from patient tumor samples, as screening tools for drug resistance in CRC. PDTOs offer unique advantages over traditional models by recapitulating the tumor architecture, cellular heterogeneity, and genomic landscape and are a valuable ex vivo predictive drug screening tool. This review provides an overview of the current literature surrounding the use of PDTOs as an instrument for predicting therapy responses in CRC. We also explore more complex models, such as co-cultures with important stromal cells, such as cancer-associated fibroblasts, and organ-on-a-chip models. Furthermore, we discuss the use of PDTOs for drug repurposing, offering a new approach to identify the existing drugs effective against drug-resistant CRC. Additionally, we explore how PDTOs serve as models to gain insights into drug resistance mechanisms, using newer techniques, such as single-cell RNA sequencing and CRISPR-Cas9 genome editing. Through this review, we aim to highlight the potential of PDTOs in advancing our understanding of predicting therapy responses, drug resistance, and biomarker identification in CRC management.
Collapse
Affiliation(s)
| | - Sofie Seghers
- Department of Medical Oncology, University Hospital Antwerp, 2650 Edegem, Belgium
- Center for Oncological Research (CORE), University of Antwerp, 2610 Wilrijk, Belgium
| | | | - Christophe Deben
- Center for Oncological Research (CORE), University of Antwerp, 2610 Wilrijk, Belgium
| | - Timon Vandamme
- Department of Medical Oncology, University Hospital Antwerp, 2650 Edegem, Belgium
- Center for Oncological Research (CORE), University of Antwerp, 2610 Wilrijk, Belgium
| | - Hans Prenen
- Department of Medical Oncology, University Hospital Antwerp, 2650 Edegem, Belgium
- Center for Oncological Research (CORE), University of Antwerp, 2610 Wilrijk, Belgium
| |
Collapse
|
4
|
Tardito S, Matis S, Zocchi MR, Benelli R, Poggi A. Epidermal Growth Factor Receptor Targeting in Colorectal Carcinoma: Antibodies and Patient-Derived Organoids as a Smart Model to Study Therapy Resistance. Int J Mol Sci 2024; 25:7131. [PMID: 39000238 PMCID: PMC11241078 DOI: 10.3390/ijms25137131] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Revised: 06/22/2024] [Accepted: 06/25/2024] [Indexed: 07/16/2024] Open
Abstract
Colorectal cancer (CRC) is the second leading cause of cancer-related death worldwide. Therefore, the need for new therapeutic strategies is still a challenge. Surgery and chemotherapy represent the first-line interventions; nevertheless, the prognosis for metastatic CRC (mCRC) patients remains unacceptable. An important step towards targeted therapy came from the inhibition of the epidermal growth factor receptor (EGFR) pathway, by the anti-EGFR antibody, Cetuximab, or by specific tyrosine kinase inhibitors (TKI). Cetuximab, a mouse-human chimeric monoclonal antibody (mAb), binds to the extracellular domain of EGFR thus impairing EGFR-mediated signaling and reducing cell proliferation. TKI can affect the EGFR biochemical pathway at different steps along the signaling cascade. Apart from Cetuximab, other anti-EGFR mAbs have been developed, such as Panitumumab. Both antibodies have been approved for the treatment of KRAS-NRAS wild type mCRC, alone or in combination with chemotherapy. These antibodies display strong differences in activating the host immune system against CRC, due to their different immunoglobulin isotypes. Although anti-EGFR antibodies are efficient, drug resistance occurs with high frequency. Resistant tumor cell populations can either already be present before therapy or develop later by biochemical adaptations or new genomic mutations in the EGFR pathway. Numerous efforts have been made to improve the efficacy of the anti-EGFR mAbs or to find new agents that are able to block downstream EGFR signaling cascade molecules. Indeed, we examined the importance of analyzing the anti-EGFR antibody-drug conjugates (ADC) developed to overcome resistance and/or stimulate the tumor host's immunity against CRC growth. Also, patient-derived CRC organoid cultures represent a useful and feasible in vitro model to study tumor behavior and therapy response. Organoids can reflect tumor genetic heterogeneity found in the tissue of origin, representing a unique tool for personalized medicine. Thus, CRC-derived organoid cultures are a smart model for studying the tumor microenvironment and for the preclinical assay of anti-EGFR drugs.
Collapse
Affiliation(s)
- Samuele Tardito
- Center for Cancer and Immunology Research, Children’s National Hospital, Washington, DC 20010, USA;
| | - Serena Matis
- Molecular Oncology and Angiogenesis Unit, IRRCS Ospedale Policlinico San Martino, 16132 Genoa, Italy;
| | - Maria Raffaella Zocchi
- Department of Immunology, Transplant and Infectious Diseases, IRCCS Scientific Institute San Raffaele, 20132 Milan, Italy;
| | - Roberto Benelli
- Molecular Oncology and Angiogenesis Unit, IRRCS Ospedale Policlinico San Martino, 16132 Genoa, Italy;
| | - Alessandro Poggi
- Molecular Oncology and Angiogenesis Unit, IRRCS Ospedale Policlinico San Martino, 16132 Genoa, Italy;
| |
Collapse
|
5
|
Smabers LP, Wensink E, Verissimo CS, Koedoot E, Pitsa KC, Huismans MA, Higuera Barón C, Doorn M, Valkenburg-van Iersel LB, Cirkel GA, Brousali A, Overmeer R, Koopman M, Braat MN, Penning de Vries B, Elias SG, Vries RG, Kranenburg O, Boj SF, Roodhart JM. Organoids as a biomarker for personalized treatment in metastatic colorectal cancer: drug screen optimization and correlation with patient response. J Exp Clin Cancer Res 2024; 43:61. [PMID: 38414064 PMCID: PMC10898042 DOI: 10.1186/s13046-024-02980-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Accepted: 02/09/2024] [Indexed: 02/29/2024] Open
Abstract
BACKGROUND The inability to predict treatment response of colorectal cancer patients results in unnecessary toxicity, decreased efficacy and survival. Response testing on patient-derived organoids (PDOs) is a promising biomarker for treatment efficacy. The aim of this study is to optimize PDO drug screening methods for correlation with patient response and explore the potential to predict responses to standard chemotherapies. METHODS We optimized drug screen methods on 5-11 PDOs per condition of the complete set of 23 PDOs from patients treated for metastatic colorectal cancer (mCRC). PDOs were exposed to 5-fluorouracil (5-FU), irinotecan- and oxaliplatin-based chemotherapy. We compared medium with and without N-acetylcysteine (NAC), different readouts and different combination treatment set-ups to capture the strongest association with patient response. We expanded the screens using the optimized methods for all PDOs. Organoid sensitivity was correlated to the patient's response, determined by % change in the size of target lesions. We assessed organoid sensitivity in relation to prior exposure to chemotherapy, mutational status and sidedness. RESULTS Drug screen optimization involved excluding N-acetylcysteine from the medium and biphasic curve fitting for 5-FU & oxaliplatin combination screens. CellTiter-Glo measurements were comparable with CyQUANT and did not affect the correlation with patient response. Furthermore, the correlation improved with application of growth rate metrics, when 5-FU & oxaliplatin was screened in a ratio, and 5-FU & SN-38 using a fixed dose of SN-38. Area under the curve was the most robust drug response curve metric. After optimization, organoid and patient response showed a correlation coefficient of 0.58 for 5-FU (n = 6, 95% CI -0.44,0.95), 0.61 for irinotecan- (n = 10, 95% CI -0.03,0.90) and 0.60 for oxaliplatin-based chemotherapy (n = 11, 95% CI -0.01,0.88). Median progression-free survival of patients with resistant PDOs to oxaliplatin-based chemotherapy was significantly shorter than sensitive PDOs (3.3 vs 10.9 months, p = 0.007). Increased resistance to 5-FU in patients with prior exposure to 5-FU/capecitabine was adequately reflected in PDOs (p = 0.003). CONCLUSIONS Our study emphasizes the critical impact of the screening methods for determining correlation between PDO drug screens and mCRC patient outcomes. Our 5-step optimization strategy provides a basis for future research on the clinical utility of PDO screens.
Collapse
Affiliation(s)
- Lidwien P Smabers
- Department of Medical Oncology, University Medical Center Utrecht (UMCU), Utrecht, The Netherlands
| | - Emerens Wensink
- Department of Medical Oncology, University Medical Center Utrecht (UMCU), Utrecht, The Netherlands
| | | | | | | | - Maarten A Huismans
- Molecular Cancer Research, Center for Molecular Medicine, UMCU, Utrecht, The Netherlands
| | | | | | | | - Geert A Cirkel
- Department of Medical Oncology, Meander Medical Center, Amersfoort, The Netherlands
| | - Anneta Brousali
- Utrecht Platform for Organoid Technology (UPORT), UMCU, Utrecht, The Netherlands
| | | | - Miriam Koopman
- Department of Medical Oncology, University Medical Center Utrecht (UMCU), Utrecht, The Netherlands
| | - Manon N Braat
- Department of Radiology, UMCU, Utrecht, The Netherlands
| | - Bas Penning de Vries
- Department of Epidemiology, Julius Center for Health Sciences and Primary Care, UMCU, Utrecht, The Netherlands
| | - Sjoerd G Elias
- Department of Epidemiology, Julius Center for Health Sciences and Primary Care, UMCU, Utrecht, The Netherlands
| | | | - Onno Kranenburg
- Utrecht Platform for Organoid Technology (UPORT), UMCU, Utrecht, The Netherlands
- Laboratory of Translational Oncology, Division of Imaging and Cancer, UMCU, Utrecht, The Netherlands
| | | | - Jeanine M Roodhart
- Department of Medical Oncology, University Medical Center Utrecht (UMCU), Utrecht, The Netherlands.
| |
Collapse
|
6
|
Flood P, Hanrahan N, Nally K, Melgar S. Human intestinal organoids: Modeling gastrointestinal physiology and immunopathology - current applications and limitations. Eur J Immunol 2024; 54:e2250248. [PMID: 37957831 DOI: 10.1002/eji.202250248] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2023] [Revised: 11/10/2023] [Accepted: 11/11/2023] [Indexed: 11/15/2023]
Abstract
Human intestinal organoids are an ideal model system for studying gastrointestinal physiology and immunopathology. Altered physiology and mucosal immune response are hallmarks of numerous intestinal functional and inflammatory diseases, including inflammatory bowel disease (IBD), coeliac disease, irritable bowel syndrome (IBS), and obesity. These conditions impact the normal epithelial functions of the intestine, such as absorption, barrier function, secretion, and host-microbiome communication. They are accompanied by characteristic intestinal symptoms and have significant societal, economic, and healthcare burdens. To develop new treatment options, cutting-edge research is required to investigate their etiology and pathology. Human intestinal organoids derived from patient tissue recapitulate the key physiological and immunopathological aspects of these conditions, providing a promising platform for elucidating disease mechanisms. This review will summarize recent reports on patient-derived human small intestinal and colonic organoids and highlight how these models have been used to study intestinal epithelial functions in the context of inflammation, altered physiology, and immune response. Furthermore, it will elaborate on the various organoid systems in use and the techniques/assays currently available to study epithelial functions. Finally, it will conclude by discussing the limitations and future perspectives of organoid technology.
Collapse
Affiliation(s)
- Peter Flood
- APC Microbiome Ireland, University College Cork, Cork, Ireland
| | - Naomi Hanrahan
- APC Microbiome Ireland, University College Cork, Cork, Ireland
- Department of Medicine, School of Medicine, University College Cork, Cork, Ireland
- Biochemistry and Cell Biology, University College Cork, Cork, Ireland
| | - Ken Nally
- APC Microbiome Ireland, University College Cork, Cork, Ireland
- Biochemistry and Cell Biology, University College Cork, Cork, Ireland
| | - Silvia Melgar
- APC Microbiome Ireland, University College Cork, Cork, Ireland
| |
Collapse
|
7
|
Gerstberger S, Ganesh K. NEN in a dish: A patient-derived organoid biobank illuminates potential novel therapeutic opportunities for neuroendocrine neoplasms. Cancer Cell 2023; 41:2014-2016. [PMID: 38086333 DOI: 10.1016/j.ccell.2023.11.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Revised: 11/08/2023] [Accepted: 11/08/2023] [Indexed: 12/18/2023]
Abstract
Neuroendocrine neoplasms are rare cancers with limited treatment options and preclinical models. In this issue of Cancer Cell, Dayton et al. establish a patient-derived tumor organoid biobank encompassing pulmonary low-grade neuroendocrine tumors (LNETs) and high-grade neuroendocrine carcinomas (LCNECs), identifying novel biomarker-dependent therapeutic vulnerabilities using niche perturbation and drug response assays.
Collapse
Affiliation(s)
- Stefanie Gerstberger
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Karuna Ganesh
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA; Molecular Pharmacology Program, Sloan Kettering Institute, New York, NY 10065, USA.
| |
Collapse
|