1
|
Yang Q, Zhong R, Chang W, Chen K, Wang M, Yuan S, Liang Z, Wang W, Wang C, Tong G, Zhang T, Sun Y. WormSpace μ-TAS enabling automated on-chip multi-strain culturing and multi-function imaging of Caenorhabditis elegans at the single-worm level on the China Space Station. LAB ON A CHIP 2024; 24:3388-3402. [PMID: 38818738 DOI: 10.1039/d4lc00210e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/01/2024]
Abstract
As a model organism for space biology experiments, Caenorhabditis elegans (C. elegans) has low demand for life support and strong resistance to unfavorable environments, making experimentation with C. elegans relatively easy and cost-effective. Previously, C. elegans has been flown in several spaceflight investigations, but there is still an urgent need for analytical platforms enabling on-orbit automated monitoring of multiple phenotypes of worms, such as growth and development, movement, changes of biomarkers, etc. To solve this problem, we presented a fully integrated microfluidic system (WormSpace μ-TAS) with an arrayed microfluidic chip (WormChip-4.8.1) and a replaceable microfluidic module (WormChip cartridge), which was compatible with the experimental facility on the China Space Station (CSS). By adopting technologies of programmed fluid control based on liquid medium CeMM as well as multi-function imaging with a camera mounted on a three-dimensional (3D) transportation stage, automated and long-term experimentation can be performed for on-chip multi-strain culturing and bright-field and fluorescence imaging of C. elegans at the single-worm level. The presented WormSpace μ-TAS enabled its successful application on the CSS, achieving flight launch of the sample unit (WormChip cartridge) at low temperature (controlled by a passive thermal case at 12 °C), automated 30-day cultivation of 4 strains of C. elegans, on-orbit monitoring of multiple phenotypes (growth and development, movement, and changes of fluorescent protein expression) at the single worm-level, on-chip fixation of animals at the end of the experiment and returning the fixed samples to earth. In summary, this study presented a verified microfluidic system and experimental protocols for automated on-chip multi-strain culturing and multi-function imaging of C. elegans at the single-worm level on the CSS. The WormSpace μ-TAS will provide a novel experimental platform for the study of biological effects of space radiation and microgravity, and for the development of protective drugs.
Collapse
Affiliation(s)
- Qianqian Yang
- Institute of Environmental Systems Biology, Dalian Maritime University, 116026 Dalian, China.
| | - Runtao Zhong
- Institute of Environmental Systems Biology, Dalian Maritime University, 116026 Dalian, China.
| | - Wenbo Chang
- Institute of Environmental Systems Biology, Dalian Maritime University, 116026 Dalian, China.
| | - Kexin Chen
- Institute of Environmental Systems Biology, Dalian Maritime University, 116026 Dalian, China.
| | - Mengyu Wang
- Institute of Environmental Systems Biology, Dalian Maritime University, 116026 Dalian, China.
| | - Shuqi Yuan
- Institute of Environmental Systems Biology, Dalian Maritime University, 116026 Dalian, China.
| | - Zheng Liang
- Institute of Environmental Systems Biology, Dalian Maritime University, 116026 Dalian, China.
| | - Wei Wang
- Institute of Environmental Systems Biology, Dalian Maritime University, 116026 Dalian, China.
| | - Chao Wang
- National Space Science Center, Chinese Academy of Sciences, 100190 Beijing, China
| | - Guanghui Tong
- Institute of Technical Physics, Chinese Academy of Science, 200083 Shanghai, China
| | - Tao Zhang
- Institute of Technical Physics, Chinese Academy of Science, 200083 Shanghai, China
| | - Yeqing Sun
- Institute of Environmental Systems Biology, Dalian Maritime University, 116026 Dalian, China.
| |
Collapse
|
2
|
Backes C, Martinez-Martinez D, Cabreiro F. C. elegans: A biosensor for host-microbe interactions. Lab Anim (NY) 2021; 50:127-135. [PMID: 33649581 DOI: 10.1038/s41684-021-00724-z] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2020] [Accepted: 01/27/2021] [Indexed: 01/31/2023]
Abstract
Microbes are an integral part of life on this planet. Microbes and their hosts influence each other in an endless dance that shapes how the meta-organism interacts with its environment. Although great advances have been made in microbiome research over the past 20 years, the mechanisms by which both hosts and their microbes interact with each other and the environment are still not well understood. The nematode Caenorhabditis elegans has been widely used as a model organism to study a remarkable number of human-like processes. Recent evidence shows that the worm is a powerful tool to investigate in fine detail the complexity that exists in microbe-host interactions. By combining the large array of genetic tools available for both organisms together with deep phenotyping approaches, it has been possible to uncover key effectors in the complex relationship between microbes and their hosts. In this perspective, we survey the literature for insightful discoveries in the microbiome field using the worm as a model. We discuss the latest conceptual and technological advances in the field and highlight the strengths that make C. elegans a valuable biosensor tool for the study of microbe-host interactions.
Collapse
Affiliation(s)
- Cassandra Backes
- MRC London Institute of Medical Sciences, Du Cane Road, London, W12 0NN, UK
| | | | - Filipe Cabreiro
- MRC London Institute of Medical Sciences, Du Cane Road, London, W12 0NN, UK. .,Institute of Clinical Sciences, Imperial College London, Hammersmith Hospital Campus, Du Cane Road, London, W12 0NN, UK.
| |
Collapse
|