Chowell G, Dahal S, Bleichrodt A, Tariq A, Hyman JM, Luo R.
SubEpiPredict: A tutorial-based primer and toolbox for fitting and forecasting growth trajectories using the ensemble
n-sub-epidemic modeling framework.
Infect Dis Model 2024;
9:411-436. [PMID:
38385022 PMCID:
PMC10879680 DOI:
10.1016/j.idm.2024.02.001]
[Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Revised: 02/01/2024] [Accepted: 02/01/2024] [Indexed: 02/23/2024] Open
Abstract
An ensemble n-sub-epidemic modeling framework that integrates sub-epidemics to capture complex temporal dynamics has demonstrated powerful forecasting capability in previous works. This modeling framework can characterize complex epidemic patterns, including plateaus, epidemic resurgences, and epidemic waves characterized by multiple peaks of different sizes. In this tutorial paper, we introduce and illustrate SubEpiPredict, a user-friendly MATLAB toolbox for fitting and forecasting time series data using an ensemble n-sub-epidemic modeling framework. The toolbox can be used for model fitting, forecasting, and evaluation of model performance of the calibration and forecasting periods using metrics such as the weighted interval score (WIS). We also provide a detailed description of these methods including the concept of the n-sub-epidemic model, constructing ensemble forecasts from the top-ranking models, etc. For the illustration of the toolbox, we utilize publicly available daily COVID-19 death data at the national level for the United States. The MATLAB toolbox introduced in this paper can be very useful for a wider group of audiences, including policymakers, and can be easily utilized by those without extensive coding and modeling backgrounds.
Collapse