1
|
Li T, Qiang W, Lei B. Bioactive surface-functionalized MXenes for biomedicine. NANOSCALE 2025; 17:4854-4891. [PMID: 39873617 DOI: 10.1039/d4nr04260c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/30/2025]
Abstract
MXenes, with their good biocompatibility, excellent photovoltaic properties, excellent physicochemical properties, and desirable bioactivity, have broad application prospects in the field of tissue regeneration. MXenes have been used in a wide range of applications including biosensing, bioimaging, tumour/infection therapy, bone regeneration and wound repair. By applying bioactive materials to modify the surface of MXenes, a series of multifunctional MXene-based nanomaterials can be designed for different biomedical applications to achieve better therapeutic effects or more desirable biological functions. This paper reviews the existing studies on MXene-based bioactivities, surface modification strategies and biomedical applications. Finally, the challenges, trends and prospects of MXene nanomaterials are discussed. We expect that more and more well-designed MXene-based biomaterials will have a wider range of biomedical applications, thus providing favourable information for the clinical translation of nanomedicine.
Collapse
Affiliation(s)
- Ting Li
- Frontier Institute of Science and Technology, Xi'an Jiaotong University, Xi'an 710054, China.
| | - Weipeng Qiang
- Frontier Institute of Science and Technology, Xi'an Jiaotong University, Xi'an 710054, China.
| | - Bo Lei
- Frontier Institute of Science and Technology, Xi'an Jiaotong University, Xi'an 710054, China.
- Department of Respiratory and Critical Care Medicine, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710004, China
- Department of Orthopedics, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, P. R. 710061, China
| |
Collapse
|
2
|
Ikram M, Mahmud MAP, Kalyar AA, Alomayri T, Almahri A, Hussain D. 3D-bioprinting of MXenes: Developments, medical applications, challenges, and future roadmap. Colloids Surf B Biointerfaces 2025; 251:114568. [PMID: 40020571 DOI: 10.1016/j.colsurfb.2025.114568] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2024] [Revised: 02/03/2025] [Accepted: 02/15/2025] [Indexed: 03/03/2025]
Abstract
MXenes is a member of 2D transition metals carbides and nitrides with promising application prospects in energy storage, sensing, nanomedicine, tissue engineering, catalysis, and electronics. In the current era, MXenes have been widely applied in biomedical applications due to their unique rheological and electrochemical attributes. They have a larger surface area with more active sites, higher conductivity, lower cytotoxicity, and greater biocompatibility, making them highly suitable candidates for in-vivo biomedical applications. Due to recent advancemnets in MXenes 3D bioprinting, they are widely applied in regenerative medicine to combat challenges in suitable transplantation of tissues and organs. However, 3D bioprinting of MXenes has several complexities based on cell type, cytotoxicity, cell viability, and differentiation. To address these intricacies, surface modifications of MXene materials are done, which makes them highly fascinating for the 3D printing of tissues and organs. In the current review, we summarized recent progress in 3D bioprinting of MXene materials to construct scaffolds with desired rheological and biological properties, focusing on their potential applications in cancer phototherapy, tissue engineering, bone regeneration, and biosensing. We also discussed parameters affecting their biomedical applications and possible solutions by applying surface modifications. In addition, we addressed current challenges and future roadmaps for 3D bioprinting of MXene materials, such as generating high throughput 3D printed tissue constructs, drug delivery, drug discovery, and toxicology.
Collapse
Affiliation(s)
- Muhammad Ikram
- Department of Agricultural and Biosystems Engineering, South Dakota State University, Brookings, SD 57007, United States of America.
| | - M A Parvez Mahmud
- School of Mathematical and Physical Sciences, University of Technology Sydney, Ultimo, NSW 2007, Australia
| | - Amina Akbar Kalyar
- Department of Zoology, Wildlife and Fisheries, University of Agriculture Faisalabad, Pakistan
| | - Thamer Alomayri
- Department of Physics, Faculty of Science, Umm Al-Qura University, Makkah 21955, Saudi Arabia
| | - Albandary Almahri
- Department of Chemistry, College of Science and Humanities, Prince Sattam Bin Abdulaziz University, Al-Kharj 11942, Saudi Arabia
| | - Dilshad Hussain
- HEJ Research Institute of Chemistry, International Center for Chemical and Biological Sciences, University of Karachi, Karachi 75270, Pakistan.
| |
Collapse
|
3
|
Kim M, Hwang DG, Jang J. Bioprinting approaches in cardiac tissue engineering to reproduce blood-pumping heart function. iScience 2025; 28:111664. [PMID: 39868032 PMCID: PMC11763539 DOI: 10.1016/j.isci.2024.111664] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2025] Open
Abstract
The heart, with its complex structural and functional characteristics, plays a critical role in sustaining life by pumping blood throughout the entire body to supply nutrients and oxygen. Engineered heart tissues have been introduced to reproduce heart functions to understand the pathophysiological properties of the heart and to test and develop potential therapeutics. Although numerous studies have been conducted in various fields to increase the functionality of heart tissue to be similar to reality, there are still many difficulties in reproducing the blood-pumping function of the heart. In this review, we discuss advancements in cells, biomaterials, and biofabrication in cardiac tissue engineering to achieve cardiac models that closely mimic the pumping function. Moreover, we provide insight into future directions by proposing future perspectives to overcome remaining challenges, such as scaling up and biomimetic patterning of blood vessels and nerves through bioprinting.
Collapse
Affiliation(s)
- Minji Kim
- Department of Mechanical Engineering, Pohang University of Science and Technology (POSTECH), Pohang, South Korea
| | - Dong Gyu Hwang
- Center for 3D Organ Printing and Stem Cells, Pohang University of Science and Technology (POSTECH), Pohang, South Korea
| | - Jinah Jang
- Department of Mechanical Engineering, Pohang University of Science and Technology (POSTECH), Pohang, South Korea
- Center for 3D Organ Printing and Stem Cells, Pohang University of Science and Technology (POSTECH), Pohang, South Korea
- School of Interdisciplinary Bioscience and Bioengineering, Pohang University of Science and Technology (POSTECH), Pohang, South Korea
- Department of Convergence IT Engineering, Pohang University of Science and Technology (POSTECH), Pohang, South Korea
| |
Collapse
|
4
|
Singh SK, Paul M, Singh A, Sharma A, Kumar M, Gupta J, Sivakumar S, Verma V. Development of MXene Composite Nanofiber-Based 3D Culture System for the Efficient Generation of MSC-Derived Functional Pancreatic β-Cells. ACS APPLIED MATERIALS & INTERFACES 2024; 16:67514-67522. [PMID: 39593212 DOI: 10.1021/acsami.4c17990] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/28/2024]
Abstract
Pancreatic β-cell transplantation is an effective approach for the therapeutic treatment of type I diabetes. However, it has limitations due to the lack of human cadaveric pancreas donors. Stem cells provide an alternative source for the generation of surrogate pancreatic β-cells. Nonetheless, its clinical utility is restricted due to the unavailability of a robust culture system for the generation of large quantities of insulin-responsive pancreatic β-cells. In this study, we fabricated an MXene composite nanofibrous scaffold (PCL 25_Ti2C 5 nanofiber) for the development of a three-dimensional (3D) culture system that can enhance the proliferation and differentiation of stem cell-derived pancreatic β-cells. The fabricated MXene composite nanofibers exhibited a porous nanostructure and increased hydrophilicity due to a large number of hydrophilic functional groups. We assessed the biocompatibility and differentiation potential of human Wharton's jelly mesenchymal stem cells (hWJ-MSCs) on a fabricated MXene composite nanofibrous scaffold. MXene composite nanofibers significantly upregulated key pancreatic β-cell markers including PDX-1, MAFA, Insulin, Nkx6.1, and Nkx2.2 and also showed increased production and secretion of insulin in response to glucose stimulation when compared to control (PCL 25 nanofiber), suggesting enhanced differentiation of hWJ-MSCs into functional pancreatic β-cells. Overall, the results suggest that MXene nanofiber-based cell therapy has therapeutic potential for diabetes treatment.
Collapse
Affiliation(s)
- Suraj Kumar Singh
- Stem Cell Research Centre, Department of Hematology, Sanjay Gandhi Postgraduate Institute of Medical Sciences, Lucknow 226014, India
| | - Mouchandra Paul
- Department of Chemical Engineering, Indian Institute of Technology, Kanpur 208016, India
| | - Anshuman Singh
- Stem Cell Research Centre, Department of Hematology, Sanjay Gandhi Postgraduate Institute of Medical Sciences, Lucknow 226014, India
| | - Ashutosh Sharma
- Department of Chemical Engineering, Indian Institute of Technology, Kanpur 208016, India
| | - Manoj Kumar
- ICMR-National Institute for Research in Environmental Health, Bhopal 462030, India
| | - Jalaj Gupta
- Stem Cell Research Centre, Department of Hematology, Sanjay Gandhi Postgraduate Institute of Medical Sciences, Lucknow 226014, India
| | - Sri Sivakumar
- Department of Chemical Engineering, Indian Institute of Technology, Kanpur 208016, India
| | - Vinod Verma
- Stem Cell Research Centre, Department of Hematology, Sanjay Gandhi Postgraduate Institute of Medical Sciences, Lucknow 226014, India
| |
Collapse
|
5
|
Panda S, Mehlawat S, Dhariwal N, Yadav P, Kumar V, Thakur OP, Brahmankar NV, Uke SJ, Kumar A, Sanger A. Investigation of Bi 2MoO 6/MXene nanostructured composites for photodegradation and advanced energy storage applications. Sci Rep 2024; 14:27416. [PMID: 39521896 PMCID: PMC11550469 DOI: 10.1038/s41598-024-78887-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2024] [Accepted: 11/05/2024] [Indexed: 11/16/2024] Open
Abstract
This study presents nanostructured composite Bi2MoO6/MXene heterostructure by using hydrothermal method for photodegradation of the congo-red dye and also for energy storage devices. X-ray diffractometer (XRD), High Resolution Transmission Electron Microscopy (HRTEM), Field emission scanning electron microscope (FESEM) and X-ray photoelectron spectroscopy (XPS), Brunauer-Emmett-Teller (BET) were performed to examine the structural properties along with surface area and porosity of the material. Due to addition of MXene the larger surface area and improved pore size help to quickly break down additional organic pollutants by adsorbing them. The band gap of Bi2MoO6/MXene nanostructured composite reduced to 2.4 eV suggesting transfer of electrons from VB to CB. Bi2MoO6/MXene exhibits a high (92.3%) photocatalytic degradation rate for a duration of 16 min which was verified using UV-visible spectroscopy, also scavenger test was conducted to ascertain the reactive agent along with the degradation pathway was confirmed by LCMS. Elemental content was also established by using inductively coupled plasma mass spectrometry (ICP-MS). For estimating energy storage capacity cyclic voltammetry (CV) was performed. It was observed Bi2MoO6/MXene nanostructured composite electrodes had specific capacitance of 642.91Fg- 1, power density of 1.24 kWkg- 1, and energy density of 22.32 Whkg- 1 at a current density of 5Ag- 1 also it exhibited 64.42% capacity retention having current density 20 Ag- 1 throughout 10,000 Galvanostatic charge discharge (GCD) cycles. High electrical conductivity of Bi2MoO6/MXene electrode was again examined by Electrochemical impedance spectroscopy (EIS). These findings demonstrate the potential of Bi2MoO6/MXene nanostructured composites in both photodegradation and energy storage applications.
Collapse
Affiliation(s)
- Sagarika Panda
- Department of Physics, Netaji Subhas University of Technology, Dwarka, New Delhi, 110078, India
| | - Savita Mehlawat
- Department of Physics, Netaji Subhas University of Technology, Dwarka, New Delhi, 110078, India
| | - Neeraj Dhariwal
- Department of Physics, Netaji Subhas University of Technology, Dwarka, New Delhi, 110078, India
| | - Preety Yadav
- Department of Physics, Netaji Subhas University of Technology, Dwarka, New Delhi, 110078, India
| | - Vinod Kumar
- Department of Physics, Netaji Subhas University of Technology, Dwarka, New Delhi, 110078, India
| | - O P Thakur
- Department of Physics, Netaji Subhas University of Technology, Dwarka, New Delhi, 110078, India
| | - Neha V Brahmankar
- Department of Physics, JDPS College, SGB Amravati University, Amravati, 444803, Maharashtra, India
| | - Santosh J Uke
- Department of Physics, JDPS College, SGB Amravati University, Amravati, 444803, Maharashtra, India
| | - Ashwani Kumar
- Department of Physics, Regional Institute of Education (NCERT), Bhubaneswar, 751022, Odisha, India
| | - Amit Sanger
- Department of Physics, Netaji Subhas University of Technology, Dwarka, New Delhi, 110078, India.
| |
Collapse
|
6
|
Zhang X, Zhao G, Ma T, Simmons CA, Santerre JP. A critical review on advances and challenges of bioprinted cardiac patches. Acta Biomater 2024; 189:1-24. [PMID: 39374681 DOI: 10.1016/j.actbio.2024.09.056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Revised: 09/10/2024] [Accepted: 09/30/2024] [Indexed: 10/09/2024]
Abstract
Myocardial infarction (MI), which causes irreversible myocardium necrosis, affects 0.25 billion people globally and has become one of the most significant epidemics of our time. Over the past few years, bioprinting has moved beyond a concept of simply incorporating cells into biomaterials, to strategically defining the microenvironment (e.g., architecture, biomolecular signalling, mechanical stimuli, etc.) within which the cells are printed. Among the different bioprinting applications, myocardial repair is a field that has seen some of the most significant advances towards the management of the repaired tissue microenvironment. This review critically assesses the most recent biomedical innovations being carried out in cardiac patch bioprinting, with specific considerations given to the biomaterial design parameters, growth factors/cytokines, biomechanical and bioelectrical conditioning, as well as innovative biomaterial-based "4D" bioprinting (3D scaffold structure + temporal morphology changes) of myocardial tissues, immunomodulation and sustained delivery systems used in myocardium bioprinting. Key challenges include the ability to generate large quantities of cardiac cells, achieve high-density capillary networks, establish biomaterial designs that are comparable to native cardiac extracellular matrix, and manage the sophisticated systems needed for combining cardiac tissue microenvironmental cues while simultaneously establishing bioprinting technologies yielding both high-speed and precision. This must be achieved while considering quality assurance towards enabling reproducibility and clinical translation. Moreover, this manuscript thoroughly discussed the current clinical translational hurdles and regulatory issues associated with the post-bioprinting evaluation, storage, delivery and implantation of the bioprinted myocardial patches. Overall, this paper provides insights into how the clinical feasibility and important regulatory concerns may influence the design of the bioink (biomaterials, cell sources), fabrication and post-fabrication processes associated with bioprinting of the cardiac patches. This paper emphasizes that cardiac patch bioprinting requires extensive collaborations from imaging and 3D modelling technical experts, biomaterial scientists, additive manufacturing experts and healthcare professionals. Further, the work can also guide the field of cardiac patch bioprinting moving forward, by shedding light on the potential use of robotics and automation to increase productivity, reduce financial cost, and enable standardization and true commercialization of bioprinted cardiac patches. STATEMENT OF SIGNIFICANCE: The manuscript provides a critical review of important themes currently pursued for heart patch bioprinting, including critical biomaterial design parameters, physiologically-relevant cardiac tissue stimulations, and newly emerging cardiac tissue bioprinting strategies. This review describes the limited number of studies, to date in the literature, that describe systemic approaches to combine multiple design parameters, including capabilities to yield high-density capillary networks, establish biomaterial composite designs similar to native cardiac extracellular matrix, and incorporate cardiac tissue microenvironmental cues, while simultaneously establishing bioprinting technologies that yield high-speed and precision. New tools such as artificial intelligence may provide the analytical power to consider multiple design parameters and identify an optimized work-flow(s) for enabling the clinical translation of bioprinted cardiac patches.
Collapse
Affiliation(s)
- Xiaoqing Zhang
- School of Basic Medical Sciences, Binzhou Medical University, Yantai, Shandong 264003, China; Translational Biology and Engineering Program, Ted Rogers Centre for Heart Research, University of Toronto, Toronto, Ontario M5G 1M1, Canada.
| | - Guangtao Zhao
- School of Basic Medical Sciences, Binzhou Medical University, Yantai, Shandong 264003, China
| | - Tianyi Ma
- Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam 999077, Hong Kong Special Administrative Region of China
| | - Craig A Simmons
- School of Basic Medical Sciences, Binzhou Medical University, Yantai, Shandong 264003, China; Department of Mechanical and Industrial Engineering, University of Toronto, Toronto, Ontario M5S 3G8, Canada; Translational Biology and Engineering Program, Ted Rogers Centre for Heart Research, University of Toronto, Toronto, Ontario M5G 1M1, Canada.
| | - J Paul Santerre
- School of Basic Medical Sciences, Binzhou Medical University, Yantai, Shandong 264003, China; Translational Biology and Engineering Program, Ted Rogers Centre for Heart Research, University of Toronto, Toronto, Ontario M5G 1M1, Canada.
| |
Collapse
|
7
|
Wen Y, Yang H, Hong Y. Transcriptomic Approaches to Cardiomyocyte-Biomaterial Interactions: A Review. ACS Biomater Sci Eng 2024; 10:4175-4194. [PMID: 38934720 DOI: 10.1021/acsbiomaterials.4c00303] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/28/2024]
Abstract
Biomaterials, essential for supporting, enhancing, and repairing damaged tissues, play a critical role in various medical applications. This Review focuses on the interaction of biomaterials and cardiomyocytes, emphasizing the unique significance of transcriptomic approaches in understanding their interactions, which are pivotal in cardiac bioengineering and regenerative medicine. Transcriptomic approaches serve as powerful tools to investigate how cardiomyocytes respond to biomaterials, shedding light on the gene expression patterns, regulatory pathways, and cellular processes involved in these interactions. Emerging technologies such as bulk RNA-seq, single-cell RNA-seq, single-nucleus RNA-seq, and spatial transcriptomics offer promising avenues for more precise and in-depth investigations. Longitudinal studies, pathway analyses, and machine learning techniques further improve the ability to explore the complex regulatory mechanisms involved. This review also discusses the challenges and opportunities of utilizing transcriptomic techniques in cardiomyocyte-biomaterial research. Although there are ongoing challenges such as costs, cell size limitation, sample differences, and complex analytical process, there exist exciting prospects in comprehensive gene expression analyses, biomaterial design, cardiac disease treatment, and drug testing. These multimodal methodologies have the capacity to deepen our understanding of the intricate interaction network between cardiomyocytes and biomaterials, potentially revolutionizing cardiac research with the aim of promoting heart health, and they are also promising for studying interactions between biomaterials and other cell types.
Collapse
Affiliation(s)
- Yufeng Wen
- Department of Bioengineering, University of Texas at Arlington, Arlington, Texas 76019, United States
| | - Huaxiao Yang
- Department of Biomedical Engineering, University of North Texas, Denton, Texas 76207, United States
| | - Yi Hong
- Department of Bioengineering, University of Texas at Arlington, Arlington, Texas 76019, United States
| |
Collapse
|
8
|
Elkhoury K, Kodeih S, Enciso‐Martínez E, Maziz A, Bergaud C. Advancing Cardiomyocyte Maturation: Current Strategies and Promising Conductive Polymer-Based Approaches. Adv Healthc Mater 2024; 13:e2303288. [PMID: 38349615 PMCID: PMC11468390 DOI: 10.1002/adhm.202303288] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Revised: 01/31/2024] [Indexed: 02/21/2024]
Abstract
Cardiovascular diseases are a leading cause of mortality and pose a significant burden on healthcare systems worldwide. Despite remarkable progress in medical research, the development of effective cardiovascular drugs has been hindered by high failure rates and escalating costs. One contributing factor is the limited availability of mature cardiomyocytes (CMs) for accurate disease modeling and drug screening. Human induced pluripotent stem cell-derived CMs offer a promising source of CMs; however, their immature phenotype presents challenges in translational applications. This review focuses on the road to achieving mature CMs by summarizing the major differences between immature and mature CMs, discussing the importance of adult-like CMs for drug discovery, highlighting the limitations of current strategies, and exploring potential solutions using electro-mechano active polymer-based scaffolds based on conductive polymers. However, critical considerations such as the trade-off between 3D systems and nutrient exchange, biocompatibility, degradation, cell adhesion, longevity, and integration into wider systems must be carefully evaluated. Continued advancements in these areas will contribute to a better understanding of cardiac diseases, improved drug discovery, and the development of personalized treatment strategies for patients with cardiovascular disorders.
Collapse
Affiliation(s)
- Kamil Elkhoury
- LAAS‐CNRS, Université de Toulouse, CNRSToulouseF‐31400France
| | - Sacha Kodeih
- Faculty of Medicine and Medical SciencesUniversity of BalamandTripoliP.O. Box 100Lebanon
| | | | - Ali Maziz
- LAAS‐CNRS, Université de Toulouse, CNRSToulouseF‐31400France
| | | |
Collapse
|
9
|
Manoharan AK, Batcha MIK, Mahalingam S, Raj B, Kim J. Recent Advances in Two-Dimensional Nanomaterials for Healthcare Monitoring. ACS Sens 2024; 9:1706-1734. [PMID: 38563358 DOI: 10.1021/acssensors.4c00015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/04/2024]
Abstract
The development of advanced technologies for the fabrication of functional nanomaterials, nanostructures, and devices has facilitated the development of biosensors for analyses. Two-dimensional (2D) nanomaterials, with unique hierarchical structures, a high surface area, and the ability to be functionalized for target detection at the surface, exhibit high potential for biosensing applications. The electronic properties, mechanical flexibility, and optical, electrochemical, and physical properties of 2D nanomaterials can be easily modulated, enabling the construction of biosensing platforms for the detection of various analytes with targeted recognition, sensitivity, and selectivity. This review provides an overview of the recent advances in 2D nanomaterials and nanostructures used for biosensor and wearable-sensor development for healthcare and health-monitoring applications. Finally, the advantages of 2D-nanomaterial-based devices and several challenges in their optimal operation have been discussed to facilitate the development of smart high-performance biosensors in the future.
Collapse
Affiliation(s)
- Arun Kumar Manoharan
- Department of Electrical, Electronics and Communication Engineering, School of Technology, Gandhi Institute of Technology and Management (GITAM), Bengaluru 561203, Karnataka, India
| | - Mohamed Ismail Kamal Batcha
- Department of Electronics and Communication Engineering, Agni College of Technology, Chennai 600130, Tamil Nadu, India
| | - Shanmugam Mahalingam
- Department of Materials System Engineering, Pukyong National University, Busan 48513, Republic of Korea
| | - Balwinder Raj
- Department of Electronics and Communication Engineering, Dr B R Ambedkar National Institute of Technology Jalandhar, Punjab 144011, India
| | - Junghwan Kim
- Department of Materials System Engineering, Pukyong National University, Busan 48513, Republic of Korea
| |
Collapse
|
10
|
Das JM, Upadhyay J, Monaghan MG, Borah R. Impact of the Reduction Time-Dependent Electrical Conductivity of Graphene Nanoplatelet-Coated Aligned Bombyx mori Silk Scaffolds on Electrically Stimulated Axonal Growth. ACS APPLIED BIO MATERIALS 2024; 7:2389-2401. [PMID: 38502100 PMCID: PMC11022174 DOI: 10.1021/acsabm.4c00052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Revised: 03/02/2024] [Accepted: 03/05/2024] [Indexed: 03/20/2024]
Abstract
Graphene-based nanomaterials, renowned for their outstanding electrical conductivity, have been extensively studied as electroconductive biomaterials (ECBs) for electrically stimulated tissue regeneration. However, using eco-friendly reducing agents like l-ascorbic acid (l-Aa) can result in lower conductive properties in these ECBs, limiting their full potential for smooth charge transfer in living tissues. Moreover, creating a flexible biomaterial scaffold using these materials that accurately mimics a specific tissue microarchitecture, such as nerves, poses additional challenges. To address these issues, this study developed a microfibrous scaffold of Bombyx mori (Bm) silk fibroin uniformly coated with graphene nanoplatelets (GNPs) through a vacuum coating method. The scaffold's electrical conductivity was optimized by varying the reduction period using l-Aa. The research systematically investigated how different reduction periods impact scaffold properties, focusing on electrical conductivity and its significance on electrically stimulated axonal growth in PC12 cells. Results showed that a 48 h reduction significantly increased surface electrical conductivity by 100-1000 times compared to a shorter or no reduction process. l-Aa contributed to stabilizing the reduced GNPs, demonstrated by a slow degradation profile and sustained conductivity even after 60 days in a proteolytic environment. β (III) tubulin immunostaining of PC12 cells on varied silk:GNP scaffolds under pulsed electrical stimulation (ES, 50 Hz frequency, 1 ms pulse width, and amplitudes of 100 and 300 mV/cm) demonstrates accelerated axonal growth on scaffolds exhibiting higher conductivity. This is supported by upregulated intracellular Ca2+ dynamics immediately after ES on the scaffolds with higher conductivity, subjected to a prolonged reduction period. The study showcases a sustainable reduction approach using l-Aa in combination with natural Bm silk fibroin to create a highly conductive, mechanically robust, and stable silk:GNP-based aligned fibrous scaffold. These scaffolds hold promise for functional regeneration in electrically excitable tissues such as nerves, cardiac tissue, and muscles.
Collapse
Affiliation(s)
- Jitu Mani Das
- Life
Sciences Division, Institute of Advanced
Study in Science & Technology, Guwahati 781035, India
| | - Jnanendra Upadhyay
- Department
of Physics, Dakshin Kamrup College, Kamrup, Mirza, Assam 781125, India
| | - Michael G. Monaghan
- Department
of Mechanical, Manufacturing and Biomedical Engineering, Trinity College Dublin, Dublin D2, Ireland
- Advanced
Materials and BioEngineering Research (AMBER), Centre at Trinity College Dublin and the Royal College of Surgeons
in Ireland, Dublin D2, Ireland
- Trinity
Centre for Biomedical Engineering, Trinity
College Dublin, Dublin D2, Ireland
- CÚRAM,
Centre for Research in Medical Devices, National University of Ireland, Galway H91 W2TY, Ireland
| | - Rajiv Borah
- Life
Sciences Division, Institute of Advanced
Study in Science & Technology, Guwahati 781035, India
- Department
of Mechanical, Manufacturing and Biomedical Engineering, Trinity College Dublin, Dublin D2, Ireland
- Advanced
Materials and BioEngineering Research (AMBER), Centre at Trinity College Dublin and the Royal College of Surgeons
in Ireland, Dublin D2, Ireland
- Trinity
Centre for Biomedical Engineering, Trinity
College Dublin, Dublin D2, Ireland
| |
Collapse
|
11
|
Iravani S, Nazarzadeh Zare E, Makvandi P. Multifunctional MXene-Based Platforms for Soft and Bone Tissue Regeneration and Engineering. ACS Biomater Sci Eng 2024; 10:1892-1909. [PMID: 38466909 DOI: 10.1021/acsbiomaterials.3c01770] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/13/2024]
Abstract
MXenes and their composites hold great promise in the field of soft and bone tissue regeneration and engineering (TRE). However, there are challenges that need to be overcome, such as ensuring biocompatibility and controlling the morphologies of MXene-based scaffolds. The future prospects of MXenes in TRE include enhancing biocompatibility through surface modifications, developing multifunctional constructs, and conducting in vivo studies for clinical translation. The purpose of this perspective about MXenes and their composites in soft and bone TRE is to critically evaluate their potential applications and contributions in this field. This perspective aims to provide a comprehensive analysis of the challenges, advantages, limitations, and future prospects associated with the use of MXenes and their composites for soft and bone TRE. By examining the existing literature and research, the review seeks to consolidate the current knowledge and highlight the key findings and advancements in MXene-based TRE. It aims to contribute to the understanding of MXenes' role in promoting soft and bone TRE, addressing the challenges faced in terms of biocompatibility, morphology control, and tissue interactions.
Collapse
Affiliation(s)
- Siavash Iravani
- Independent Researcher, W Nazar ST, Boostan Avenue, Isfahan 81756-33551, Iran
| | - Ehsan Nazarzadeh Zare
- School of Chemistry, Damghan University, Damghan 36716-45667, Iran
- Centre of Research Impact and Outreach, Chitkara University, Rajpura 140417, Punjab, India
| | - Pooyan Makvandi
- The Quzhou Affiliated Hospital of Wenzhou Medical University, Quzhou People's Hospital, Quzhou 324000, Zhejiang, China
- Chitkara Centre for Research and Development, Chitkara University, Kalujhanda 174103, Himachal Pradesh, India
- Department of Biomaterials, Saveetha Dental College and Hospitals, SIMATS, Saveetha University, Chennai 600077, India
| |
Collapse
|
12
|
Kang MS, Jang HJ, Jo HJ, Raja IS, Han DW. MXene and Xene: promising frontier beyond graphene in tissue engineering and regenerative medicine. NANOSCALE HORIZONS 2023; 9:93-117. [PMID: 38032647 DOI: 10.1039/d3nh00428g] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/01/2023]
Abstract
The emergence of 2D nanomaterials (2D NMs), which was initiated by the isolation of graphene (G) in 2004, revolutionized various biomedical applications, including bioimaging and -sensing, drug delivery, and tissue engineering, owing to their unique physicochemical and biological properties. Building on the success of G, a novel class of monoelemental 2D NMs, known as Xenes, has recently emerged, offering distinct advantages in the fields of tissue engineering and regenerative medicine. In this review, we focus on the comparison of G and Xene materials for use in fabricating tissue engineering scaffolds. After a brief introduction to the basic physicochemical properties of these materials, recent representative studies are classified in terms of the engineered tissue, i.e., bone, cartilage, neural, muscle, and skin tissues. We analyze several methods of improving the clinical potential of Xene-laden scaffolds using state-of-the-art fabrication technologies and innovative biomaterials. Despite the considerable advantages of Xene materials, critical concerns, such as biocompatibility, biodistribution and regulatory challenges, should be considered. This review and collaborative efforts should advance the field of Xene-based tissue engineering and enable innovative, effective solutions for use in future tissue regeneration.
Collapse
Affiliation(s)
- Moon Sung Kang
- Department of Cogno-Mechatronics Engineering, College of Nanoscience and Nanotechnology, Pusan National University, Busan 46241, Republic of Korea.
| | - Hee Jeong Jang
- Department of Cogno-Mechatronics Engineering, College of Nanoscience and Nanotechnology, Pusan National University, Busan 46241, Republic of Korea.
| | - Hyo Jung Jo
- Department of Cogno-Mechatronics Engineering, College of Nanoscience and Nanotechnology, Pusan National University, Busan 46241, Republic of Korea.
| | | | - Dong-Wook Han
- Department of Cogno-Mechatronics Engineering, College of Nanoscience and Nanotechnology, Pusan National University, Busan 46241, Republic of Korea.
- BIO-IT Fusion Technology Research Institute, Pusan National University, Busan 46241, Republic of Korea
| |
Collapse
|
13
|
Monaghan MG, Borah R, Thomsen C, Browne S. Thou shall not heal: Overcoming the non-healing behaviour of diabetic foot ulcers by engineering the inflammatory microenvironment. Adv Drug Deliv Rev 2023; 203:115120. [PMID: 37884128 DOI: 10.1016/j.addr.2023.115120] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Revised: 08/01/2023] [Accepted: 10/23/2023] [Indexed: 10/28/2023]
Abstract
Diabetic foot ulcers (DFUs) are a devastating complication for diabetic patients that have debilitating effects and can ultimately lead to limb amputation. Healthy wounds progress through the phases of healing leading to tissue regeneration and restoration of the barrier function of the skin. In contrast, in diabetic patients dysregulation of these phases leads to chronic, non-healing wounds. In particular, unresolved inflammation in the DFU microenvironment has been identified as a key facet of chronic wounds in hyperglyceamic patients, as DFUs fail to progress beyond the inflammatory phase and towards resolution. Thus, control over and modulation of the inflammatory response is a promising therapeutic avenue for DFU treatment. This review discusses the current state-of-the art regarding control of the inflammatory response in the DFU microenvironment, with a specific focus on the development of biomaterials-based delivery strategies and their cargos to direct tissue regeneration in the DFU microenvironment.
Collapse
Affiliation(s)
- Michael G Monaghan
- Department of Mechanical, Manufacturing and Biomedical Engineering, Trinity College Dublin, Dublin 2, Ireland; Advanced Materials and BioEngineering Research (AMBER), Centre at Trinity College Dublin and the Royal College of Surgeons in Ireland, Dublin 2, Ireland; CÚRAM, Centre for Research in Medical Devices, National University of Ireland, H91 W2TY Galway, Ireland; Trinity Centre for Biomedical Engineering, Trinity College Dublin, Dublin 2, Ireland
| | - Rajiv Borah
- Department of Mechanical, Manufacturing and Biomedical Engineering, Trinity College Dublin, Dublin 2, Ireland; Advanced Materials and BioEngineering Research (AMBER), Centre at Trinity College Dublin and the Royal College of Surgeons in Ireland, Dublin 2, Ireland; Trinity Centre for Biomedical Engineering, Trinity College Dublin, Dublin 2, Ireland
| | - Charlotte Thomsen
- Department of Mechanical, Manufacturing and Biomedical Engineering, Trinity College Dublin, Dublin 2, Ireland; Tissue Engineering Research Group, Department of Anatomy and Regenerative Medicine, Royal College of Surgeons in Ireland, Dublin, Ireland
| | - Shane Browne
- CÚRAM, Centre for Research in Medical Devices, National University of Ireland, H91 W2TY Galway, Ireland; Trinity Centre for Biomedical Engineering, Trinity College Dublin, Dublin 2, Ireland; Tissue Engineering Research Group, Department of Anatomy and Regenerative Medicine, Royal College of Surgeons in Ireland, Dublin, Ireland.
| |
Collapse
|
14
|
Benko A, Webster TJ. How to fix a broken heart-designing biofunctional cues for effective, environmentally-friendly cardiac tissue engineering. Front Chem 2023; 11:1267018. [PMID: 37901157 PMCID: PMC10602933 DOI: 10.3389/fchem.2023.1267018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Accepted: 09/04/2023] [Indexed: 10/31/2023] Open
Abstract
Cardiovascular diseases bear strong socioeconomic and ecological impact on the worldwide healthcare system. A large consumption of goods, use of polymer-based cardiovascular biomaterials, and long hospitalization times add up to an extensive carbon footprint on the environment often turning out to be ineffective at healing such cardiovascular diseases. On the other hand, cardiac cell toxicity is among the most severe but common side effect of drugs used to treat numerous diseases from COVID-19 to diabetes, often resulting in the withdrawal of such pharmaceuticals from the market. Currently, most patients that have suffered from cardiovascular disease will never fully recover. All of these factors further contribute to the extensive negative toll pharmaceutical, biotechnological, and biomedical companies have on the environment. Hence, there is a dire need to develop new environmentally-friendly strategies that on the one hand would promise cardiac tissue regeneration after damage and on the other hand would offer solutions for the fast screening of drugs to ensure that they do not cause cardiovascular toxicity. Importantly, both require one thing-a mature, functioning cardiac tissue that can be fabricated in a fast, reliable, and repeatable manner from environmentally friendly biomaterials in the lab. This is not an easy task to complete as numerous approaches have been undertaken, separately and combined, to achieve it. This review gathers such strategies and provides insights into which succeed or fail and what is needed for the field of environmentally-friendly cardiac tissue engineering to prosper.
Collapse
Affiliation(s)
| | - Thomas J. Webster
- Department of Biomedical Engineering, Hebei University of Technology, Tianjin, China
- School of Engineering, Saveetha University, Chennai, India
- Program in Materials Science, UFPI, Teresina, Brazil
| |
Collapse
|