1
|
Xie Y, Wang M, Sun Q, Wang D, Li C. Recent Advances in Tetrakis (4‐Carboxyphenyl) Porphyrin‐Based Nanocomposites for Tumor Therapy. ADVANCED NANOBIOMED RESEARCH 2022. [DOI: 10.1002/anbr.202200136] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Affiliation(s)
- Yulin Xie
- Institute of Molecular Sciences and Engineering Institute of Frontier and Interdisciplinary Science Shandong University Qingdao 266237 P.R. China
| | - Man Wang
- Institute of Molecular Sciences and Engineering Institute of Frontier and Interdisciplinary Science Shandong University Qingdao 266237 P.R. China
| | - Qianqian Sun
- Institute of Molecular Sciences and Engineering Institute of Frontier and Interdisciplinary Science Shandong University Qingdao 266237 P.R. China
| | - Dongmei Wang
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials College of Chemistry and Life Sciences Zhejiang Normal University Jinhua 321004 P.R. China
| | - Chunxia Li
- Institute of Molecular Sciences and Engineering Institute of Frontier and Interdisciplinary Science Shandong University Qingdao 266237 P.R. China
| |
Collapse
|
2
|
Retraction Note: Birinapant sensitizes platinum-resistant carcinomas with high levels of cIAP to carboplatin therapy. NPJ Precis Oncol 2021; 5:77. [PMID: 34376794 PMCID: PMC8355127 DOI: 10.1038/s41698-021-00217-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
|
3
|
Kanno Y, Chen CY, Lee HL, Chiou JF, Chen YJ. Molecular Mechanisms of Chemotherapy Resistance in Head and Neck Cancers. Front Oncol 2021; 11:640392. [PMID: 34026617 PMCID: PMC8138159 DOI: 10.3389/fonc.2021.640392] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2020] [Accepted: 04/06/2021] [Indexed: 12/24/2022] Open
Abstract
Chemotherapy resistance is a huge barrier for head and neck cancer (HNC) patients and therefore requires close attention to understand its underlay mechanisms for effective strategies. In this review, we first summarize the molecular mechanisms of chemotherapy resistance that occur during the treatment with cisplatin, 5-fluorouracil, and docetaxel/paclitaxel, including DNA/RNA damage repair, drug efflux, apoptosis inhibition, and epidermal growth factor receptor/focal adhesion kinase/nuclear factor-κB activation. Next, we describe the potential approaches to combining conventional therapies with previous cancer treatments such as immunotherapy, which may improve the treatment outcomes and prolong the survival of HNC patients. Overall, by parsing the reported molecular mechanisms of chemotherapy resistance within HNC patient’s tumors, we can improve the prediction of chemotherapeutic responsiveness, and reveal new therapeutic targets for the future.
Collapse
Affiliation(s)
- Yuzuka Kanno
- Division of Molecular Regulation of Inflammatory and Immune Disease, Research Institute for Biomedical Sciences, Tokyo University of Science, Chiba, Japan.,Department of Medicinal and Life Sciences, Faculty of Pharmaceutical Sciences, Tokyo University of Science, Chiba, Japan
| | - Chang-Yu Chen
- Division of Molecular Regulation of Inflammatory and Immune Disease, Research Institute for Biomedical Sciences, Tokyo University of Science, Chiba, Japan.,Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Hsin-Lun Lee
- Department of Radiation Oncology, Taipei Medical University Hospital, Taipei, Taiwan.,Department of Radiology, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan.,Taipei Cancer Center, Taipei Medical University, Taipei, Taiwan
| | - Jeng-Fong Chiou
- Department of Radiation Oncology, Taipei Medical University Hospital, Taipei, Taiwan.,Department of Radiology, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan.,Taipei Cancer Center, Taipei Medical University, Taipei, Taiwan.,TMU Research Center of Cancer Translational Medicine, Taipei Medical University, Taipei, Taiwan
| | - Yin-Ju Chen
- Department of Radiation Oncology, Taipei Medical University Hospital, Taipei, Taiwan.,TMU Research Center of Cancer Translational Medicine, Taipei Medical University, Taipei, Taiwan.,Graduate Institute of Biomedical Materials and Tissue Engineering, College of Biomedical Engineering, Taipei Medical University, Taipei, Taiwan.,International PhD Program in Biomedical Engineering, College of Biomedical Engineering, Taipei Medical University, Taipei, Taiwan.,Translational Laboratory, Research Department, Taipei Medical University Hospital, Taipei Medical University, Taipei, Taiwan
| |
Collapse
|
4
|
Matrix Drug Screen Identifies Synergistic Drug Combinations to Augment SMAC Mimetic Activity in Ovarian Cancer. Cancers (Basel) 2020; 12:cancers12123784. [PMID: 33334024 PMCID: PMC7765376 DOI: 10.3390/cancers12123784] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2020] [Revised: 12/08/2020] [Accepted: 12/10/2020] [Indexed: 02/07/2023] Open
Abstract
Simple Summary Recurrent ovarian cancer is difficult to treat due to the development of chemotherapy resistance. This resistance develops through multiple mechanisms to include the avoidance of cell death by cancer cells. Prior studies have shown birinapant, a second mitochondrial activator of caspases (SMAC) mimetic drug, to be promising in overcoming this acquired resistance. Despite good tolerability, however, therapy with single-agent birinapant exhibited minimal anti-cancer activity in women with recurrent ovarian cancer. By using a high-throughput drug screen we were able to identify potential therapeutic agents that augment birinapant activity, with docetaxel emerging favorably due to its marked synergy and known utility in the recurrent ovarian cancer setting. We showed that this synergy is the result of several complementary molecular pathways and hope to highlight the promising potential of this therapeutic drug combination for clinical testing where treatment options are often limited. Abstract Inhibitor of apoptosis (IAP) proteins are frequently upregulated in ovarian cancer, resulting in the evasion of apoptosis and enhanced cellular survival. Birinapant, a synthetic second mitochondrial activator of caspases (SMAC) mimetic, suppresses the functions of IAP proteins in order to enhance apoptotic pathways and facilitate tumor death. Despite on-target activity, however, pre-clinical trials of single-agent birinapant have exhibited minimal activity in the recurrent ovarian cancer setting. To augment the therapeutic potential of birinapant, we utilized a high-throughput screening matrix to identify synergistic drug combinations. Of those combinations identified, birinapant plus docetaxel was selected for further evaluation, given its remarkable synergy both in vitro and in vivo. We showed that this synergy results from multiple convergent pathways to include increased caspase activation, docetaxel-mediated TNF-α upregulation, alternative NF-kB signaling, and birinapant-induced microtubule stabilization. These findings provide a rationale for the integration of birinapant and docetaxel in a phase 2 clinical trial for recurrent ovarian cancer where treatment options are often limited and minimally effective.
Collapse
|
5
|
Xie X, Lee J, Liu H, Pearson T, Lu AY, Tripathy D, Devi GR, Bartholomeusz C, Ueno NT. Birinapant Enhances Gemcitabine's Antitumor Efficacy in Triple-Negative Breast Cancer by Inducing Intrinsic Pathway-Dependent Apoptosis. Mol Cancer Ther 2020; 20:296-306. [PMID: 33323457 DOI: 10.1158/1535-7163.mct-19-1160] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2019] [Revised: 09/01/2020] [Accepted: 11/30/2020] [Indexed: 11/16/2022]
Abstract
Triple-negative breast cancer (TNBC) is the most aggressive subgroup of breast cancer, and patients with TNBC have few therapeutic options. Apoptosis resistance is a hallmark of human cancer, and apoptosis regulators have been targeted for drug development for cancer treatment. One class of apoptosis regulators is the inhibitors of apoptosis proteins (IAPs). Dysregulated IAP expression has been reported in many cancers, including breast cancer, and has been shown to be responsible for resistance to chemotherapy. Therefore, IAPs have become attractive molecular targets for cancer treatment. Here, we first investigated the antitumor efficacy of birinapant (TL32711), a biindole-based bivalent mimetic of second mitochondria-derived activator of caspases (SMACs), in TNBC. We found that birinapant as a single agent has differential antiproliferation effects in TNBC cells. We next assessed whether birinapant has a synergistic effect with commonly used anticancer drugs, including entinostat (class I histone deacetylase inhibitor), cisplatin, paclitaxel, voxtalisib (PI3K inhibitor), dasatinib (Src inhibitor), erlotinib (EGFR inhibitor), and gemcitabine, in TNBC. Among these tested drugs, gemcitabine showed a strong synergistic effect with birinapant. Birinapant significantly enhanced the antitumor activity of gemcitabine in TNBC both in vitro and in xenograft mouse models through activation of the intrinsic apoptosis pathway via degradation of cIAP2 and XIAP, leading to apoptotic cell death. Our findings demonstrate the therapeutic potential of birinapant to enhance the antitumor efficacy of gemcitabine in TNBC by targeting the IAP family of proteins.
Collapse
Affiliation(s)
- Xuemei Xie
- Section of Translational Breast Cancer Research, Department of Breast Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas.
| | - Jangsoon Lee
- Section of Translational Breast Cancer Research, Department of Breast Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Huey Liu
- Section of Translational Breast Cancer Research, Department of Breast Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Troy Pearson
- Section of Translational Breast Cancer Research, Department of Breast Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Alexander Y Lu
- Department of Bioengineering, Rice University, Houston, Texas
| | - Debu Tripathy
- Section of Translational Breast Cancer Research, Department of Breast Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Gayathri R Devi
- Department of Surgery, Division of Surgical Sciences, Duke Cancer Institute, Duke University School of Medicine, North Carolin
- Women's Cancer Program, Duke Cancer Institute, Duke University School of Medicine, North Carolina
| | - Chandra Bartholomeusz
- Section of Translational Breast Cancer Research, Department of Breast Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Naoto T Ueno
- Section of Translational Breast Cancer Research, Department of Breast Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas.
| |
Collapse
|
6
|
Perez-Fidalgo JA. Cell proliferation inhibitors and apoptosis promoters. EJC Suppl 2020; 15:73-76. [PMID: 33240445 PMCID: PMC7573461 DOI: 10.1016/j.ejcsup.2019.09.002] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2019] [Revised: 08/26/2019] [Accepted: 09/15/2019] [Indexed: 01/05/2023] Open
Abstract
Cancer is characterised by uncontrolled proliferation and prolonged cell survival. In some cases, tumour formation is the result from aberrant activity of various cell-cycle regulators leading to chromosome instability or from alteration of the apoptosis pathway. Ovarian cancer is an entity in which cell-cycle alterations are common. P53, a key regulator of checkpoint G1, is frequently altered in high-grade serous ovarian cancer. Targeting cell-cycle regulators will lead to mitotic catastrophe and cell death in these tumours. Promoting apoptosis is another target that is gaining interest in ovarian cancer. In this review, the most relevant evidence of clinical studies in ovarian cancer with compounds targeting cell cycle or promoting apoptosis is summarised. • Cell cycle and apotosis pathways are relevant targets that are gaining interest in the treatment of ovarian cancer. • Wee-1 inhibitors have shown clinical activity in a phase II in refractory of resistant ovarian cancer harbouring TP53 mutations. • P53 modulators are a new family of compounds that are currently under clinical development. • CHK1 inhibitors and apoptosis promoters or modulators are promising compounds.
Collapse
|
7
|
Binju M, Amaya-Padilla MA, Wan G, Gunosewoyo H, Suryo Rahmanto Y, Yu Y. Therapeutic Inducers of Apoptosis in Ovarian Cancer. Cancers (Basel) 2019; 11:E1786. [PMID: 31766284 PMCID: PMC6896143 DOI: 10.3390/cancers11111786] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2019] [Revised: 11/06/2019] [Accepted: 11/06/2019] [Indexed: 02/07/2023] Open
Abstract
Ovarian cancers remain one of the most common causes of gynecologic cancer-related death in women worldwide. The standard treatment comprises platinum-based chemotherapy, and most tumors develop resistance to therapeutic drugs. One mechanism of developing drug resistance is alterations of molecules involved in apoptosis, ultimately assisting in the cells' capability to evade death. Thus, there is a need to focus on identifying potential drugs that restore apoptosis in cancer cells. Here, we discuss the major inducers of apoptosis mediated through various mechanisms and their usefulness as potential future treatment options for ovarian cancer. Broadly, they can target the apoptotic pathways directly or affect apoptosis indirectly through major cancer-pathways in cells. The direct apoptotic targets include the Bcl-2 family of proteins and the inhibitor of apoptotic proteins (IAPs). However, indirect targets include processes related to homologous recombination DNA repair, micro-RNA, and p53 mutation. Besides, apoptosis inducers may also disturb major pathways converging into apoptotic signals including janus kinase (JAK)/signal transducer and activator of transcription 3 (STAT3), wingless-related integration site (Wnt)/β-Catenin, mesenchymal-epithelial transition factor (MET)/hepatocyte growth factor (HGF), mitogen-activated protein kinase (MAPK)/extracellular signal-regulated kinase (ERK), and phosphatidylinositol 3-kinase (PI3K)/v-AKT murine thymoma viral oncogene homologue (AKT)/mammalian target of rapamycin (mTOR) pathways. Several drugs in our review are undergoing clinical trials, for example, birinapant, DEBIO-1143, Alisertib, and other small molecules are in preclinical investigations showing promising results in combination with chemotherapy. Molecules that exhibit better efficacy in the treatment of chemo-resistant cancer cells are of interest but require more extensive preclinical and clinical evaluation.
Collapse
Affiliation(s)
- Mudra Binju
- School of Pharmacy & Biomedical Sciences, Curtin University, Curtin Health Innovative Research Institute, Perth, WA 6102, Australia
| | - Monica Angelica Amaya-Padilla
- School of Pharmacy & Biomedical Sciences, Curtin University, Curtin Health Innovative Research Institute, Perth, WA 6102, Australia
| | - Graeme Wan
- School of Pharmacy & Biomedical Sciences, Curtin University, Curtin Health Innovative Research Institute, Perth, WA 6102, Australia
| | - Hendra Gunosewoyo
- School of Pharmacy & Biomedical Sciences, Curtin University, Curtin Health Innovative Research Institute, Perth, WA 6102, Australia
| | - Yohan Suryo Rahmanto
- Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins Medical Institutions, Baltimore, MD 21231, USA
- Department of Pathology, Johns Hopkins Medical Institutions, Baltimore, MD 21205, USA
| | - Yu Yu
- School of Pharmacy & Biomedical Sciences, Curtin University, Curtin Health Innovative Research Institute, Perth, WA 6102, Australia
- University of Western Australia Medical School, Division of Obstetrics & Gynaecology, Perth, WA 6009, Australia
| |
Collapse
|
8
|
Fujiwara Y, Saito M, Robles AI, Nishida M, Takeshita F, Watanabe M, Ochiya T, Yokota J, Kohno T, Harris CC, Tsuchiya N. A Nucleolar Stress-Specific p53-miR-101 Molecular Circuit Functions as an Intrinsic Tumor-Suppressor Network. EBioMedicine 2018; 33:33-48. [PMID: 30049386 PMCID: PMC6085539 DOI: 10.1016/j.ebiom.2018.06.031] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2017] [Revised: 06/26/2018] [Accepted: 06/26/2018] [Indexed: 11/27/2022] Open
Abstract
Background Activation of intrinsic p53 tumor-suppressor (TS) pathways is an important principle underlying cancer chemotherapy. It is necessary to elucidate the precise regulatory mechanisms of these networks to create new treatment strategies. Methods Comprehensive analyses were carried out by microarray. Expression of miR-101 was analyzed by clinical samples of lung adenocarcinomas. Findings We discovered a functional link between p53 and miR-101, which form a molecular circuit in response to nucleolar stress. Inhibition of RNA polymerase I (Pol I) transcription resulted in the post-transcriptional activation of miR-101 in a p53-dependent manner. miR-101 induced G2 phase–specific feedback regulation of p53 through direct repression of its target, EG5, resulting in elevated phosphorylation of ATM. In lung cancer patients, low expression of miR-101 was associated with significantly poorer prognosis exclusively in p53 WT cases. miR-101 sensitized cancer cells to Pol I transcription inhibitors and strongly repressed xenograft growth in mice. Interestingly, the most downstream targets of this circuit included the inhibitor of apoptosis proteins (IAPs). Repression of cIAP1 by a selective inhibitor, birinapant, promoted activation of the apoptosis induced by Pol I transcription inhibitor in p53 WT cancer cells. Interpretation Our findings indicate that the p53–miR-101 circuit is a component of an intrinsic TS network formed by nucleolar stress, and that mimicking activation of this circuit represents a promising strategy for cancer therapy. Fund National Institute of Biomedical Innovation, Ministry of Education, Culture, Sports & Technology of Japan, Japan Agency for Medical Research and Development.
Collapse
Affiliation(s)
- Yuko Fujiwara
- Laboratory of Molecular Carcinogenesis, National Cancer Center Research Institute, 5-1-1 Tsukiji, Chuo-ku, Tokyo 104-0045, Japan
| | - Motonobu Saito
- Division of Genome Biology, National Cancer Center Research Institute, 5-1-1 Tsukiji, Chuo-ku, Tokyo 104-0045, Japan
| | - Ana I Robles
- Laboratory of Human Carcinogenesis, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892-4258, USA
| | - Momoyo Nishida
- Laboratory of Molecular Carcinogenesis, National Cancer Center Research Institute, 5-1-1 Tsukiji, Chuo-ku, Tokyo 104-0045, Japan; Laboratory for Medical Engineering, Division of Materials and Chemical Engineering, Graduate School of Engineering, Yokohama National University, 79-1 Tokiwadai, Hodogaya-ku, Yokohama 240-8501, Japan
| | - Fumitaka Takeshita
- Division of Cellular and Molecular Medicine, National Cancer Center Research Institute, 5-1-1 Tsukiji, Chuo-ku, Tokyo 104-0045, Japan
| | - Masatoshi Watanabe
- Laboratory for Medical Engineering, Division of Materials and Chemical Engineering, Graduate School of Engineering, Yokohama National University, 79-1 Tokiwadai, Hodogaya-ku, Yokohama 240-8501, Japan
| | - Takahiro Ochiya
- Division of Cellular and Molecular Medicine, National Cancer Center Research Institute, 5-1-1 Tsukiji, Chuo-ku, Tokyo 104-0045, Japan
| | - Jun Yokota
- Division of Genome Biology, National Cancer Center Research Institute, 5-1-1 Tsukiji, Chuo-ku, Tokyo 104-0045, Japan; Institute of Predictive and Personalized Medicine of Cancer (IMPPC), Barcelona, Spain
| | - Takashi Kohno
- Division of Genome Biology, National Cancer Center Research Institute, 5-1-1 Tsukiji, Chuo-ku, Tokyo 104-0045, Japan
| | - Curtis C Harris
- Laboratory of Human Carcinogenesis, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892-4258, USA
| | - Naoto Tsuchiya
- Laboratory of Molecular Carcinogenesis, National Cancer Center Research Institute, 5-1-1 Tsukiji, Chuo-ku, Tokyo 104-0045, Japan.
| |
Collapse
|
9
|
Liu X, Jiang Y, Nowak B, Qiang B, Cheng N, Chen Y, Plunkett W. Targeting BRCA1/2 deficient ovarian cancer with CNDAC-based drug combinations. Cancer Chemother Pharmacol 2018; 81:255-267. [PMID: 29189915 PMCID: PMC5777892 DOI: 10.1007/s00280-017-3483-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2017] [Accepted: 11/15/2017] [Indexed: 12/18/2022]
Abstract
PURPOSE The mechanism of action of CNDAC (2'-C-cyano-2'-deoxy-1-β-D-arabino-pentofuranosyl-cytosine) is unique among deoxycytidine analogs because upon incorporation into DNA it causes a single strand break which is converted to a double strand break after DNA replication. This lesion requires homologous recombination (HR) for repair. CNDAC, as the parent nucleoside, DFP10917, and as an oral prodrug, sapacitabine, are undergoing clinical trials for hematological malignancies and solid tumors. The purpose of this study is to investigate the potential of CNDAC for the therapy of ovarian cancer (OC). METHODS Drug sensitivity was evaluated using a clonogenic survival assay. Drug combination effects were quantified by median effect analysis. RESULTS OC cells lacking function of the key HR genes, BRCA1 or BRCA2, were more sensitive to CNDAC than corresponding HR proficient cells. The sensitization was associated with greater levels of DNA damage in response to CNDAC at clinically achievable concentrations, manifested as chromosomal aberrations. Three classes of CNDAC-based drug combinations were investigated. First, the PARP1 inhibitors, rucaparib and talazoparib, were selectively synergistic with CNDAC in BRCA1/2 deficient OC cells (combination index < 1) at a relatively low concentration range. Second, cisplatin and oxaliplatin had additive combination effects with CNDAC (combination index ~ 1). Finally, paclitaxel and docetaxel achieved additive cell-killing effects with CNDAC at concentration ranges of the taxanes similar for both BRCA1/2 deficient and proficient OC cells. CONCLUSIONS This study provides mechanistic rationales for combining CNDAC with PARP inhibitors, platinum compounds and taxanes in ovarian cancer lacking BRCA1/2 function.
Collapse
Affiliation(s)
- Xiaojun Liu
- Department of Experimental Therapeutics, The University of Texas M. D. Anderson Cancer Center, 1901 East Road, 77054, Houston, TX, USA
| | - Yingjun Jiang
- Department of Experimental Therapeutics, The University of Texas M. D. Anderson Cancer Center, 1901 East Road, 77054, Houston, TX, USA
| | - Billie Nowak
- Department of Experimental Therapeutics, The University of Texas M. D. Anderson Cancer Center, 1901 East Road, 77054, Houston, TX, USA
| | - Bethany Qiang
- Department of Experimental Therapeutics, The University of Texas M. D. Anderson Cancer Center, 1901 East Road, 77054, Houston, TX, USA
| | - Nancy Cheng
- Department of Experimental Therapeutics, The University of Texas M. D. Anderson Cancer Center, 1901 East Road, 77054, Houston, TX, USA
| | - Yuling Chen
- Department of Experimental Therapeutics, The University of Texas M. D. Anderson Cancer Center, 1901 East Road, 77054, Houston, TX, USA
| | - William Plunkett
- Department of Experimental Therapeutics, The University of Texas M. D. Anderson Cancer Center, 1901 East Road, 77054, Houston, TX, USA.
- Department of Leukemia, The University of Texas M. D. Anderson Cancer Center, 77030, Houston, TX, USA.
| |
Collapse
|