1
|
Kiełbowski K, Bakinowska E, Procyk G, Ziętara M, Pawlik A. The Role of MicroRNA in the Pathogenesis of Duchenne Muscular Dystrophy. Int J Mol Sci 2024; 25:6108. [PMID: 38892293 PMCID: PMC11172814 DOI: 10.3390/ijms25116108] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2024] [Revised: 05/29/2024] [Accepted: 05/29/2024] [Indexed: 06/21/2024] Open
Abstract
Duchenne muscular dystrophy (DMD) is an X-linked progressive disorder associated with muscle wasting and degeneration. The disease is caused by mutations in the gene that encodes dystrophin, a protein that links the cytoskeleton with cell membrane proteins. The current treatment methods aim to relieve the symptoms of the disease or partially rescue muscle functionality. However, they are insufficient to suppress disease progression. In recent years, studies have uncovered an important role for non-coding RNAs (ncRNAs) in regulating the progression of numerous diseases. ncRNAs, such as micro-RNAs (miRNAs), bind to their target messenger RNAs (mRNAs) to suppress translation. Understanding the mechanisms involving dysregulated miRNAs can improve diagnosis and suggest novel treatment methods for patients with DMD. This review presents the available evidence on the role of altered expression of miRNAs in the pathogenesis of DMD. We discuss the involvement of these molecules in the processes associated with muscle physiology and DMD-associated cardiomyopathy.
Collapse
Affiliation(s)
- Kajetan Kiełbowski
- Department of Physiology, Pomeranian Medical University, 70-111 Szczecin, Poland; (K.K.); (E.B.); (M.Z.)
| | - Estera Bakinowska
- Department of Physiology, Pomeranian Medical University, 70-111 Szczecin, Poland; (K.K.); (E.B.); (M.Z.)
| | - Grzegorz Procyk
- 1st Chair and Department of Cardiology, Medical University of Warsaw, Banacha 1A, 02-097 Warsaw, Poland;
- Doctoral School, Medical University of Warsaw, 02-091 Warsaw, Poland
| | - Marta Ziętara
- Department of Physiology, Pomeranian Medical University, 70-111 Szczecin, Poland; (K.K.); (E.B.); (M.Z.)
| | - Andrzej Pawlik
- Department of Physiology, Pomeranian Medical University, 70-111 Szczecin, Poland; (K.K.); (E.B.); (M.Z.)
| |
Collapse
|
2
|
Vasterling ME, Maitski RJ, Davis BA, Barnes JE, Kelkar RA, Klapper RJ, Patel H, Ahmadzadeh S, Shekoohi S, Kaye AD, Varrassi G. AMONDYS 45 (Casimersen), a Novel Antisense Phosphorodiamidate Morpholino Oligomer: Clinical Considerations for Treatment in Duchenne Muscular Dystrophy. Cureus 2023; 15:e51237. [PMID: 38283433 PMCID: PMC10821770 DOI: 10.7759/cureus.51237] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Accepted: 12/28/2023] [Indexed: 01/30/2024] Open
Abstract
AMONDYS 45 (casimersen) is an antisense oligonucleotide therapy used to treat Duchenne muscular dystrophy (DMD), a rare genetic disorder characterized by a mutation in the DMD gene. Symptoms include progressive muscle weakness, respiratory and cardiac complications, and premature death. Casimersen targets a specific mutation in the DMD gene that results in the absence of dystrophin protein, a key structural component of muscle fibers. While there is currently no cure for DMD, exon-skipping therapy works by restoring the reading frame of the mutated gene, allowing the production of a partially functional dystrophin protein. Clinical trials of casimersen have shown promising results in increasing dystrophin production, as measured by polymerase chain reaction (PCR) droplets when compared to placebo. In a randomized double-blind trial, patients who received casimersen had significantly higher dystrophin levels when compared to those who received placebo. Casimersen therapy is administered through repeated intravenous infusions, although the optimal dosage and duration of treatment are still under investigation. Based on the completed and ongoing clinical trials, casimersen has been well tolerated, with most adverse events being mild and unrelated to casimersen. In 2021, AMONDYS 45 (casimersen) received approval from the US Food and Drug Administration (FDA) for the treatment of Duchene muscular dystrophy in patients with a mutation of the DMD gene that is amenable to exon 45 skipping. These collective findings indicate that casimersen has the potential to elicit functional changes in individuals with DMD, although further studies are necessary to comprehensively evaluate the specific functional improvements. Regardless, the FDA approval and ongoing clinic trials mark a significant milestone in the development of DMD treatments and offer hope for those affected by this debilitating disease.
Collapse
Affiliation(s)
- Megan E Vasterling
- School of Medicine, Louisiana State University Health Sciences Center, New Orleans, USA
| | - Rebecca J Maitski
- School of Medicine, Louisiana State University Health Sciences Center, New Orleans, USA
| | - Brice A Davis
- School of Medicine, Louisiana State University Health Sciences Center, New Orleans, USA
| | - Julie E Barnes
- School of Medicine, Louisiana State University Health Sciences Center, New Orleans, USA
| | - Rucha A Kelkar
- School of Medicine, Medical University of South Carolina, Charleston, USA
| | - Rachel J Klapper
- Radiology, Louisiana State University Health Sciences Center, Shreveport, USA
| | - Hirni Patel
- Anesthesiology, Louisiana State University Health Sciences Center, Shreveport, USA
| | - Shahab Ahmadzadeh
- Anesthesiology, Louisiana State University Health Sciences Center, Shreveport, USA
| | - Sahar Shekoohi
- Anesthesiology, Louisiana State University Health Sciences Center, Shreveport, USA
| | - Alan D Kaye
- Anesthesiology, Louisiana State University Health Sciences Center, Shreveport, USA
| | | |
Collapse
|