1
|
Urasaki T, Ono M, Yamashita K, Tanizawa T, Togashi Y, Ohmoto A, Suto H, Oki R, Wang X, Nakao T, Sato Y, Fukuda N, Nakano K, Tomomatsu J, Saito M, Hayakawa K, Takeuchi K, Matsumoto S, Ae K, Takahashi S. Confirmatory diagnosis and successive chemotherapeutic treatments of metastatic skeletal EWSR1::NFATC2 sarcoma: A case report. Oncol Lett 2025; 29:108. [PMID: 39776650 PMCID: PMC11704832 DOI: 10.3892/ol.2024.14854] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Accepted: 10/22/2024] [Indexed: 01/11/2025] Open
Abstract
EWSR1::NFATC2 sarcoma is rare and its clinical features remain unclear. Given the similarity in presentation, it is possible that previously reported cases of Ewing-like adamantinoma may have been EWSR1::NFATC2 sarcoma. The present case report describes a tumor in a 55-year-old man that was originally thought to be a Ewing-like adamantinoma, but was recently found to be an EWSR1::NFATC2 sarcoma following direct sequencing. The patient experienced pain in their left lower leg at 38 years of age. The initial pathological diagnosis was 'epithelioid malignant tumor of the left tibia suggesting Ewing-like adamantinoma'. The patient underwent wide excision of the tumor in their left tibia with left total knee arthroplasty and a medial gastrocnemius muscle flap. Thereafter, the patient continued with no evidence of recurrent or metastatic disease; however, 14 years later, they developed multiple lesions in the left lung, left pleural dissemination, and enlargement of the mediastinal, left hilar and juxtaesophageal lymph nodes. Pathological diagnosis of transbronchial lung biopsy was consistent with 'Ewing-like adamantinoma'. The patient received doxorubicin-based systemic chemotherapy as first-line therapy, which resulted in stable disease. After disease progression, the patient received eribulin monotherapy, which resulted in stable disease for 15 months. Reverse transcription-polymerase chain reaction followed by direct sequencing revealed an in-frame EWSR1::NFATC2 fusion where exon 8 of EWSR1 (ENST00000397938.7) was fused to exon 3 of NFATC2 (ENST00000371564.8), and their diagnosis was changed to EWSR1::NFATC2 sarcoma. The disease progressed, left pleural dissemination progressed, left pleural effusion increased and peritoneal dissemination in the left paracolic gutter was suspected. Therefore, the patient was started on trabectedin monotherapy during 16 months of stable disease, and thereafter received pazopanib after they presented with progressive disease on prior trabectedin monotherapy. It is likely that there are more patients with undiagnosed EWSR1::NFATC2 sarcoma. To make a definitive diagnosis, a thorough investigation should be performed.
Collapse
Affiliation(s)
- Tetsuya Urasaki
- Department of Medical Oncology, Cancer Institute Hospital of Japanese Foundation for Cancer Research, Tokyo 135-8550, Japan
| | - Makiko Ono
- Department of Medical Oncology, Cancer Institute Hospital of Japanese Foundation for Cancer Research, Tokyo 135-8550, Japan
| | - Kyoko Yamashita
- Department of Pathology, Cancer Institute Hospital of Japanese Foundation for Cancer Research, Tokyo 135-8550, Japan
- Division of Pathology, Cancer Institute of Japanese Foundation for Cancer Research, Tokyo 135-8550, Japan
| | - Taisuke Tanizawa
- Department of Orthopedics, Cancer Institute Hospital of Japanese Foundation for Cancer Research, Tokyo 135-8550, Japan
| | - Yuki Togashi
- Department of Pathology, Cancer Institute Hospital of Japanese Foundation for Cancer Research, Tokyo 135-8550, Japan
- Division of Pathology, Cancer Institute of Japanese Foundation for Cancer Research, Tokyo 135-8550, Japan
- Pathology Project for Molecular Targets, Cancer Institute of Japanese Foundation for Cancer Research, Tokyo 135-8550, Japan
| | - Akihiro Ohmoto
- Department of Medical Oncology, Cancer Institute Hospital of Japanese Foundation for Cancer Research, Tokyo 135-8550, Japan
| | - Hirotaka Suto
- Department of Medical Oncology, Cancer Institute Hospital of Japanese Foundation for Cancer Research, Tokyo 135-8550, Japan
| | - Ryosuke Oki
- Department of Medical Oncology, Cancer Institute Hospital of Japanese Foundation for Cancer Research, Tokyo 135-8550, Japan
| | - Xiaofei Wang
- Department of Medical Oncology, Cancer Institute Hospital of Japanese Foundation for Cancer Research, Tokyo 135-8550, Japan
| | - Takehiro Nakao
- Department of Medical Oncology, Cancer Institute Hospital of Japanese Foundation for Cancer Research, Tokyo 135-8550, Japan
| | - Yasuyoshi Sato
- Department of Medical Oncology, Cancer Institute Hospital of Japanese Foundation for Cancer Research, Tokyo 135-8550, Japan
| | - Naoki Fukuda
- Department of Medical Oncology, Cancer Institute Hospital of Japanese Foundation for Cancer Research, Tokyo 135-8550, Japan
| | - Kenji Nakano
- Department of Medical Oncology, Cancer Institute Hospital of Japanese Foundation for Cancer Research, Tokyo 135-8550, Japan
| | - Junichi Tomomatsu
- Department of Medical Oncology, Cancer Institute Hospital of Japanese Foundation for Cancer Research, Tokyo 135-8550, Japan
| | - Masanori Saito
- Department of Orthopedics, Cancer Institute Hospital of Japanese Foundation for Cancer Research, Tokyo 135-8550, Japan
| | - Keiko Hayakawa
- Department of Orthopedics, Cancer Institute Hospital of Japanese Foundation for Cancer Research, Tokyo 135-8550, Japan
| | - Kengo Takeuchi
- Department of Pathology, Cancer Institute Hospital of Japanese Foundation for Cancer Research, Tokyo 135-8550, Japan
- Division of Pathology, Cancer Institute of Japanese Foundation for Cancer Research, Tokyo 135-8550, Japan
- Pathology Project for Molecular Targets, Cancer Institute of Japanese Foundation for Cancer Research, Tokyo 135-8550, Japan
| | - Seiichi Matsumoto
- Department of Orthopedics, Cancer Institute Hospital of Japanese Foundation for Cancer Research, Tokyo 135-8550, Japan
| | - Keisuke Ae
- Department of Orthopedics, Cancer Institute Hospital of Japanese Foundation for Cancer Research, Tokyo 135-8550, Japan
| | - Shunji Takahashi
- Department of Medical Oncology, Cancer Institute Hospital of Japanese Foundation for Cancer Research, Tokyo 135-8550, Japan
| |
Collapse
|
2
|
Seligson ND, Asmann YW, Almerey T, Zayas YC, Edgar MA, Attia S, Knutson KL, Bagaria SP. Molecular markers of proliferation, DNA repair, and immune infiltration defines high-risk subset of resectable retroperitoneal sarcomas. Surg Oncol 2024; 56:102125. [PMID: 39213836 DOI: 10.1016/j.suronc.2024.102125] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Revised: 08/09/2024] [Accepted: 08/25/2024] [Indexed: 09/04/2024]
Abstract
INTRODUCTION For retroperitoneal sarcomas (RPS), aggressive surgical resection offers the only chance for a cure; however, 5-year survival remains below 65%. Therefore, there is a critical need to identify drivers of poor clinical outcomes. MATERIALS AND METHODS To identify biomarkers of tumors likely to recur following curative intent resection, we performed genomic and transcriptomic sequencing for 47 and 34 patients, respectively, with non-metastatic RPS at a single, high-volume sarcoma center. RESULTS At the DNA level, alterations in TERT were associated with poor disease-free survival (DFS) and overall survival (OS). Increased RNA expression of gene sets related to growth signaling and DNA repair were associated with poor DFS and OS. Infiltration of CD8+ T-Cells and activated dendritic cells were associated with poor DFS and OS. CONCLUSION These findings may help to better identify and treat non-metastatic, high-risk RPS.
Collapse
Affiliation(s)
- Nathan D Seligson
- Department of Pharmacotherapy and Translational Research, The University of Florida, Jacksonville, FL, USA
| | - Yan W Asmann
- Department of Quantitative Health Sciences, Mayo Clinic, Jacksonville, FL, USA
| | - Tariq Almerey
- Department of Surgery, Mayo Clinic, Jacksonville, FL, USA
| | - Yaquelin Coll Zayas
- Department of Pharmacotherapy and Translational Research, The University of Florida, Jacksonville, FL, USA
| | - Mark A Edgar
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Jacksonville, FL, USA
| | - Steven Attia
- Division of Hematology/Oncology, Mayo Clinic, Jacksonville, FL, USA
| | - Keith L Knutson
- Department of Immunology, Mayo Clinic, Jacksonville, FL, USA
| | | |
Collapse
|
3
|
Seligson ND, Chen JL, Goodrich AC, Van Tine BA, Campbell JD, Richards AL, Antonescu CR, Liebner DA, Milhem MM, Streicher H, Tap WD, Schwartz GK, George S, D'Angelo SP. A multicenter, randomized, non-comparative, phase II study of nivolumab ± ipilimumab for patients with metastatic sarcoma (Alliance A091401): expansion cohorts and correlative analyses. J Immunother Cancer 2024; 12:e009472. [PMID: 39343511 PMCID: PMC11440204 DOI: 10.1136/jitc-2024-009472] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/14/2024] [Indexed: 10/01/2024] Open
Abstract
BACKGROUND In this open-label, randomized, non-comparative, multicenter phase II study (Alliance A091401) we report on three expansion cohorts treated with nivolumab (N) with and without ipilimumab (N+I) and provide a multi-omic correlative analysis of actionable biomarkers. METHODS Patients were randomized (non-comparative) to receive either N or N+I. The primary endpoint was a 6-month confirmed response rate (CRR) defined by Response Evaluation Criteria in Solid Tumors version 1.1. Secondary endpoints included treatment-related adverse events (TRAEs), progression-free survival, and overall survival. Multi-omic correlative analyses were conducted using samples from both the primary and expansion cohorts. RESULTS A total of 66 patients were evaluated for the primary endpoint with disease including gastrointestinal stromal tumor (GIST, n=18), undifferentiated pleomorphic sarcoma (UPS, n=24), and dedifferentiated liposarcoma (DDLPS, n=24). Neither N nor N+I achieved a complete or partial response in the GIST expansion cohort. In DDLPS and UPS, the primary response endpoint of CRR was met with N+I (both 16.6%, 2/12) but not with N alone (both 8.3%, 1/12). In the GIST cohort, TRAE was higher with N+I treatment, halting enrollment as required per protocol. In a correlative analysis of patients for the expansion cohort and the original cohort (n=86), traditional biomarkers of immunotherapy response were not correlated with response in any histological subtype. Markers of genomic instability including the presence of gene fusions and increased subclonal mutations correlated with improved clinical outcomes. CONCLUSIONS This expansion cohort reaffirms the outcomes of A091401. There remains a pressing need to determine the role of and predictive biomarkers for immunotherapy in sarcoma. TRIAL REGISTRATION NUMBER NCT02500797.
Collapse
Affiliation(s)
| | | | | | - Brian A Van Tine
- Washington University in Saint Louis, Saint Louis, Missouri, USA
| | | | | | - Cristina R Antonescu
- Memorial Sloan Kettering Cancer Center, New York, New York, USA
- Weill Cornell Medical College, New York, New York, USA
| | | | | | | | - William D Tap
- Memorial Sloan Kettering Cancer Center, New York, New York, USA
- Weill Cornell Medical College, New York, New York, USA
| | | | - Suzanne George
- Dana Farber Cancer Institute, Boston, Massachusetts, USA
| | - Sandra P D'Angelo
- Memorial Sloan Kettering Cancer Center, New York, New York, USA
- Weill Cornell Medical College, New York, New York, USA
| |
Collapse
|
4
|
Radaelli S, Merlini A, Khan M, Gronchi A. Progress in histology specific treatments in soft tissue sarcoma. Expert Rev Anticancer Ther 2024; 24:845-868. [PMID: 39099398 DOI: 10.1080/14737140.2024.2384584] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Accepted: 07/22/2024] [Indexed: 08/06/2024]
Abstract
INTRODUCTION Soft tissue sarcomas (STS) represent a heterogenous group of rare tumors, primarily treated with surgery. Preoperative radiotherapy is often recommended for extremity high-risk STS. Neoadjuvant chemotherapy, typically based on doxorubicin with ifosfamide, has shown efficacy in limbs and trunk wall STS. Second-line chemotherapy, commonly utilized in the metastatic setting, is mostly histology-driven. Molecular targeted agents are used across various histologies, and although the use of immunotherapy in STS is still in its early stages, there is increasing interest in exploring its potential. AREAS COVERED This article involved an extensive recent search on PubMed. It explored the current treatment landscape for localized and metastatic STS, focusing on the combined use of radiotherapy and chemotherapy for both extremity and retroperitoneal tumors, and with a particular emphasis on the most innovative histopathology driven therapeutic approaches. Additionally, ongoing clinical trials identified via clinicaltrials.gov are included. EXPERT OPINION Recently there have been advancements in the treatment of STS, largely driven by the outcomes of clinical trials. However further research is imperative to comprehend the effect of chemotherapy, targeted therapy and immunotherapy in various STS, as well as to identify biomarkers able to predict which patients are most likely to benefit from these treatments.
Collapse
Affiliation(s)
- Stefano Radaelli
- Sarcoma Service, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| | - Alessandra Merlini
- Department of Oncology, University of Turin, Orbassano, Italy
- Department of Oncology, San Luigi Gonzaga University Hospital, Orbassano, Italy
| | - Misbah Khan
- Surgery, East Sussex NHS Healthcare, East Sussex, UK
| | - Alessandro Gronchi
- Sarcoma Service, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| |
Collapse
|
5
|
Hu QL, Zeng C. Clinicopathological analysis of EWSR1/FUS::NFATC2 rearranged sarcoma in the left forearm: A case report. World J Clin Cases 2024; 12:2887-2893. [PMID: 38899283 PMCID: PMC11185342 DOI: 10.12998/wjcc.v12.i16.2887] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/04/2024] [Revised: 03/13/2024] [Accepted: 04/11/2024] [Indexed: 05/29/2024] Open
Abstract
BACKGROUND We present a case of an EWSR1/FUS::NFATC2 rearranged sarcoma in the left forearm and analyze its clinicopathological and molecular features. CASE SUMMARY The patient is a 23-year-old woman. Microscopically, the tumor cells were medium-sized round cells arranged in small nests. The cytoplasm was clear, nuclei were relatively uniform, chromatin was dense, nucleoli were visible, and mitotic figures were rare. Immunohistochemically, the tumor cells were positive for Vimentin, INI-1, CD99, NKX2.2, CyclinD1, friend leukaemia virus integration 1, and NKX3.1. Next-generation sequencing revealed the presence of the EWSR1-NFATC2 fusion gene. EWSR1/FUS::NFATC2 rearranged sarcomas are rare and can easily be misdiagnosed. CONCLUSION Clinical imaging, immunohistochemistry, and molecular pathology should be considered to confirm the diagnosis.
Collapse
Affiliation(s)
- Qiao-Ling Hu
- Department of Pathology, The Eighth Affiliated Hospital of Sun Yat-sen University, Shenzhen 518000, Guangdong Province, China
| | - Chao Zeng
- Department of Pathology, The Eighth Affiliated Hospital of Sun Yat-sen University, Shenzhen 518000, Guangdong Province, China
| |
Collapse
|
6
|
Machado I, Llombart-Bosch A, Charville GW, Navarro S, Domínguez Franjo MP, Bridge JA, Linos K. Sarcomas with EWSR1::Non-ETS Fusion (EWSR1::NFATC2 and EWSR1::PATZ1). Surg Pathol Clin 2024; 17:31-55. [PMID: 38278606 DOI: 10.1016/j.path.2023.07.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2024]
Abstract
The wide application of increasingly advanced molecular studies in routine clinical practice has allowed a detailed, albeit still incomplete, genetic subclassification of undifferentiated round cell sarcomas. The WHO classification continues to include provisional molecular entities, whose clinicopathologic features are in the early stages of evolution. This review focuses on the clinicopathologic, molecular, and prognostic features of undifferentiated round cell sarcomas with EWSR1/FUS::NFATC2 or EWSR1::PATZ1 fusions. Classic histopathologic findings, uncommon variations, and diagnostic pitfalls are addressed, along with the utility of recently developed immunohistochemical and molecular markers.
Collapse
Affiliation(s)
- Isidro Machado
- Pathology Department, Instituto Valenciano de Oncología, Valencia, Spain; Patologika Laboratory, Hospital Quiron-Salud, Valencia, Spain; Pathology Department, University of Valencia, Valencia, Spain.
| | - Antonio Llombart-Bosch
- Pathology Department, university of Valencia, Spain and Cancer CIBER (CIBERONC), Madrid, Spain
| | | | - Samuel Navarro
- Pathology Department, university of Valencia, Spain and Cancer CIBER (CIBERONC), Madrid, Spain
| | | | - Julia A Bridge
- Department of Pathology and Microbiology, University of Nebraska Medical Center, Omaha, NE, USA; Division of Molecular Pathology, ProPath, Dallas, TX, USA
| | - Konstantinos Linos
- Department of Pathology & Laboratory Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA.
| |
Collapse
|
7
|
Liu L, Li L, Ding Y, Kong F, Mo W, Ye H, Shen D. Report and literature review of four cases of EWSR1::NFATC2 round cell sarcoma. Diagn Pathol 2024; 19:19. [PMID: 38254207 PMCID: PMC10801936 DOI: 10.1186/s13000-024-01443-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2023] [Accepted: 01/12/2024] [Indexed: 01/24/2024] Open
Abstract
BACKGROUND EWSR1::NFATC2 rearranged sarcomas are a group of rare round, undifferentiated sarcomas with clinicopathological features different from those of Ewing's sarcoma (ES) family and other non-ES sarcomas. We report 4 cases of this rare sarcoma and review their features. MATERIALS AND METHODS Four cases of EWSR1::NFATC2 rearranged round cell sarcoma of the bone from the Pathology Department of Peking University People's Hospital were retrospectively studied. Clinical and pathological data were summarized, and immunohistochemical staining, fluorescence in situ hybridization (FISH), and Next-generation sequencing (NGS) were performed. Relevant literature reports were also reviewed. RESULTS Among the four cases of EWSR1::NFATC2 rearranged round cell sarcoma, three were male, and one was female, with the age ranged from 14 to 34 years old at diagnosis (mean age: 27.5 years). All tumors were located in the femur and ranged in size from 4 to 8cm (mean 6cm), involving the surrounding soft tissues. All four patients underwent surgical treatment, and three received chemotherapy and radiotherapy postoperatively. Follow-up results showed that all four patients were alive. Histologically, the tumors exhibited small round cell sarcoma phenotype, with the stroma rich in mucin or exhibiting a glassy appearance. The tumor cells diffusely expressed CD99, NKX2.2, NKX3.1 and focal expression of CK and EMA was observed. FISH analysis showed that EWSR1 gene rearrangement was detected in all 4 cases, accompanied by 5' locus amplification. EWSR1::NFATC2 fusion probe demonstrated multi yellow fusion signals. NGS identified EWSR1::NFATC2 breakpoints in exon 9 and exon 3 in all 4 cases. The average follow-up duration of the study group was 88 months (range from 26-180 months). One case experienced both local recurrence and metastasis to the lung and chest wall. One case presented with local recurrence. The remaining two cases did not have the recurrence or metastasis. CONCLUSION Although the disease can locally recur and metastasize to the lungs, its mortality rate is significantly lower than that of Ewing sarcoma and other high-grade small round cell undifferentiated sarcomas. Therefore, it supports to classify this tumor as a separate subtype of small round cell sarcoma.
Collapse
Affiliation(s)
- Lili Liu
- Department of Pathology, Peking University People's Hospital, Beijing, People's Republic of China
| | - Lan Li
- Department of Pathology, Beijing Jishuitan Hospital, The Fourth Medical College of Peking University, Beijing, People's Republic of China
| | - Yi Ding
- Department of Pathology, Beijing Jishuitan Hospital, The Fourth Medical College of Peking University, Beijing, People's Republic of China
| | - Fangzhou Kong
- Department of Pathology, Peking University People's Hospital, Beijing, People's Republic of China
| | - Wenfa Mo
- Department of Pathology, Affiliated Hospital of Guilin Medical University, Guilin, People's Republic of China
| | - Hongtao Ye
- Department of Histopathology, Royal National Orthopaedic Hospital NHS Trust, Brockley Hill, Stanmore, Middlesex, HA7 4LP, UK.
| | - Danhua Shen
- Department of Pathology, Peking University People's Hospital, Beijing, People's Republic of China.
| |
Collapse
|
8
|
Walker V, Jin DX, Millis SZ, Nasri E, Corao-Uribe DA, Tan AC, Fridley BL, Chen JL, Seligson ND. Gene partners of the EWSR1 fusion may represent molecularly distinct entities. Transl Oncol 2023; 38:101795. [PMID: 37797367 PMCID: PMC10593575 DOI: 10.1016/j.tranon.2023.101795] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Accepted: 09/28/2023] [Indexed: 10/07/2023] Open
Abstract
EWSR1 fusions are highly promiscuous and are associated with unique malignancies, clinical phenotypes, and molecular subtypes. However, rare fusion partners (RFP) of EWSR1 has not been well described. Here, we conducted a cross-sectional, retrospective study of 1,140 unique tumors harboring EWSR1 fusions. We identified 64 unique fusion partners. RFPs were identified more often in adults than children. Alterations in cell cycle control and DNA damage response genes as driving the differences between fusion partners. Potentially clinically actionable genomic variants were more prevalent in tumors harboring RFP than common fusions. While the data presented here is limited, tumors harboring RFP of EWSR1 may represent molecularly distinct entities and may benefit from further molecular testing to identify targeted therapeutic options.
Collapse
Affiliation(s)
- Victoria Walker
- Department of Pharmacotherapy and Translational Research, The University of Florida, Jacksonville, FL, USA
| | - Dexter X Jin
- Foundation Medicine Inc, Cambridge, Massachusetts, USA
| | | | - Elham Nasri
- Department of Pathology, The University of Florida, Gainesville, Florida, USA
| | - Diana A Corao-Uribe
- Department of Pathology, Nemours Children's Health, Wilmington, Delaware, USA
| | - Aik Choon Tan
- Huntsman Cancer Institute, Departments of Oncological Sciences and Biomedical Informatics, University of Utah, Salt Lake City, Utah, USA
| | - Brooke L Fridley
- Department of Biostatistics and Bioinformatics, H. Lee Moffitt Cancer Center and Research Institute, Tampa, Florida, USA
| | - James L Chen
- Division of Medical Oncology, Department of Internal Medicine, The Ohio State University, Columbus, Ohio, USA; Department of Biomedical Informatics, The Ohio State University, Columbus, Ohio, USA
| | - Nathan D Seligson
- Department of Pharmacotherapy and Translational Research, The University of Florida, Jacksonville, FL, USA; Center for Pharmacogenomics and Translational Research, Nemours Children's Health, Jacksonville, Florida, USA.
| |
Collapse
|
9
|
Gouda MA, Zarzour MA, Vaporciyan AA, Kairemo K, Chuang HH, Subbiah V. Activity of pazopanib in EWSR1-NFATC2 translocation-associated bone sarcoma. Oncoscience 2023; 10:44-53. [PMID: 37736255 PMCID: PMC10511123 DOI: 10.18632/oncoscience.587] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Accepted: 08/21/2023] [Indexed: 09/23/2023] Open
Abstract
Pazopanib is a multi-kinase inhibitor that is currently approved for treatment of advanced renal cell carcinoma and chemotherapy-refractory soft tissue sarcoma. In this case report, we discuss the case of a patient with a EWSR1-NFATC2 fusion positive bone sarcoma who had exceptional tumor control through using pazopanib and surgery for an overall duration exceeding 5 years. We also review the literature on EWSR1-NFATC2 translocation-associated sarcomas and use of pazopanib in bone sarcomas.
Collapse
Affiliation(s)
- Mohamed A. Gouda
- Department of Investigational Cancer Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Maria A. Zarzour
- Department of Sarcoma Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Ara A. Vaporciyan
- Department of Thoracic and Cardiovascular Surgery, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Kalevi Kairemo
- Department of Nuclear Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Hubert H. Chuang
- Department of Nuclear Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Vivek Subbiah
- Department of Investigational Cancer Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
- Sarah Cannon Research Institute, Nashville, TN 37203, USA
| |
Collapse
|
10
|
Seligson ND, Kolesar JM, Alam B, Baker L, Lamba JK, Fridley BL, Salahudeen AA, Hertz DL, Hicks JK. Integrating pharmacogenomic testing into paired germline and somatic genomic testing in patients with cancer. Pharmacogenomics 2023; 24:731-738. [PMID: 37702060 DOI: 10.2217/pgs-2023-0125] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/14/2023] Open
Abstract
Precision medicine has revolutionized clinical care for patients with cancer through the development of targeted therapy, identification of inherited cancer predisposition syndromes and the use of pharmacogenetics to optimize pharmacotherapy for anticancer drugs and supportive care medications. While germline (patient) and somatic (tumor) genomic testing have evolved separately, recent interest in paired germline/somatic testing has led to an increase in integrated genomic testing workflows. However, paired germline/somatic testing has generally lacked the incorporation of germline pharmacogenomics. Integrating pharmacogenomics into paired germline/somatic genomic testing would be an efficient method for increasing access to pharmacogenomic testing. In this perspective, the authors argue for the benefits of implementing a comprehensive approach integrating somatic and germline testing that is inclusive of pharmacogenomics in clinical practice.
Collapse
Affiliation(s)
- Nathan D Seligson
- Department of Pharmacotherapy & Translational Research, The University of Florida, Jacksonville, FL 32209, USA
- Center for Pharmacogenomics & Translational Research, Nemours Children's Health, Jacksonville, FL 32207, USA
| | - Jill M Kolesar
- Markey Cancer Center, University of Kentucky, Lexington, KY 40536, USA
- Department of Pharmacy Practice & Science, University of Kentucky, Lexington, KY 40536, USA
| | - Benish Alam
- Department of Clinical Pharmacy, University of Michigan College of Pharmacy, Ann Arbor, MI 48109, USA
| | - Laura Baker
- Nemours Center for Cancer & Blood Disorders, Nemours Children's Health, Wilmington, DE 19803, USA
| | - Jatinder K Lamba
- Department of Pharmacotherapy & Translational Research, The University of Florida, Gainesville, FL 32611, USA
| | - Brooke L Fridley
- Department of Biostatistics & Bioinformatics, H. Lee Moffitt Cancer Center & Research Institute, Tampa, FL 33612, USA
| | - Ameen A Salahudeen
- Department of Medicine, University of Illinois at Chicago, Chicago, IL 60612, USA
- Tempus Labs Inc., Chicago, IL 60654, USA
| | - Daniel L Hertz
- Department of Clinical Pharmacy, University of Michigan College of Pharmacy, Ann Arbor, MI 48109, USA
| | - J Kevin Hicks
- Department of Individualized Cancer Management, H. Lee Moffitt Cancer Center & Research Institute, Tampa, FL 33612, USA
| |
Collapse
|
11
|
Riskjell AI, Mäkinen VN, Sandfeld-Paulsen B, Aggerholm-Pedersen N. Targeted Treatment of Soft-Tissue Sarcoma. J Pers Med 2023; 13:jpm13050730. [PMID: 37240900 DOI: 10.3390/jpm13050730] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2023] [Revised: 04/23/2023] [Accepted: 04/24/2023] [Indexed: 05/28/2023] Open
Abstract
Background: Soft-tissue sarcoma (STS) is a heterogeneous group of sarcomas with a low incidence. The treatment of advanced disease is poor, and mortality is high. We aimed to generate an overview of the clinical experiences with targeted treatments based on a pre-specified target in patients with STS. Methods: A systematic literature search was conducted in PubMed and Embase databases. The programs ENDNOTE and COVIDENCE were used for data management. The literature was screened to assess the article's eligibility for inclusion. Results: Twenty-eight targeted agents were used to treat 80 patients with advanced STS and a known pre-specified genetic alteration. MDM2 inhibitors were the most-studied drug (n = 19), followed by crizotinib (n = 9), ceritinib (n = 8), and 90Y-OTSA (n = 8). All patients treated with the MDM2 inhibitor achieved a treatment response of stable disease (SD) or better with a treatment duration of 4 to 83 months. For the remaining drugs, a more mixed response was observed. The evidence is low because most studies were case reports or cohort studies, where only a few STS patients were included. Conclusions: Many targeted agents can precisely target specific genetic alterations in advanced STS. The MDM2 inhibitor has shown promising results.
Collapse
Affiliation(s)
| | | | | | - Ninna Aggerholm-Pedersen
- Department of Oncology, Aarhus University Hospital, Palle Juul-Jensens Boulevard 99, 8200 Aarhus N, Denmark
| |
Collapse
|
12
|
Bone and soft tissue tumors: clinicoradiologic-pathologic molecular-genetic correlation of novel fusion spindled, targetable-ovoid, giant-cell-rich, and round cell sarcomas. Skeletal Radiol 2023; 52:517-540. [PMID: 36542130 DOI: 10.1007/s00256-022-04244-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Revised: 11/23/2022] [Accepted: 11/23/2022] [Indexed: 12/24/2022]
Abstract
BACKGROUND New entities in the classification of bone and soft tissue tumors have been identified by use of advanced molecular-genetic techniques, including next-generation sequencing. Clinicoradiologic and pathologic correlation supports diagnostic classification. METHODS Tumors from four morphologically grouped areas are selected to enhance diagnosis and awareness among the multidisciplinary team. These include select round cell tumors, spindle cell tumors, targetable tyrosine kinase/RAS::MAPK pathway-ovoid (epithelioid to spindled) tumors, and giant-cell-rich tumors of bone and soft tissue. RESULTS Round cell tumors of bone and soft tissue include prototypical Ewing sarcoma, newer sarcomas with BCOR genetic alteration and CIC-rearranged, as well as updates on FUS/EWSR1::NFATc2, an EWSR1 non-ETS tumor that is solid with additional amplified hybridization signal pattern of EWSR1. This FUS/EWSR1::NFATc2 fusion has now been observed in seemingly benign to low-grade intraosseous vascular-rich and simple (unicameral) bone cyst tumors. Select spindle cell tumors of bone and soft tissue include rhabdomyosarcoma with FUS/EWSR1::TFCP2, an intraosseous high-grade spindle cell tumor without matrix. Targetable tyrosine-kinase or RAS::MAPK pathway-tumors of bone and soft tissue include NTRK, ALK, BRAF, RAF1, RET, FGFR1, ABL1, EGFR, PDGFB, and MET with variable ovoid myopericytic to spindled pleomorphic features and reproducible clinicopathologic and radiologic clues to their diagnosis. Giant-cell-rich tumors of bone, joint, and soft tissue are now respectively characterized by H3F3A mutation, CSF1 rearrangement (targetable), and HMGA2::NCOR2 fusion. CONCLUSION This article is an update for radiologists, oncologists, surgeons, and pathologists to recognize these novel ovoid, spindled, giant-cell-rich, and round cell tumors, for optimal diagnostic classification and multidisciplinary team patient care.
Collapse
Key Words
- ALK, NTRK, BRAF, RAF1, RET, FGFR1, ABL1, EGFR, MET, PDGFB fusions, tyrosine-kinase inhibitor
- Bone, joint, soft tissue giant cell tumors with H3F3A-mutation, CSF1-rearrangement, HMGA2::NCOR2 fusion
- Clinical, pathology, radiology
- EWSR1, CIC, BCOR, FUS/EWSR1::NFATc2, bone cyst, vascular
- Intraosseous rhabdomyosarcoma EWSR1/FUS::TFCP2
- Novel fusion sarcoma
Collapse
|
13
|
Vargas AC, Heyer EE, Cheah AL, Bonar F, Jones M, Maclean FM, Gill AJ, Blackburn J. Improving sarcoma classification by using RNA hybridisation capture sequencing in sarcomas of uncertain histogenesis of young individuals. Pathology 2023; 55:478-485. [PMID: 36906400 DOI: 10.1016/j.pathol.2022.11.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Revised: 10/14/2022] [Accepted: 11/22/2022] [Indexed: 02/16/2023]
Abstract
Our aim was to utilise a 241-gene RNA hybridisation capture sequencing (CaptureSeq) gene panel to identify unexpected fusions in undifferentiated, unclassified or partly classified sarcomas of young individuals (<40 years). The purpose was to determine the utility and yield of a large, targeted fusion panel as a tool for classifying tumours that do not fit typical diagnostic entities at the time of the original diagnosis. RNA hybridisation capture sequencing was performed on 21 archival resection specimens. Successful sequencing was obtained in 12 of 21 samples (57%), two of which (16.6%) harboured translocations. A novel NEAT1::GLI1 fusion, not previously reported in the literature, presented in a young patient with a tumour in the retroperitoneum, which displayed low grade epithelioid cells. The second case, a localised lung metastasis in a young male, demonstrated a EWSR1::NFATC2 translocation. No targeted fusions were identified in the remaining 83.4% (n=10) of cases. Forty-three per cent of the samples failed sequencing as a result of RNA degradation. RNA-based sequencing is an important tool, which helps to redefine the classification of unclassified or partly classified sarcomas of young adults by identifying pathogenic gene fusions in up to 16.6% of the cases. Unfortunately, 43% of the samples underwent significant RNA degradation, falling below the sequencing threshold. As CaptureSeq is not yet available in routine pathology practice, increasing awareness of the yield, failure rate and possible aetiological factors for RNA degradation is fundamental to maximise laboratory procedures to improve RNA integrity, allowing the potential identification of significant gene alterations in solid tumours.
Collapse
Affiliation(s)
- Ana Cristina Vargas
- Department of Anatomical Pathology, Sonic Healthcare-Douglass Hanly Moir Pathology, Macquarie Park, NSW, Australia; Cancer Diagnosis and Pathology Group, Kolling Institute of Medical Research, Royal North Shore Hospital, St Leonards, NSW, Australia; Sydney Medical School, University of Sydney, Sydney, NSW, Australia.
| | - Erin E Heyer
- The Kinghorn Cancer Centre, Garvan Institute of Medical Research, Sydney, NSW, Australia; St Vincent's Clinical School, Faculty of Medicine and Health, University of New South Wales, Sydney, NSW, Australia
| | - Alison L Cheah
- Department of Anatomical Pathology, Sonic Healthcare-Douglass Hanly Moir Pathology, Macquarie Park, NSW, Australia
| | - Fiona Bonar
- Department of Anatomical Pathology, Sonic Healthcare-Douglass Hanly Moir Pathology, Macquarie Park, NSW, Australia
| | - Martin Jones
- Department of Anatomical Pathology, Sonic Healthcare-Douglass Hanly Moir Pathology, Macquarie Park, NSW, Australia
| | - Fiona M Maclean
- Department of Anatomical Pathology, Sonic Healthcare-Douglass Hanly Moir Pathology, Macquarie Park, NSW, Australia; Cancer Diagnosis and Pathology Group, Kolling Institute of Medical Research, Royal North Shore Hospital, St Leonards, NSW, Australia; Department of Clinical Medicine, Faculty of Medicine and Health Sciences, Macquarie University, Macquarie Park, NSW, Australia
| | - Anthony J Gill
- Cancer Diagnosis and Pathology Group, Kolling Institute of Medical Research, Royal North Shore Hospital, St Leonards, NSW, Australia; Sydney Medical School, University of Sydney, Sydney, NSW, Australia; Department of Anatomical Pathology, NSW Health Pathology, Royal North Shore Hospital, St Leonards, NSW, Australia
| | - James Blackburn
- The Kinghorn Cancer Centre, Garvan Institute of Medical Research, Sydney, NSW, Australia; St Vincent's Clinical School, Faculty of Medicine and Health, University of New South Wales, Sydney, NSW, Australia
| |
Collapse
|
14
|
González-Chávez SA, Salas-Leiva JS, Salas-Leiva DE, López-Loeza SM, Sausameda-García J, Orrantia-Borunda E, Burgos-Vargas R, Alvarado-Jáquez MF, Torres-Quintana M, Cuevas-Martínez R, Chaparro-Barrera E, Marín-Terrazas C, Espino-Solís GP, Romero-López JP, Bernal-Alferes BDJ, Pacheco-Tena C. Levofloxacin induces differential effects in the transcriptome between the gut, peripheral and axial joints in the Spondyloarthritis DBA/1 mice: Improvement of intestinal dysbiosis and the overall inflammatory process. PLoS One 2023; 18:e0281265. [PMID: 36730179 PMCID: PMC9894406 DOI: 10.1371/journal.pone.0281265] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Accepted: 01/18/2023] [Indexed: 02/03/2023] Open
Abstract
To analyze the effect of levofloxacin-induced intestinal microbiota modifications on intestinal, joint, and systemic inflammation in the DBA/1 mice with spontaneous arthritis. The study included two groups of mice, one of which received levofloxacin. The composition and structure of the microbiota were determined in the mice's stool using 16S rRNA sequencing; the differential taxa and metabolic pathway between mice treated with levofloxacin and control mice were also defied. The effect of levofloxacin was evaluated in the intestines, hind paws, and spines of mice through DNA microarray transcriptome and histopathological analyses; systemic inflammation was measured by flow cytometry. Levofloxacin decreased the pro-inflammatory bacteria, including Prevotellaceae, Odoribacter, and Blautia, and increased the anti-inflammatory Muribaculaceae in mice's stool. Histological analysis confirmed the intestinal inflammation in control mice, while in levofloxacin-treated mice, inflammation was reduced; in the hind paws and spines, levofloxacin also decreased the inflammation. Microarray showed the downregulation of genes and signaling pathways relevant in spondyloarthritis, including several cytokines and chemokines. Levofloxacin-treated mice showed differential transcriptomic profiles between peripheral and axial joints and intestines. Levofloxacin decreased the expression of TNF-α, IL-23a, and JAK3 in the three tissues, but IL-17 behaved differently in the intestine and the joints. Serum TNF-α was also reduced in levofloxacin-treated mice. Our results suggest that the microbiota modification aimed at reducing pro-inflammatory and increasing anti-inflammatory bacteria could potentially be a coadjuvant in treating inflammatory arthropathies.
Collapse
Affiliation(s)
- Susana Aideé González-Chávez
- Facultad de Medicina y Ciencias Biomédicas, Laboratorio PABIOM, Universidad Autónoma de Chihuahua, Chihuahua, México
| | - Joan S. Salas-Leiva
- Departamento de Medio Ambiente y Energía, CONACyT-Centro de Investigación en Materiales Avanzados, Chihuahua, México
| | - Dayana E. Salas-Leiva
- Department of Biochemistry, University of Cambridge, Cambridge, United Kingdom
- Department of Biochemistry and Molecular Biology, Institute for Comparative Genomics (ICG), Dalhousie University, Halifax, NS, Canada
| | - Salma Marcela López-Loeza
- Facultad de Medicina y Ciencias Biomédicas, Laboratorio PABIOM, Universidad Autónoma de Chihuahua, Chihuahua, México
| | - Jasanai Sausameda-García
- Facultad de Medicina y Ciencias Biomédicas, Laboratorio PABIOM, Universidad Autónoma de Chihuahua, Chihuahua, México
| | - Erasmo Orrantia-Borunda
- Departamento de Medio Ambiente y Energía, CONACyT-Centro de Investigación en Materiales Avanzados, Chihuahua, México
| | - Rubén Burgos-Vargas
- Department of Rheumatology, Hospital General de México, "Dr. Eduardo Liceaga", Ciudad de México, México
| | | | - Mayra Torres-Quintana
- Facultad de Medicina y Ciencias Biomédicas, Laboratorio PABIOM, Universidad Autónoma de Chihuahua, Chihuahua, México
| | - Rubén Cuevas-Martínez
- Facultad de Medicina y Ciencias Biomédicas, Laboratorio PABIOM, Universidad Autónoma de Chihuahua, Chihuahua, México
| | - Eduardo Chaparro-Barrera
- Facultad de Medicina y Ciencias Biomédicas, Laboratorio PABIOM, Universidad Autónoma de Chihuahua, Chihuahua, México
| | - Carlos Marín-Terrazas
- Facultad de Medicina y Ciencias Biomédicas, Laboratorio PABIOM, Universidad Autónoma de Chihuahua, Chihuahua, México
| | - Gerardo Pável Espino-Solís
- Translational Research Laboratory and National Laboratory of Flow Cytometry, Autonomous University of Chihuahua, Circuito Universitario, Campus II, Chihuahua, Mexico
| | - José Pablo Romero-López
- Laboratorio de Inmunología Clínica 1, Instituto Politécnico Nacional de México, Posgrado en Ciencias Quimicobiológicas, Escuela Nacional de Ciencias Biológicas, Ciudad de México, México
| | - Brian de Jesús Bernal-Alferes
- Laboratorio de Inmunología Clínica 1, Instituto Politécnico Nacional de México, Posgrado en Ciencias Quimicobiológicas, Escuela Nacional de Ciencias Biológicas, Ciudad de México, México
| | - César Pacheco-Tena
- Facultad de Medicina y Ciencias Biomédicas, Laboratorio PABIOM, Universidad Autónoma de Chihuahua, Chihuahua, México
- * E-mail:
| |
Collapse
|
15
|
Abstract
Undifferentiated small round cell sarcomas (SRCSs) of bone and soft tissue comprise a heterogeneous group of highly aggressive tumours associated with a poor prognosis, especially in metastatic disease. SRCS entities mainly occur in the third decade of life and can exhibit striking disparities regarding preferentially affected sex and tumour localization. SRCSs comprise new entities defined by specific genetic abnormalities, namely EWSR1-non-ETS fusions, CIC-rearrangements or BCOR genetic alterations, as well as EWSR1-ETS fusions in the prototypic SRCS Ewing sarcoma. These gene fusions mainly encode aberrant oncogenic transcription factors that massively rewire the transcriptome and epigenome of the as yet unknown cell or cells of origin. Additional mutations or copy number variants are rare at diagnosis and, depending on the tumour entity, may involve TP53, CDKN2A and others. Histologically, these lesions consist of small round cells expressing variable levels of CD99 and specific marker proteins, including cyclin B3, ETV4, WT1, NKX3-1 and aggrecan, depending on the entity. Besides locoregional treatment that should follow standard protocols for sarcoma management, (neo)adjuvant treatment is as yet ill-defined but generally follows that of Ewing sarcoma and is associated with adverse effects that might compromise quality of life. Emerging studies on the molecular mechanisms of SRCSs and the development of genetically engineered animal models hold promise for improvements in early detection, disease monitoring, treatment-related toxicity, overall survival and quality of life.
Collapse
|
16
|
Seligson ND, Tang J, Jin DX, Bennett MP, Elvin JA, Graim K, Hays JL, Millis SZ, Miles WO, Chen JL. Drivers of genomic loss of heterozygosity in leiomyosarcoma are distinct from carcinomas. NPJ Precis Oncol 2022; 6:29. [PMID: 35468996 PMCID: PMC9038792 DOI: 10.1038/s41698-022-00271-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2021] [Accepted: 03/16/2022] [Indexed: 11/29/2022] Open
Abstract
Leiomyosarcoma (LMS) is a rare, aggressive, mesenchymal tumor. Subsets of LMS have been identified to harbor genomic alterations associated with homologous recombination deficiency (HRD); particularly alterations in BRCA2. Whereas genomic loss of heterozygosity (gLOH) has been used as a surrogate marker of HRD in other solid tumors, the prognostic or clinical value of gLOH in LMS (gLOH-LMS) remains poorly defined. We explore the genomic drivers associated with gLOH-LMS and their clinical import. Although the distribution of gLOH-LMS scores are similar to that of carcinomas, outside of BRCA2, there was no overlap with previously published gLOH-associated genes from studies in carcinomas. We note that early stage tumors with elevated gLOH demonstrated a longer disease-free interval following resection in LMS patients. Taken together, and despite similarities to carcinomas in gLOH distribution and clinical import, gLOH-LMS are driven by different genomic signals. Additional studies will be required to isolate and confirm the unique differences in biological factors driving these differences.
Collapse
Affiliation(s)
- Nathan D Seligson
- Department of Pharmacotherapy and Translational Research, The University of Florida, Jacksonville, FL, USA.,Department of Pharmacogenomics and Translational Research, Nemours Children's Specialty Care, Jacksonville, FL, USA.,Division of Medical Oncology, Department of Internal Medicine, The Ohio State University, Columbus, OH, USA
| | - Joy Tang
- Division of Medical Oncology, Department of Internal Medicine, The Ohio State University, Columbus, OH, USA
| | | | - Monica P Bennett
- Department of Pharmacotherapy and Translational Research, The University of Florida, Jacksonville, FL, USA
| | | | - Kiley Graim
- Department of Computer and Information Science and Engineering, The University of Florida, Gainesville, FL, USA
| | - John L Hays
- Division of Medical Oncology, Department of Internal Medicine, The Ohio State University, Columbus, OH, USA.,Division of Gynecologic Oncology, Department of Obstetrics and Gynecology, The Ohio State University, Columbus, OH, USA
| | | | - Wayne O Miles
- Department of Cancer Biology and Genetics, The Ohio State University, Columbus, OH, USA
| | - James L Chen
- Division of Medical Oncology, Department of Internal Medicine, The Ohio State University, Columbus, OH, USA. .,Department of Biomedical Informatics, The Ohio State University, Columbus, OH, USA.
| |
Collapse
|
17
|
Vanhersecke L, Linck PA, Le Loarer F. [Fusion-related round and spindle cell sarcomas of the bone (beyond Ewing)]. Ann Pathol 2022; 42:227-241. [PMID: 35216845 DOI: 10.1016/j.annpat.2022.01.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2022] [Accepted: 01/26/2022] [Indexed: 11/24/2022]
Abstract
Round cell sarcomas represent a diagnostic challenge for pathologists due to the poorly differentiated pattern of these high-grade tumors. Their diagnosis often requires large immunohistochemical panels and the use of molecular pathology. These tumors are largely dominated by Ewing sarcomas, but new families are now well characterized, including in decreasing frequency order in bone, BCOR-altered sarcomas, NFATc2-rearranged sarcomas, mesenchymal chondrosarcomas and more rarely CIC-rearranged sarcomas and myoepithelial tumors. This progress report presents microscopic, immunohistochemical and molecular features of these tumors previously named by the inappropriate term "Ewing-like" sarcomas, in order to enable any pathologist to perceive the morphological features of these sarcomas, to select the immunohistochemical panel that will lead to the diagnosis and to better guide the molecular approach needed to establish the final diagnosis.
Collapse
Affiliation(s)
- Lucile Vanhersecke
- Université de Bordeaux, 33400 Talence, France; Département de biopathologie, institut Bergonié, 33000 Bordeaux, France.
| | | | - François Le Loarer
- Université de Bordeaux, 33400 Talence, France; Département de biopathologie, institut Bergonié, 33000 Bordeaux, France; Inserm U1218, ACTION, institut Bergonié, 33000 Bordeaux, France
| |
Collapse
|
18
|
Le Loarer F, Baud J, Azmani R, Michot A, Karanian M, Pissaloux D. Advances in the classification of round cell sarcomas. Histopathology 2021; 80:33-53. [PMID: 34958508 DOI: 10.1111/his.14547] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2021] [Revised: 08/17/2021] [Accepted: 08/17/2021] [Indexed: 12/25/2022]
Abstract
Round cell sarcomas represent a diagnostic challenge for pathologists, owing to the poorly differentiated features of these high-grade tumours. The diagnosis of round cell sarcoma requires large immunohistochemical panels and molecular testing in many cases. This spectrum of malignancies is largely dominated by Ewing sarcomas (ESs), which represent the most common family of these tumours. Nonetheless, new families have been delineated in the past few years, with the addition of two additional families in the 2020 World Health Organization classification of bone and soft tissue tumours, namely sarcomas with CIC rearrangements and sarcomas with BCOR alterations. EWSR1, one of the genes involved in the driver fusion of ESs, is also implicated in the translocation of many other tumours with heterogeneous lineages and variable levels of aggressiveness. Round cell sarcomas associated with fusions inwhichEWSR1is partnered with genes encoding transcription factors distinct from those of the 'Ewing family' represent a heterogeneous group of rare tumours that require further study to determine whether their fusions may or not define a specific subgroup. They include mainly sarcomas with NFATc2 rearrangements and sarcomas with PATZ1 rearrangements. At this point, PATZ1 fusions seem to be associated with tumours of high clinical and morphological heterogeneity. Molecular studies have also helped in the identification of more consistent biomarkers that give tremendous help to pathologists in triaging, if not diagnosing, these tumours in practice. This review compiles the latest accumulated evidence regarding round cell sarcomas, and discusses the areas that are still under investigation.
Collapse
Affiliation(s)
- Francois Le Loarer
- Université de Bordeaux, Talence, France.,Département de Biopathologie, Bordeaux, France.,INSERM U1218, ACTION, Bordeaux, France
| | - Jessica Baud
- Université de Bordeaux, Talence, France.,INSERM U1218, ACTION, Bordeaux, France
| | | | - Audrey Michot
- Université de Bordeaux, Talence, France.,INSERM U1218, ACTION, Bordeaux, France.,Department of Surgery, Institut Bergonie, Bordeaux, France
| | - Marie Karanian
- Département de Biopathologie, Centre Leon Berard, Lyon, France.,INSERM U1052, Cancer Research Centre of Lyon, Lyon, France
| | - Daniel Pissaloux
- Département de Biopathologie, Centre Leon Berard, Lyon, France.,INSERM U1052, Cancer Research Centre of Lyon, Lyon, France
| |
Collapse
|
19
|
Seligson ND, Maradiaga RD, Stets CM, Katzenstein HM, Millis SZ, Rogers A, Hays JL, Chen JL. Multiscale-omic assessment of EWSR1-NFATc2 fusion positive sarcomas identifies the mTOR pathway as a potential therapeutic target. NPJ Precis Oncol 2021; 5:43. [PMID: 34021224 PMCID: PMC8140100 DOI: 10.1038/s41698-021-00177-0] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2020] [Accepted: 04/16/2021] [Indexed: 12/19/2022] Open
Abstract
Sarcomas harboring EWSR1-NFATc2 fusions have historically been categorized and treated as Ewing sarcoma. Emerging evidence suggests unique molecular characteristics and chemotherapy sensitivities in EWSR1-NFATc2 fusion positive sarcomas. Comprehensive genomic profiles of 1024 EWSR1 fusion positive sarcomas, including 14 EWSR1-NFATc2 fusions, were identified in the FoundationCore® database. Additional data from the Gene Expression Omnibus, the Genomics of Drug Sensitivity in Cancer and The Cancer Genome Atlas datasets were included for analysis. EWSR1-NFATc2 fusion positive sarcomas were genomically distinct from traditional Ewing sarcoma and demonstrated upregulation of the mTOR pathway. We also present a case of a 58-year-old male patient with metastatic EWSR1-NFATc2 fusion positive sarcoma who achieved 47 months of disease stabilization when treated with combination mTOR and VEGF inhibition. EWSR1-NFATc2 fusion positive sarcomas are molecularly distinct entities with overactive mTOR signaling; which may be therapeutically targetable. These findings support the use of precision medicine in the Ewing family of tumors.
Collapse
Affiliation(s)
- Nathan D Seligson
- Department of Pharmacotherapy and Translational Research, The University of Florida, Jacksonville, FL, USA.,Department of Pharmacogenomics and Translational Research, Nemours Children's Specialty Care, Jacksonville, FL, USA.,Division of Pediatric Hematology/Oncology, Department of Pediatrics, Nemours Children's Specialty Care, Jacksonville, FL, USA
| | - Richard D Maradiaga
- The Ohio State University Wexner Medical Center and Comprehensive Cancer Center, The Ohio State University, Columbus, OH, USA
| | - Colin M Stets
- The Ohio State University Wexner Medical Center and Comprehensive Cancer Center, The Ohio State University, Columbus, OH, USA
| | - Howard M Katzenstein
- Division of Pediatric Hematology/Oncology, Department of Pediatrics, Nemours Children's Specialty Care, Jacksonville, FL, USA
| | | | - Alan Rogers
- Department of Radiology, The Ohio State University, Columbus, OH, USA
| | - John L Hays
- Division of Medical Oncology, Department of Internal Medicine, The Ohio State University, Columbus, OH, USA.,Division of Gynecologic Oncology, Department of Obstetrics and Gynecology, The Ohio State University, Columbus, OH, USA
| | - James L Chen
- Division of Medical Oncology, Department of Internal Medicine, The Ohio State University, Columbus, OH, USA. .,Department of Biomedical Informatics, The Ohio State University, Columbus, OH, USA.
| |
Collapse
|