1
|
Pagano G, Lyakhovich A, Thomas PJ, Catalayud FVP, Tiano L, Zatterale A, Trifuoggi M. Prooxidant state in anticancer drugs and prospect use of mitochondrial cofactors and anti-inflammatory agents in cancer prevention. Inflammopharmacology 2025; 33:431-441. [PMID: 39656417 DOI: 10.1007/s10787-024-01613-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2024] [Accepted: 11/27/2024] [Indexed: 02/22/2025]
Abstract
An extensive body of literature has associated cancer with redox imbalance and inflammatory conditions. Thus, several studies and current clinical practice have relied on the use of anticancer drugs known to be associated with prooxidant state. On the other hand, a number of studies have reported on the effects of several antioxidants, anti-inflammatory agents and of mitochondrial cofactors (also termed mitochondrial nutrients, MNs) in counteracting or slowing carcinogenesis, or in controlling cancer growth. In the available literature, a body of evidence points on the roles of anti-inflammatory agents and of individual MNs against carcinogenesis or in controlling cancer cell proliferation, but only a few reports on the combined use of two or the effect of three MNs. These combinations are proposed as potentially successful tools to counteract carcinogenesis in prospective animal model studies or in adjuvant cancer treatment strategies. A "triad" of MNs are suggested to restore redox balance, mitigate side effects of prooxidative anticancer drugs, or aid in cancer prevention and/or adjuvant therapy. By elucidating their mechanistic underpinnings and appraising their clinical efficacy, we aim to contribute with a comprehensive understanding of these therapeutic modalities.
Collapse
Affiliation(s)
- Giovanni Pagano
- Department of Chemical Sciences, Federico II Naples University, 80136, Naples, Italy.
| | | | - Philippe J Thomas
- Environment and Climate Change Canada, Science Technology Branch, National Wildlife Research Center - Carleton University, Ottawa, ON, K1A 0H3, Canada
| | | | - Luca Tiano
- Department of Life and Environmental Sciences, Polytechnical University of Marche, Ancona, Italy
| | | | - Marco Trifuoggi
- Department of Chemical Sciences, Federico II Naples University, 80136, Naples, Italy
| |
Collapse
|
2
|
Junco M, Ventura C, Santiago Valtierra FX, Maldonado EN. Facts, Dogmas, and Unknowns About Mitochondrial Reactive Oxygen Species in Cancer. Antioxidants (Basel) 2024; 13:1563. [PMID: 39765891 PMCID: PMC11673973 DOI: 10.3390/antiox13121563] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2024] [Revised: 12/04/2024] [Accepted: 12/13/2024] [Indexed: 01/11/2025] Open
Abstract
Cancer metabolism is sustained both by enhanced aerobic glycolysis, characteristic of the Warburg phenotype, and oxidative metabolism. Cell survival and proliferation depends on a dynamic equilibrium between mitochondrial function and glycolysis, which is heterogeneous between tumors and even within the same tumor. During oxidative phosphorylation, electrons from NADH and FADH2 originated in the tricarboxylic acid cycle flow through complexes of the electron transport chain. Single electron leaks at specific complexes of the electron transport chain generate reactive oxygen species (ROS). ROS are a concentration-dependent double-edged sword that plays multifaceted roles in cancer metabolism. ROS serve either as signaling molecules favoring cellular homeostasis and proliferation or damage DNA, protein and lipids, causing cell death. Several aspects of ROS biology still remain unsolved. Among the unknowns are the actual levels at which ROS become cytotoxic and if toxicity depends on specific ROS species or if it is caused by a cumulative effect of all of them. In this review, we describe mechanisms of mitochondrial ROS production, detoxification, ROS-induced cytotoxicity, and the use of antioxidants in cancer treatment. We also provide updated information about critical questions on the biology of ROS on cancer metabolism and discuss dogmas that lack adequate experimental demonstration. Overall, this review brings a comprehensive perspective of ROS as drivers of cancer progression, inducers of cell death, and the potential use of antioxidants as anticancer therapy.
Collapse
Affiliation(s)
- Milagros Junco
- Department of Drug Discovery & Biomedical Sciences, Medical University of South Carolina, Charleston, SC 29425, USA;
- Virology Laboratory, Tandil Veterinary Research Center (CIVETAN), UNCPBA-CICPBA-CONICET, Tandil B7000, Argentina
| | - Clara Ventura
- Institute for Immunological and Physiopathological Studies (IIFP), National Scientific and Technical Research Council (CONICET), Buenos Aires, La Plata 1900, Argentina;
| | | | - Eduardo Nestor Maldonado
- Department of Drug Discovery & Biomedical Sciences, Medical University of South Carolina, Charleston, SC 29425, USA;
- Hollings Cancer Center, Medical University of South Carolina, Charleston, SC 29425, USA
| |
Collapse
|
3
|
Chen P, Lamson D, Anderson P, Drisko J, Chen Q. Combination of High-Dose Parenteral Ascorbate (Vitamin C) and Alpha-Lipoic Acid Failed to Enhance Tumor-Inhibitory Effect But Increased Toxicity in Preclinical Cancer Models. Clin Med Insights Oncol 2024; 18:11795549241283421. [PMID: 39493360 PMCID: PMC11528587 DOI: 10.1177/11795549241283421] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Accepted: 08/28/2024] [Indexed: 11/05/2024] Open
Abstract
Background Intravenous vitamin C (IVC, ascorbate [Asc]) and alpha-lipoic acid (ALA) are frequently coadministered in integrative oncology clinics, with limited understanding of combination effects or drug-drug interactions. As high-dose IVC has anticancer activity through peroxide (H2O2), it is hypothesized that IV ALA, a thiol antioxidant, might have untoward effects when combined with IVC. Methods In vitro combination index (CI) was investigated in 6 types of human cancer cells, using clinically relevant concentrations of Asc (0.625-20 mM) and ALA (0.25, 0.5, and 1 mM) evaluated by nonconstant ratio metrics. Cellular H2O2 was measured using HeLa cells expressing a fluorescent probe HyPer. Mouse xenografts of the metastatic breast cancer MDA-MB-231 were treated with intraperitoneal injections of ALA (10, 20, and 50 mg/kg) and Asc (0.2, 0.5, and 4 g/kg) at various dose levels. Results Cancer cell lines were sensitive to Asc treatment but not to ALA. There is no evidence ALA becomes a prooxidant at higher doses. The CIs showed a mixture of synergistic and antagonistic effects with different ALA and Asc combination ratios, with a "U" shape response to Asc concentrations. The ALA concentrations did not influence the CIs or cellular H2O2 formation. Adding ALA to Asc dampened the increase of H2O2. Toxicity was observed in mice receiving prolonged treatment of ALA at all doses. The Asc at all doses was nontoxic. The combination of ALA and Asc increased toxicity. The ALA at all doses did not inhibit tumor growth. The Asc at 4 g/kg inhibited tumor growth. Adding ALA 50 mg/kg to Asc 4 g/kg did not enhance the effect, but lower doses of ALA (10 or 20 mg/kg) dampened the inhibitory effect of Asc. Conclusions These data do not support the concurrent or relative concurrent use of high-dose intravenous ALA with prooxidative high-dose IVC in clinical oncology care with potentially increased toxicity.
Collapse
Affiliation(s)
- Ping Chen
- Department of Pharmacology, Toxicology, and Therapeutics, University of Kansas School of Medicine, Kansas City, KS, USA
| | - Davis Lamson
- School of Naturopathic Medicine, Bastyr University, Kenmore, WA, USA
| | | | - Jeanne Drisko
- Department of Internal Medicine, University of Kansas Medical Center, Kansas City, KS, USA
| | - Qi Chen
- Department of Pharmacology, Toxicology, and Therapeutics, University of Kansas School of Medicine, Kansas City, KS, USA
| |
Collapse
|
4
|
Sharma G, Abdullah KM, Qais FA, Khan P, Cox JL, Sarwar T, Nasser MW, Batra SK, Siddiqui JA. Clofazimine inhibits small-cell lung cancer progression by modulating the kynurenine/aryl hydrocarbon receptor axis. Int J Biol Macromol 2024; 282:136921. [PMID: 39490481 DOI: 10.1016/j.ijbiomac.2024.136921] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2024] [Revised: 10/07/2024] [Accepted: 10/24/2024] [Indexed: 11/05/2024]
Abstract
Small cell lung cancer (SCLC) is one of the highly metastatic malignancies that contributes to ~15 % of all lung cancers. Most SCLC patients (50-60 %) develop osteolytic bone metastases, significantly affecting their quality of life. Among several factors, environmental pollutant 2,3,7,8-Tetrachlorodibenzodioxin (TCDD) and kynurenine (Kyn), an endogenous ligand derived from tryptophan (Trp) metabolism, activate the aryl hydrocarbon receptor (AhR) and are responsible for SCLC progression and metastasis. Further, elevated AhR expression in bone cells intensifies bone resorption, making the Kyn/AhR axis a potential target for the bone metastatic propensity of SCLC. We first assessed the expression profile of AhR in human SCLC cell lines and found a significantly increased expression compared to normal lung cells. Additionally, we also evaluated the clinical significance of AhR expression in the patient samples of SCLC along with the relevance of the same in the Rb1fl/fl; Trp53fl/fl; MycLSL/LSL (RPM) mouse model using immunohistochemistry and found the higher AhR expression in the patient samples and RPM mouse tumor tissues. Using computational simulations, we found that clofazimine (CLF) binds at the activator (Kyn) binding site by forming a stable complex with AhR. The CLF binding with AhR was favored by Van der Waals and hydrophobic forces, and the proteins retained their secondary structure. Furthermore, we found that Kyn treatment potentiates the migration and clonogenic ability of SCLC cell lines by activating Erk/Akt oncogenic signaling. Blocking AhR with CLF reduces AhR expression, inhibits Kyn-mediated proliferation of SCLC cells, and induces apoptosis and cell cycle arrest in the G2/M phase; further, our examination indicates that Kyn treatment also promotes osteoblast-mediated osteoclast differentiation through RANKL. The treatment with CLF impedes RANKL expression and osteoclastogenesis, suggesting that CLF has the potential for developing SCLC therapies that have efficacies against bone metastasis.
Collapse
Affiliation(s)
- Gunjan Sharma
- Department of Cell and Molecular Biology, University of Mississippi Medical Center, Jackson MS-68198, USA; Cancer Center and Research Institute, University of Mississippi Medical Center, Jackson MS-68198, USA
| | - K M Abdullah
- Department of Cell and Molecular Biology, University of Mississippi Medical Center, Jackson MS-68198, USA; Cancer Center and Research Institute, University of Mississippi Medical Center, Jackson MS-68198, USA
| | - Faizan Abul Qais
- Department of Agricultural Microbiology, Faculty of Agricultural Sciences, Aligarh Muslim University, Aligarh, UP 202002, India
| | - Parvez Khan
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha NE-68198, USA
| | - Jesse L Cox
- Department of Pathology, Microbiology and Immunology, University of Nebraska Medical Center, Omaha NE-68198, USA
| | - Tarique Sarwar
- Department of Medical Laboratories, College of Applied Medical Sciences, Qassim University, Buraydah 51452, Saudi Arabia
| | - Mohd Wasim Nasser
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha NE-68198, USA; Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, Omaha NE-68198, USA
| | - Surinder K Batra
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha NE-68198, USA; Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, Omaha NE-68198, USA
| | - Jawed A Siddiqui
- Department of Cell and Molecular Biology, University of Mississippi Medical Center, Jackson MS-68198, USA; Cancer Center and Research Institute, University of Mississippi Medical Center, Jackson MS-68198, USA.
| |
Collapse
|
5
|
Bellini C, Mancin F, Papini E, Tavano R. Nanotechnological Approaches to Enhance the Potential of α-Lipoic Acid for Application in the Clinic. Antioxidants (Basel) 2024; 13:706. [PMID: 38929145 PMCID: PMC11201002 DOI: 10.3390/antiox13060706] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Revised: 05/30/2024] [Accepted: 06/04/2024] [Indexed: 06/28/2024] Open
Abstract
α-lipoic acid is a naturally occurring compound with potent antioxidant properties that helps protect cells and tissues from oxidative stress. Its incorporation into nanoplatforms can affect factors like bioavailability, stability, reactivity, and targeted delivery. Nanoformulations of α-lipoic acid can significantly enhance its solubility and absorption, making it more bioavailable. While α-lipoic acid can be prone to degradation in its free form, encapsulation within nanoparticles ensures its stability over time, and its release in a controlled and sustained manner to the targeted tissues and cells. In addition, α-lipoic acid can be combined with other compounds, such as other antioxidants, drugs, or nanomaterials, to create synergistic effects that enhance their overall therapeutic benefits or hinder their potential cytotoxicity. This review outlines the advantages and drawbacks associated with the use of α-lipoic acid, as well as various nanotechnological approaches employed to enhance its therapeutic effectiveness, whether alone or in combination with other bioactive agents. Furthermore, it describes the engineering of α-lipoic acid to produce poly(α-lipoic acid) nanoparticles, which hold promise as an effective drug delivery system.
Collapse
Affiliation(s)
- Chiara Bellini
- Department of Biomedical Sciences, University of Padova, Via U. Bassi 58/b, 35121 Padova, Italy; (C.B.); (E.P.)
| | - Fabrizio Mancin
- Department of Chemical Sciences, University of Padova, Via F. Marzolo 1, 35121 Padova, Italy;
| | - Emanuele Papini
- Department of Biomedical Sciences, University of Padova, Via U. Bassi 58/b, 35121 Padova, Italy; (C.B.); (E.P.)
| | - Regina Tavano
- Department of Biomedical Sciences, University of Padova, Via U. Bassi 58/b, 35121 Padova, Italy; (C.B.); (E.P.)
| |
Collapse
|
6
|
Abdullah KM, Sharma G, Qais FA, Khan I, Takkar S, Kaushal JB, Kanchan RK, Sarwar T, Chakravarti B, Siddiqui JA. Hydroxychloroquine interaction with phosphoinositide 3-kinase modulates prostate cancer growth in bone microenvironment: In vitro and molecular dynamics based approach. Int J Biol Macromol 2024; 266:130912. [PMID: 38513896 DOI: 10.1016/j.ijbiomac.2024.130912] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2023] [Revised: 03/06/2024] [Accepted: 03/13/2024] [Indexed: 03/23/2024]
Abstract
Patients with advanced prostate cancer (PCa) are more likely to develop bone metastases. Tumor cells thrive in the bone microenvironment, interacting with osteoblasts and osteoclasts. Given the PI3K/AKT pathway's metastatic potential and signal integration's ability to modulate cell fates in PCa development, drugs targeting this system have great therapeutic promise. Hydroxychloroquine (HCQ) is an anti-malarial medication commonly used to treat clinical conditions such as rheumatology and infectious disorders. We explored the anti-neoplastic effect of HCQ on PC3 and C4-2B cell lines in the bone microenvironment. Interestingly, HCQ treatment substantially decreases the viability, proliferation, and migration potential of PCa cells in the bone microenvironment. HCQ induces apoptosis and cell cycle arrest, even in the presence of osteoblast-secreted factors. Mechanistically, HCQ inhibited the activity of the PI3K/AKT signaling pathway, which ultimately regulates the proliferation and migration of PCa cells in the bone. The binding energy for docking HCQ with PI3K was -6.7 kcal/mol, and the complex was stabilized by hydrogen bonds, hydrophobic forces, and van der Waals forces. Molecular simulations further validated the structural integrity of the HCQ-PI3K complex without altering PI3K's secondary structure. Our findings underscore the efficacy of HCQ as a potential therapeutic agent in treating PCa.
Collapse
Affiliation(s)
- K M Abdullah
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha NE-68198, USA
| | - Gunjan Sharma
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha NE-68198, USA
| | - Faizan Abul Qais
- Department of Agricultural Microbiology, Faculty of Agricultural Sciences, Aligarh Muslim University, Aligarh, UP 202002, India
| | - Imran Khan
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha NE-68198, USA
| | - Simran Takkar
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha NE-68198, USA
| | - Jyoti B Kaushal
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha NE-68198, USA
| | - Ranjana K Kanchan
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha NE-68198, USA
| | - Tarique Sarwar
- Department of Medical Laboratories, College of Applied Medical Sciences, Qassim University, 51452, Saudi Arabia
| | - Bandana Chakravarti
- Department of Endocrinology, Sanjay Gandhi Postgraduate Institute of Medical Sciences, Lucknow 226014, India
| | - Jawed A Siddiqui
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha NE-68198, USA; Fred and Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha NE-68198, USA.
| |
Collapse
|