1
|
Ali HA, Ismail MA, Fouda AEAS, Ghaith EA. A fruitful century for the scalable synthesis and reactions of biphenyl derivatives: applications and biological aspects. RSC Adv 2023; 13:18262-18305. [PMID: 37333795 PMCID: PMC10274569 DOI: 10.1039/d3ra03531j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Accepted: 06/10/2023] [Indexed: 06/20/2023] Open
Abstract
This review provides recent developments in the current status and latest synthetic methodologies of biphenyl derivatives. Furthermore, this review investigates detailed discussions of several metalated chemical reactions related to biphenyl scaffolds such as Wurtz-Fittig, Ullmann, Bennett-Turner, Negishi, Kumada, Stille, Suzuki-Miyaura, Friedel-Crafts, cyanation, amination, and various electrophilic substitution reactions supported by their mechanistic pathways. Furthermore, the preconditions required for the existence of axial chirality in biaryl compounds are discussed. Furthermore, atropisomerism as a type of axial chirality in biphenyl molecules is discussed. Additionally, this review covers a wide range of biological and medicinal applications of the synthesized compounds involving patented approaches in the last decade corresponding to investigating the crucial role of the biphenyl structures in APIs.
Collapse
Affiliation(s)
- Hajar A Ali
- Chemistry Department, Faculty of Science, Mansoura University 35516 Mansoura Egypt
| | - Mohamed A Ismail
- Chemistry Department, Faculty of Science, Mansoura University 35516 Mansoura Egypt
| | - Abd El-Aziz S Fouda
- Chemistry Department, Faculty of Science, Mansoura University 35516 Mansoura Egypt
| | - Eslam A Ghaith
- Chemistry Department, Faculty of Science, Mansoura University 35516 Mansoura Egypt
| |
Collapse
|
2
|
Hosseini R, Ranjbar‐Karimi R, Mohammadiannejad K. Practical Synthesis of Novel Symmetrical and Unsymmetrical
Tetrakis
(aryl/heteroaryl) Adducts Containing Polyconjugated Linkages. ChemistrySelect 2022. [DOI: 10.1002/slct.202203760] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Affiliation(s)
- Raziyeh Hosseini
- Department of Chemistry Vali-e-Asr University of Rafsanjan Rafsanjan 77176, Islamic Republic of Iran Iran
| | - Reza Ranjbar‐Karimi
- Department of Chemistry Vali-e-Asr University of Rafsanjan Rafsanjan 77176, Islamic Republic of Iran Iran
| | - Kazem Mohammadiannejad
- NMR Laboratory Faculty of Science Vali-e-Asr University of Rafsanjan Rafsanjan 77176, Islamic Republic of Iran Iran
| |
Collapse
|
3
|
Farhang M, Akbarzadeh AR, Rabbani M, Ghadiri AM. A retrospective-prospective review of Suzuki–Miyaura reaction: From cross-coupling reaction to pharmaceutical industry applications. Polyhedron 2022. [DOI: 10.1016/j.poly.2022.116124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
4
|
Wowk V, Lefèvre G. The crucial and multifaceted roles of main-group cations and their salts in iron-mediated cross-couplings. Dalton Trans 2022; 51:10674-10680. [PMID: 35671234 DOI: 10.1039/d2dt00871h] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
While a broad variety of iron-catalyzed cross-couplings involve the use of main-group organometallics R-[M] as nucleophiles, the role of the [M]n+ cation in the coupling process is generally disregarded. However, several beneficial effects of [M]n+ cations by themselves or involved in ionic salts used as additives have been observed in such procedures. At the molecular level, interaction of those [M]n+ cations with on-cycle organoiron intermediates can proceed in several ways. Intermolecular interactions can be observed, and also the implication of [M]n+ in the iron's first or second coordination sphere, e.g. by ambiphilic coordination of a [M]-X salt to an R-[Fe] bond. The use of [M]n+ cations in the reaction medium is also a powerful strategy enabling control of the distribution of iron oxidation states within the coupling process.
Collapse
Affiliation(s)
- Vincent Wowk
- Chimie ParisTech, PSL University, CNRS, Institute of Chemistry for Life and Health Sciences, CSB2D, 75005 Paris, France.
| | - Guillaume Lefèvre
- Chimie ParisTech, PSL University, CNRS, Institute of Chemistry for Life and Health Sciences, CSB2D, 75005 Paris, France.
| |
Collapse
|
5
|
Madhura MJ, Jeevan Chakravarthy AS, Hariprasad S, Gayathri V. Suzuki–Miyaura Cross Coupling Reaction Using Reusable Polymer Anchored Palladium Catalyst. Catal Letters 2022. [DOI: 10.1007/s10562-022-04055-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
|
6
|
Khakyzadeh V, Ehsani A, Luque R. Shed-Snakeskin valorisation into highly porous Co-containing nanocomposites for sustainable aqueous C-C Bond formation reactions. J IND ENG CHEM 2022. [DOI: 10.1016/j.jiec.2022.04.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
7
|
Zheng X, Liu W, Feng S, Yu Y, Lv Y, Tao S. Microcapsules-supported Pd catalysts with ultralow ionic residues. Colloids Surf A Physicochem Eng Asp 2022. [DOI: 10.1016/j.colsurfa.2022.128343] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
8
|
Brewer SM, Schwartz TM, Mekhail MA, Turan LS, Prior TJ, Hubin TJ, Janesko BG, Green KN. Mechanistic Insights into Iron-Catalyzed C–H Bond Activation and C–C Coupling. Organometallics 2021; 40:2467-2477. [DOI: 10.1021/acs.organomet.1c00211] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Affiliation(s)
- Samantha M. Brewer
- Department of Chemistry and Biochemistry, Texas Christian University, 2950 S. Bowie, Fort Worth, Texas 76129, United States
| | - Timothy M. Schwartz
- Department of Chemistry and Biochemistry, Texas Christian University, 2950 S. Bowie, Fort Worth, Texas 76129, United States
| | - Magy A. Mekhail
- Department of Chemistry and Biochemistry, Texas Christian University, 2950 S. Bowie, Fort Worth, Texas 76129, United States
| | - Lara S. Turan
- Department of Chemistry and Biochemistry, Texas Christian University, 2950 S. Bowie, Fort Worth, Texas 76129, United States
| | - Timothy J. Prior
- Department of Chemistry and Biochemistry, University of Hull, Hull HU6 7RX, U.K
| | - Timothy J. Hubin
- Department of Chemistry and Physics, Southwestern Oklahoma State University, 100 Campus Drive, Weatherford, Oklahoma 73096, United States
| | - Benjamin G. Janesko
- Department of Chemistry and Biochemistry, Texas Christian University, 2950 S. Bowie, Fort Worth, Texas 76129, United States
| | - Kayla N. Green
- Department of Chemistry and Biochemistry, Texas Christian University, 2950 S. Bowie, Fort Worth, Texas 76129, United States
| |
Collapse
|
9
|
Adam MSS, Makhlouf M, Ullah F, Mohamad ADM. Catalytic and biological reactivities of mononuclear copper (II) and vanadyl (II) complexes of naphthalenylimino-phenolate sodium sulfonate. J Taiwan Inst Chem Eng 2021. [DOI: 10.1016/j.jtice.2021.01.015] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
10
|
Bisz E, Kardela M, Szostak M. Ligand Effect on Iron‐Catalyzed Cross‐Coupling Reactions: Evaluation of Amides as O‐Coordinating Ligands. ChemCatChem 2019. [DOI: 10.1002/cctc.201901150] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Elwira Bisz
- Department of Chemistry Opole University 48 Oleska Street Opole 45-052 Poland
| | - Marlena Kardela
- Department of Chemistry Opole University 48 Oleska Street Opole 45-052 Poland
| | - Michal Szostak
- Department of Chemistry Opole University 48 Oleska Street Opole 45-052 Poland
- Department of Chemistry Rutgers University 73 Warren Street Newark NJ 07102 United States
| |
Collapse
|
11
|
Arevalo R, Chirik PJ. Enabling Two-Electron Pathways with Iron and Cobalt: From Ligand Design to Catalytic Applications. J Am Chem Soc 2019; 141:9106-9123. [PMID: 31084022 DOI: 10.1021/jacs.9b03337] [Citation(s) in RCA: 86] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Homogeneous catalysis with Earth-abundant, first-row transition metals, including iron and cobalt, has gained considerable recent attention as a potentially cost-effective and sustainable alternative to more commonly and historically used precious metals. Because fundamental organometallic transformations, such as oxidative addition and reductive elimination, are two-electron processes and essential steps in many important catalytic cycles, controlling redox chemistry-in particular overcoming one-electron chemistry-has been as a central challenge with Earth-abundant metals. This Perspective focuses on approaches to impart sufficiently strong ligand fields to generate electron-rich metal complexes able to promote oxidative addition reactions where the redox changes are exclusively metal-based. Emphasis is placed on how ligand design and exploration of fundamental organometallic chemistry coupled with mechanistic understanding have been used to discover iron catalysts for the hydrogen isotope exchange in pharmaceuticals and cobalt catalysts for C(sp2)-H borylation reactions. A pervasive theme is that first-row metal complexes often promote unique chemistry from their precious-metal counterparts, demonstrating that these elements offer a host of new opportunities for reaction discovery and for more sustainable catalysis.
Collapse
Affiliation(s)
- Rebeca Arevalo
- Department of Chemistry , Princeton University , Princeton , New Jersey 08544 , United States
| | - Paul J Chirik
- Department of Chemistry , Princeton University , Princeton , New Jersey 08544 , United States
| |
Collapse
|
12
|
Bisz E, Szostak M. Iron‐Catalyzed C(
sp
2
)−C(
sp
3
) Cross‐Coupling of Chlorobenzamides with Alkyl Grignard Reagents: Development of Catalyst System, Synthetic Scope, and Application. Adv Synth Catal 2018. [DOI: 10.1002/adsc.201800849] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Affiliation(s)
- Elwira Bisz
- Department of Chemistry Opole University 48 Oleska Street Opole 45-052 Poland
| | - Michal Szostak
- Department of Chemistry Opole University 48 Oleska Street Opole 45-052 Poland
- Department of Chemistry Rutgers University 73 Warren Street Newark NJ 07102 United States
| |
Collapse
|