1
|
Wang Y, Zhang X, Yang Y, Wang H, Lau WM, Wang C, Fu Z, Pang D, Wang Q, Zheng J. Regulating the electronic structure of Pt SAs-Ni 2P for enhanced hydrogen evolution reaction. J Colloid Interface Sci 2025; 677:491-501. [PMID: 39106774 DOI: 10.1016/j.jcis.2024.07.243] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2024] [Revised: 07/30/2024] [Accepted: 07/30/2024] [Indexed: 08/09/2024]
Abstract
The single atom catalysts (SACs) show immense promise as catalytic materials. By doping the single atoms (SAs) of precious metals onto substrates, the atomic utilization of these metals can be maximized, thereby reducing catalyst costs. The electronic structure of precious metal SAs is significantly influenced by compositions of doped substrates. Therefore, optimizing the electronic structure through appropriate doping of substrates can further enhance catalytic activity. Here, Pt single atoms (Pt SAs) are doped onto transition metal sulfide substrate NiS2 (Pt SAs-NiS2) and phosphide substrate Ni2P (Pt SAs-Ni2P) to design and prepare catalysts. Compared to the Pt SAs-NiS2 catalyst, the Pt SAs-Ni2P catalyst exhibits better hydrogen evolution catalytic performance and stability. Under 1 M KOH conditions, the hydrogen evolution mass activity current density of the Pt SAs-Ni2P catalyst reaches 0.225 A mgPt-1 at 50 mV, which is 33 times higher than that of commercial Pt/C catalysts. It requires only 44.9 mV to achieve a current density of 10 mA cm-2. In contrast, for the Pt SAs-NiS2 catalyst, the hydrogen evolution mass activity current density is 0.178 A mgPt-1, requiring 77.8 mV to achieve a current density of 10 mA cm-2. Theoretical calculations indicate that in Pt SAs-Ni2P, the interaction between Pt SAs and the Ni2P substrate causes the Pt d-band center to shift downward, enhancing the H2O desorption and providing optimal H binding sites. Additionally, the hollow octahedral morphology of Ni2P provides a larger surface area, exposing more reactive sites and improving reaction kinetics. This study presents an effective pathway for preparing high-performance hydrogen evolution electrocatalysts by selecting appropriate doped substrates to control the electronic structure of Pt SAs.
Collapse
Affiliation(s)
- Yushun Wang
- Beijing Advanced Innovation Center for Materials Genome Engineering, School of Mathematics and Physics, University of Science and Technology Beijing 100083, China
| | - Xinzheng Zhang
- Institute for Advanced Materials and Technology, University of Science and Technology Beijing 100083, China
| | - Yuquan Yang
- Beijing Advanced Innovation Center for Materials Genome Engineering, School of Mathematics and Physics, University of Science and Technology Beijing 100083, China
| | - Huichao Wang
- Beijing Advanced Innovation Center for Materials Genome Engineering, School of Mathematics and Physics, University of Science and Technology Beijing 100083, China
| | - Woon-Ming Lau
- Beijing Advanced Innovation Center for Materials Genome Engineering, School of Mathematics and Physics, University of Science and Technology Beijing 100083, China; Shunde Innovation School, University of Science and Technology Beijing, Foshan, Guangdong 528399, China
| | - Chenjing Wang
- Beijing Advanced Innovation Center for Materials Genome Engineering, School of Mathematics and Physics, University of Science and Technology Beijing 100083, China
| | - Zhongheng Fu
- Institute for Advanced Materials and Technology, University of Science and Technology Beijing 100083, China
| | - Dawei Pang
- Beijing Key Laboratory of Solid Microstructure and Properties, Department of Materials and Manufacturing, Beijing University of Technology, Beijing 100124, China.
| | - Qian Wang
- Institute for Advanced Materials and Technology, University of Science and Technology Beijing 100083, China.
| | - Jinlong Zheng
- Beijing Advanced Innovation Center for Materials Genome Engineering, School of Mathematics and Physics, University of Science and Technology Beijing 100083, China; Shunde Innovation School, University of Science and Technology Beijing, Foshan, Guangdong 528399, China.
| |
Collapse
|
2
|
Zhao Y, Wu X, Wang H, Ma M, Tian J, Wang X. Phosphorus Regulates Coordination Number and Electronegativity of Cobalt Atomic Sites Triggering Efficient Photocatalytic Water Splitting. NANO LETTERS 2024; 24:16175-16183. [PMID: 39652167 DOI: 10.1021/acs.nanolett.4c05201] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2024]
Abstract
Optimizing the local electronic structure of a single-atom catalyst (SAC) is crucial for efficient photocatalytic hydrogen evolution reactions. This study synthesized a Co-P4/g-C3N4 heterostructure by selective phosphidation of the Co metal-organic framework/graphitic carbon nitride (Co-MOF/g-C3N4), converting the Co-O6 configuration into a highly electronegative, coordinatively unsaturated Co-P4 configuration anchored to a carbon matrix. P-doping induces strong charge redistribution, shifting the d-band center toward the Fermi level, transforming the Co sites from an electron-deficient state to an electron-rich state, and resulting in a significant reduction in the free energy barrier for HER to -0.08 eV. The Co-P4/g-C3N4 heterostructure demonstrated a HER rate of 13.51 mmol g-1 h-1, approximately 4.82-8.35 times greater than those of photocatalysts loaded with noble metals. The apparent quantum efficiency (AQE) was 28.45% at 380 nm. The synergistic effect of the low coordination number and high electronegativity metal sites significantly enhances the photocatalytic HER performance.
Collapse
Affiliation(s)
- Yuqi Zhao
- School of Materials Science and Engineering, Shandong University of Science and Technology, Qingdao 266590, China
- Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Xi Wu
- Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Hengliang Wang
- International Collaborative Laboratory of 2D Materials for Optoelectronic Science and Technology, Institute of Microscale Optoelectronics, Shenzhen University, Shenzhen 518060, China
| | - Ming Ma
- Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Jian Tian
- School of Materials Science and Engineering, Shandong University of Science and Technology, Qingdao 266590, China
| | - Xin Wang
- Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| |
Collapse
|
3
|
Han Z, Shi Y, Zhang B, Kong L. Dynamic evolution of metal-nitrogen-codoped carbon catalysts in electrocatalytic reactions. Chem Commun (Camb) 2024. [PMID: 39691082 DOI: 10.1039/d4cc04664a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2024]
Abstract
Atomic metal-nitrogen-codoped carbon (M-N-C) catalysts are highly efficient for various electrocatalytic reactions because of their high atomic utilization efficiency. However, the high surface energy of M-N-C catalysts often results in stability issues in electrochemical reactions. Therefore, understanding the stability and dynamic evolution of M-N-C catalysts is crucial for elucidating the active centers and the composition/structure-activity relationship. This review summarizes the factors affecting the durability of atomic catalysts in electrochemical reactions and discusses possible changes in catalysts during these electrochemical processes. Finally, advanced characterization techniques are described, with a focus on tracking the dynamic evolution of M-N-C catalysts during electrocatalysis. This review offers insights into the rational optimization of M-N-C electrocatalysts and provides a framework for linking their composition and structure with their catalytic activity in future research.
Collapse
Affiliation(s)
- Zixuan Han
- Institute of Molecular Plus, Department of Chemistry, School of Science, Tianjin University, Tianjin 300072, China.
| | - Yanmei Shi
- Institute of Molecular Plus, Department of Chemistry, School of Science, Tianjin University, Tianjin 300072, China.
| | - Bin Zhang
- Institute of Molecular Plus, Department of Chemistry, School of Science, Tianjin University, Tianjin 300072, China.
| | - Lingjun Kong
- Institute of Molecular Plus, Department of Chemistry, School of Science, Tianjin University, Tianjin 300072, China.
| |
Collapse
|
4
|
Sayed ZS, Hieba EM, Batakoushy HA, Rashdan HRM, Ismail E, Elkatlawy SM, Elzwawy A. Cancer treatment approaches within the frame of hyperthermia, drug delivery systems, and biosensors: concepts and future potentials. RSC Adv 2024; 14:39297-39324. [PMID: 39670162 PMCID: PMC11635600 DOI: 10.1039/d4ra06992g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2024] [Accepted: 11/28/2024] [Indexed: 12/14/2024] Open
Abstract
This work presents a review of the therapeutic modalities and approaches for cancer treatment. A brief overview of the traditional treatment routes is presented in the introduction together with their reported side effects. A combination of the traditional approaches was reported to demonstrate an effective therapy until a few decades ago. With the improvement in the fabrication of nanomaterials, targeted therapy represents a novel therapeutic approach. This improvement established on nanoparticles is categorized into hyperthermia, drug delivery systems, and biosensors. Hyperthermia presents a personalized medicine-based approach in which targeted zones are heated up until the diseased tissue is destroyed by the thermal effect. The use of magnetic nanoparticles further improved the effectiveness of hyperthermia owing to the enhanced heating action, further increasing the accuracy of the targeting process. Nanoparticle-based biosensors present a smart nanodevice that can detect, monitor, and target tumor tissues by following the biomarkers in the body fluids. Magnetic nanoparticles offer a controlled thermo-responsive device that can be manipulated by changing the magnetic field, offering a more personalized and controlled hyperthermia therapeutic modality. Similarly, gold nanoparticles offer an effective aid in the hyperthermia treatment approach. Furthermore, carbon nanotubes and metal-organic frameworks present a cutting-edge approach to cancer treatment. A combination of functionalized nanoparticles offers a unique route for drug delivery systems, in which therapeutic agents carried by nanoparticles are guided into the human body and then released in the target spot.
Collapse
Affiliation(s)
- Zeinab S Sayed
- Faculty of Applied Medical Science, Misr University for Science and Technology (MUST) Giza Egypt
| | - Eman M Hieba
- Chemistry and Entomology Department, Faculty of Science, Cairo University Giza 12613 Egypt
| | - Hany A Batakoushy
- Department of Pharmaceutical Analytical Chemistry, Faculty of Pharmacy, Menoufia University Shebin Elkom 32511 Egypt
| | - Huda R M Rashdan
- Chemistry of Natural and Microbial Products Department, Pharmaceutical and Drug Industries Research Institute, National Research Centre 33 El Buhouth St., Dokki Giza 12622 Egypt
| | - Enas Ismail
- Department of Prosthodontics, Faculty of Dentistry, University of the Western Cape Cape Town 7505 South Africa
- Physics Department, Faculty of Science (Girl's Branch), Al Azhar University Nasr City 11884 Cairo Egypt
| | - Saeid M Elkatlawy
- Department of Physics, Faculty of Science, University of Sadat City Fifth Zone Sadat Egypt
| | - Amir Elzwawy
- Ceramics Department, Advanced Materials Technology and Mineral Resources Research Institute, National Research Centre (NRC) 33 El Bohouth St., Dokki Giza 12622 Egypt
| |
Collapse
|
5
|
Sun ML, Wang HY, Feng Y, Ren JT, Wang L, Yuan ZY. Electrodegradation of nitrogenous pollutants in sewage: from reaction fundamentals to energy valorization applications. Chem Soc Rev 2024; 53:11908-11966. [PMID: 39498737 DOI: 10.1039/d4cs00517a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2024]
Abstract
The excessive accumulation of nitrogen pollutants (mainly nitrate, nitrite, ammonia nitrogen, hydrazine, and urea) in water bodies seriously disrupts the natural nitrogen cycle and poses a significant threat to human life and health. Electrolysis is considered a promising method to degrade these nitrogenous pollutants in sewage, with the advantages of high efficiency, wide generality, easy operability, retrievability, and environmental friendliness. For particular energy devices, including metal-nitrate batteries, direct fuel cells, and hybrid water electrolyzers, the realization of energy valorization from sewage purification processes (e.g., valuable chemical generation, electricity output, and hydrogen production) becomes feasible. Despite the progress in the research on pollutant electrodegradation, the development of electrocatalysts with high activity, stability, and selectivity for pollutant removal, coupled with corresponding energy devices, remains a challenge. This review comprehensively provides advanced insights into the electrodegradation processes of nitrogenous pollutants and relevant energy valorization strategies, focusing on the reaction mechanisms, activity descriptors, electrocatalyst design, and actuated electrodes and operation parameters of tailored energy conversion devices. A feasibility analysis of electrodegradation on real wastewater samples from the perspective of pollutant concentration, pollutant accumulation, and electrolyte effects is provided. Challenges and prospects for the future development of electrodegradation systems are also discussed in detail to bridge the gap between experimental trials and commercial applications.
Collapse
Affiliation(s)
- Ming-Lei Sun
- School of Materials Science and Engineering, Smart Sensing Interdisciplinary Science Center, Nankai University, Tianjin 300350, China.
| | - Hao-Yu Wang
- School of Materials Science and Engineering, Smart Sensing Interdisciplinary Science Center, Nankai University, Tianjin 300350, China.
| | - Yi Feng
- School of Materials Science and Engineering, Smart Sensing Interdisciplinary Science Center, Nankai University, Tianjin 300350, China.
| | - Jin-Tao Ren
- School of Materials Science and Engineering, Smart Sensing Interdisciplinary Science Center, Nankai University, Tianjin 300350, China.
| | - Lei Wang
- School of Materials Science and Engineering, Smart Sensing Interdisciplinary Science Center, Nankai University, Tianjin 300350, China.
| | - Zhong-Yong Yuan
- School of Materials Science and Engineering, Smart Sensing Interdisciplinary Science Center, Nankai University, Tianjin 300350, China.
| |
Collapse
|
6
|
Liu Y, Su X, Ding J, Zhou J, Liu Z, Wei X, Yang HB, Liu B. Progress and challenges in structural, in situ and operando characterization of single-atom catalysts by X-ray based synchrotron radiation techniques. Chem Soc Rev 2024; 53:11850-11887. [PMID: 39434695 DOI: 10.1039/d3cs00967j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2024]
Abstract
Single-atom catalysts (SACs) represent the ultimate size limit of nanoscale catalysts, combining the advantages of homogeneous and heterogeneous catalysts. SACs have isolated single-atom active sites that exhibit high atomic utilization efficiency, unique catalytic activity, and selectivity. Over the past few decades, synchrotron radiation techniques have played a crucial role in studying single-atom catalysis by identifying catalyst structures and enabling the understanding of reaction mechanisms. The profound comprehension of spectroscopic techniques and characteristics pertaining to SACs is important for exploring their catalytic activity origins and devising high-performance and stable SACs for industrial applications. In this review, we provide a comprehensive overview of the recent advances in X-ray based synchrotron radiation techniques for structural characterization and in situ/operando observation of SACs under reaction conditions. We emphasize the correlation between spectral fine features and structural characteristics of SACs, along with their analytical limitations. The development of IMST with spatial and temporal resolution is also discussed along with their significance in revealing the structural characteristics and reaction mechanisms of SACs. Additionally, this review explores the study of active center states using spectral fine characteristics combined with theoretical simulations, as well as spectroscopic analysis strategies utilizing machine learning methods to address challenges posed by atomic distribution inhomogeneity in SACs while envisaging potential applications integrating artificial intelligence seamlessly with experiments for real-time monitoring of single-atom catalytic processes.
Collapse
Affiliation(s)
- Yuhang Liu
- Shanghai Synchrotron Radiation Facility, Zhangjiang Laboratory, Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai 201204, China.
- School of Materials Science and Engineering, Suzhou University of Science and Technology, Suzhou 215009, China.
| | - Xiaozhi Su
- Shanghai Synchrotron Radiation Facility, Zhangjiang Laboratory, Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai 201204, China.
| | - Jie Ding
- Department of Materials Science and Engineering, City University of Hong Kong, Hong Kong SAR 999077, China.
| | - Jing Zhou
- College of Physics and Electronic Information Engineering, Zhejiang Normal University, Jinhua 321004, China
| | - Zhen Liu
- Shanghai Synchrotron Radiation Facility, Zhangjiang Laboratory, Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai 201204, China.
| | - Xiangjun Wei
- Shanghai Synchrotron Radiation Facility, Zhangjiang Laboratory, Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai 201204, China.
| | - Hong Bin Yang
- School of Materials Science and Engineering, Suzhou University of Science and Technology, Suzhou 215009, China.
| | - Bin Liu
- Department of Materials Science and Engineering, City University of Hong Kong, Hong Kong SAR 999077, China.
- Department of Chemistry, Hong Kong Institute of Clean Energy (HKICE) & Center of Super-Diamond and Advanced Films (COSDAF), City University of Hong Kong, Hong Kong SAR 999077, China
| |
Collapse
|
7
|
Sun Z, Cheng S, Jing X, Liu K, Chen Y, Wibowo AA, Yin H, Usman M, MacDonald D, Cheong S, Webster RF, Gloag L, Cox N, Tilley RD, Yin Z. Atomic Dispersed Co on NC@Cu Core-Shells for Solar Seawater Splitting. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2406088. [PMID: 39402768 PMCID: PMC11619220 DOI: 10.1002/adma.202406088] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Revised: 07/19/2024] [Indexed: 12/06/2024]
Abstract
With freshwater resources becoming increasingly scarce, the photocatalytic seawater splitting for hydrogen production has garnered widespread attention. In this study, a novel photocatalyst consisting of a Cu core coated is introduced with N-doped C and decorated with single Co atoms (Co-NC@Cu) for solar to hydrogen production from seawater. This catalyst, without using noble metals or sacrificial agents, demonstrates superior hydrogen production effficiency of 9080 µmolg-1h-1, i.e., 4.78% solar-to-hydrogen conversion efficiency, and exceptional long-term stability, operating over 340 h continuously. The superior performance is attributed to several key factors. First, the focus-light induced photothermal effect enhances redox reaction capabilities, while the salt-ions enabled charge polarization around catalyst surfaces extends charge carrier lifetime. Furthermore, the Co─NC@Cu exhibits excellent broad light absorption, promoting photoexcited charge production. Theoretical calculations reveal that Co─NC acts as the active site, showing low energy barriers for reduction reactions. Additionally, the formation of a strong surface electric field from the localized surface plasmon resonance (LSPR) of Cu nanoparticles further reduces energy barriers for redox reactions, improving seawater splitting activity. This work provides valuable insights into intergrating the reaction environment, broad solar absorption, LSPR, and active single atoms into a core-shell photocatalyst design for efficient and robust solar-driven seawater splitting.
Collapse
Affiliation(s)
- Zhehao Sun
- Research School of ChemistryThe Australian National UniversityCanberraAustralian Capital Territory2601Australia
| | - Shuwen Cheng
- Research School of ChemistryThe Australian National UniversityCanberraAustralian Capital Territory2601Australia
| | - Xuechen Jing
- Research School of ChemistryThe Australian National UniversityCanberraAustralian Capital Territory2601Australia
| | - Kaili Liu
- Research School of ChemistryThe Australian National UniversityCanberraAustralian Capital Territory2601Australia
| | - Yi‐Lun Chen
- Research School of ChemistryThe Australian National UniversityCanberraAustralian Capital Territory2601Australia
| | - Ary Anggara Wibowo
- School of EngineeringThe Australian National UniversityCanberraAustralian Capital Territory2601Australia
| | - Hang Yin
- Research School of ChemistryThe Australian National UniversityCanberraAustralian Capital Territory2601Australia
| | - Muhammad Usman
- Research School of ChemistryThe Australian National UniversityCanberraAustralian Capital Territory2601Australia
| | - Daniel MacDonald
- School of EngineeringThe Australian National UniversityCanberraAustralian Capital Territory2601Australia
| | - Soshan Cheong
- Electron Microscope UnitMark Wainwright Analytical CentreUniversity of New South WalesSydneyNew South Wales2023Australia
| | - Richard F. Webster
- Electron Microscope UnitMark Wainwright Analytical CentreUniversity of New South WalesSydneyNew South Wales2023Australia
| | - Lucy Gloag
- Research School of ChemistryThe Australian National UniversityCanberraAustralian Capital Territory2601Australia
| | - Nicholas Cox
- Research School of ChemistryThe Australian National UniversityCanberraAustralian Capital Territory2601Australia
| | - Richard D. Tilley
- Electron Microscope UnitMark Wainwright Analytical CentreUniversity of New South WalesSydneyNew South Wales2023Australia
| | - Zongyou Yin
- Research School of ChemistryThe Australian National UniversityCanberraAustralian Capital Territory2601Australia
| |
Collapse
|
8
|
Sun X, Zhang P, Zhang B, Xu C. Electronic Structure Regulated Carbon-Based Single-Atom Catalysts for Highly Efficient and Stable Electrocatalysis. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2405624. [PMID: 39252646 DOI: 10.1002/smll.202405624] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/07/2024] [Revised: 08/18/2024] [Indexed: 09/11/2024]
Abstract
Single-atom-catalysts (SACs) with atomically dispersed sites on carbon substrates have attained great advancements in electrocatalysis regarding maximum atomic utilization, unique chemical properties, and high catalytic performance. Precisely regulating the electronic structure of single-atom sites offers a rational strategy to optimize reaction processes associated with the activation of reactive intermediates with enhanced electrocatalytic activities of SACs. Although several approaches are proposed in terms of charge transfer, band structure, orbital occupancy, and the spin state, the principles for how electronic structure controls the intrinsic electrocatalytic activity of SACs have not been sufficiently investigated. Herein, strategies for regulating the electronic structure of carbon-based SACs are first summarized, including nonmetal heteroatom doping, coordination number regulating, defect engineering, strain designing, and dual-metal-sites scheming. Second, the impacts of electronic structure on the activation behaviors of reactive intermediates and the electrocatalytic activities of water splitting, oxygen reduction reaction, and CO2/N2 electroreduction reactions are thoroughly discussed. The electronic structure-performance relationships are meticulously understood by combining key characterization techniques with density functional theory (DFT) calculations. Finally, a conclusion of this paper and insights into the challenges and future prospects in this field are proposed. This review highlights the understanding of electronic structure-correlated electrocatalytic activity for SACs and guides their progress in electrochemical applications.
Collapse
Affiliation(s)
- Xiaohui Sun
- State Key Laboratory of Heavy Oil Processing, China University of Petroleum (Beijing), Beijing, 102249, China
| | - Peng Zhang
- State Key Laboratory of Heavy Oil Processing, China University of Petroleum (Beijing), Beijing, 102249, China
| | - Bangyan Zhang
- State Key Laboratory of Heavy Oil Processing, China University of Petroleum (Beijing), Beijing, 102249, China
| | - Chunming Xu
- State Key Laboratory of Heavy Oil Processing, China University of Petroleum (Beijing), Beijing, 102249, China
| |
Collapse
|
9
|
Li Y, Peng CK, Sun Y, Sui LDN, Chang YC, Chen SY, Zhou Y, Lin YG, Lee JM. Operando elucidation of hydrogen production mechanisms on sub-nanometric high-entropy metallenes. Nat Commun 2024; 15:10222. [PMID: 39587090 PMCID: PMC11589590 DOI: 10.1038/s41467-024-54589-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Accepted: 11/15/2024] [Indexed: 11/27/2024] Open
Abstract
Precise morphological control and identification of structure-property relationships pose formidable challenges for high-entropy alloys, severely limiting their rational design and application in multistep and tandem reactions. Herein, we report the synthesis of sub-nanometric high-entropy metallenes with up to eight metallic elements via a one-pot wet-chemical approach. The PdRhMoFeMn high-entropy metallenes exhibit high electrocatalytic hydrogen evolution performances with 6, 23, and 26 mV overpotentials at -10 mA cm-2 in acidic, neutral, and alkaline media, respectively, and high stability. The electrochemical measurements, theoretical simulations, and operando X-ray absorption spectroscopy reveal the actual active sites along with their dynamics and synergistic mechanisms in various electrolytes. Specially, Mn sites have strong binding affinity to hydroxyl groups, which enhances the water dissociation process at Pd sites with low energy barrier while Rh sites with optimal hydrogen adsorption free energy accelerate hydride coupling, thereby markedly boosting its intrinsic ability for hydrogen production.
Collapse
Affiliation(s)
- Yinghao Li
- School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, 62 Nanyang Drive, Singapore, 637459, Singapore
| | - Chun-Kuo Peng
- Department of Material Science and Engineering, National Yang Ming Chiao Tung University, Hsinchu, 300093, Taiwan
- Scientific Research Division, National Synchrotron Radiation Research Center, Hsinchu, 300092, Taiwan
| | - Yuntong Sun
- School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, 62 Nanyang Drive, Singapore, 637459, Singapore.
| | - L D Nicole Sui
- School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, 62 Nanyang Drive, Singapore, 637459, Singapore
- Environmental Chemistry and Materials Centre, Nanyang Environment & Water Research Institute (NEWRI), Interdisciplinary Graduate Programme, Nanyang Technological University, Singapore, 637141, Singapore
| | - Yu-Chung Chang
- Scientific Research Division, National Synchrotron Radiation Research Center, Hsinchu, 300092, Taiwan
| | - San-Yuan Chen
- Department of Material Science and Engineering, National Yang Ming Chiao Tung University, Hsinchu, 300093, Taiwan
| | - Yingtang Zhou
- Zhejiang Key Laboratory of Petrochemical Environmental Pollution Control, Marine Science and Technology College, Zhejiang Ocean University, Zhoushan, 316004, China.
| | - Yan-Gu Lin
- Department of Material Science and Engineering, National Yang Ming Chiao Tung University, Hsinchu, 300093, Taiwan.
- Scientific Research Division, National Synchrotron Radiation Research Center, Hsinchu, 300092, Taiwan.
| | - Jong-Min Lee
- School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, 62 Nanyang Drive, Singapore, 637459, Singapore.
| |
Collapse
|
10
|
Lan J, Wang Z, Kao CW, Lu YR, Xie F, Tan Y. Isolating Cu-Zn active-sites in Ordered Intermetallics to Enhance Nitrite-to-Ammonia Electroreduction. Nat Commun 2024; 15:10173. [PMID: 39580449 PMCID: PMC11585598 DOI: 10.1038/s41467-024-53897-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Accepted: 10/23/2024] [Indexed: 11/25/2024] Open
Abstract
Electrocatalytic nitrite reduction to the valuable ammonia is a green and sustainable alternative to the conventional Haber-Bosch method for ammonia synthesis, while the activity and selectivity for ammonia production remains poor at low nitrite concentrations. Herein, we report a nanoporous intermetallic single-atom alloy CuZn (np/ISAA-CuZn) catalyst with completely isolated Cu-Zn active-sites, which achieves neutral nitrite reduction reaction with a remarkable NH3 Faradaic efficiency over 95% and the highest energy efficiency of ≈ 59.1% in wide potential range from -0.2 to -0.8 V vs. RHE. The np/ISAA-CuZn electrocatalyst was able to operate stably at 500 mA cm-2 for 220 h under membrane electrode assembly conditions with a stabilized NH3 Faraday efficiency of ~80% and high NO2‒ removal rate of ~100%. A series of in situ experimental studies combined with density functional theory calculations reveal that strong electronic interactions of isolated Cu-Zn active-sites altered the protonation adsorption species, effectively alleviating the protonation barrier of *NO2 and thus greatly facilitating the selective reduction of NO2- into NH3.
Collapse
Affiliation(s)
- Jiao Lan
- College of Materials Science and Engineering, Hunan University, Changsha, Hunan, 410082, China
| | - Zhen Wang
- College of Materials Science and Engineering, Hunan University, Changsha, Hunan, 410082, China
| | - Cheng-Wei Kao
- National Synchrotron Radiation Research Center, Hsinchu, 300092, Taiwan
| | - Ying-Rui Lu
- National Synchrotron Radiation Research Center, Hsinchu, 300092, Taiwan
| | - Feng Xie
- College of Materials Science and Engineering, Hunan University, Changsha, Hunan, 410082, China
| | - Yongwen Tan
- College of Materials Science and Engineering, Hunan University, Changsha, Hunan, 410082, China.
| |
Collapse
|
11
|
Yang T, Ding K, Zhou J, Ma X, Tan KC, Wang G, Huang H, Yang M. Unravelling Species-Specific Loading Effects on Oxygen Reduction Activity of Heteronuclear Single Atom Catalysts. SMALL METHODS 2024:e2401333. [PMID: 39552000 DOI: 10.1002/smtd.202401333] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/22/2024] [Revised: 10/08/2024] [Indexed: 11/19/2024]
Abstract
Toward high-density single atom catalysts (SACs), the interaction between neighboring SACs and the induced non-linear loading effect become crucial for their intrinsic catalytic performance. Despite recent investigations on homonuclear SACs, understanding such effect in heteronuclear SACs remains limited. Using Fe and Co SACs co-supported on the nitrogen-doped graphene as a model system, the loading effect on the site-specific activity of heteronuclear SACs toward oxygen reduction reaction (ORR) is here reported by density functional theory calculations. The Fe site exhibits an oscillatory decrease in activity with the loading. In contrast, the Co site has a volcano-like activity with the optimum performance achieved at ≈16.8 wt.% (average inter-site distance: ≈7 Å). At the ultra-high loading of 38.4 wt.% (inter-site distance: ≈4 Å), the Co site is the only ORR active site, whereas Fe sites turn into spectators. This distinct loading-dependent activity between the Fe and Co sites can be ascribed to their difference in the binding capability with the substrate and the dxz and dyz orbitals' occupation. These findings highlight the importance of the loading effect in heteronuclear SACs, which could be useful for the development of high-performance heteronuclear and high-entropy SACs toward various catalytic reactions in the high-loading regime.
Collapse
Affiliation(s)
- Tong Yang
- Department of Applied Physics, The Hong Kong Polytechnic University, Hung Hom, Hong Kong SAR, China
| | - Keda Ding
- Department of Applied Physics, The Hong Kong Polytechnic University, Hung Hom, Hong Kong SAR, China
| | - Jun Zhou
- Institute of Materials Research & Engineering, A*STAR (Agency for Science, Technology and Research), 2 Fusionopolis Way, Innovis, Singapore, 138634, Singapore
| | - Xiaoyang Ma
- School of Information Science and Engineering, Shandong University, 72 Binhai Road, Qingdao, 266237, China
| | - Kay Chen Tan
- Department of Computing, The Hong Kong Polytechnic University, Hung Hom, Hong Kong SAR, China
| | - Ge Wang
- Beijing Advanced Innovation Center for Materials Genome Engineering, Beijing Key Laboratory of Function Materials for Molecule & Structure Construction, School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing, 100083, China
| | - Haitao Huang
- Department of Applied Physics, The Hong Kong Polytechnic University, Hung Hom, Hong Kong SAR, China
| | - Ming Yang
- Department of Applied Physics, The Hong Kong Polytechnic University, Hung Hom, Hong Kong SAR, China
- Research Centre on Data Sciences & Artificial Intelligence, The Hong Kong Polytechnic University, Hung Hom, Hong Kong SAR, China
- Research Centre for Nanoscience and Nanotechnology, The Hong Kong Polytechnic University, Hung Hom, Hong Kong SAR, China
| |
Collapse
|
12
|
Xia Y, Wu S, Yan Y, Liu L, Cai F, Ni Y, Ou K, Wang H. Fe/Co/Ni modified Ti 3C 2T x nanosheets accelerate alkaline hydrogen evolution reaction. Phys Chem Chem Phys 2024; 26:28182-28190. [PMID: 39498603 DOI: 10.1039/d4cp02909g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2024]
Abstract
The novel two-dimensional MXene material Ti3C2Tx boasts advantages such as large specific surface area, good electrical conductivity, and high stability, making it suitable for the field of electrocatalysis. However, Ti3C2Tx exhibits unacceptably slow kinetics during the electrocatalytic hydrogen evolution reaction (HER). Electron-metal-support interaction is an effective method for regulating the electronic state of active sites and enhancing HER performance. Therefore, in this study, Fe, Co, and Ni were respectively loaded onto Ti3C2Txvia electron beam deposition to form electron microscopy-supported interface (EMSI) effects, thereby improving the HER activity of Ti3C2Tx. The tests conclude that loading different transition metals (Fe, Co, Ni) onto Ti3C2Tx effectively enhances its HER performance. Experimental and theoretical studies further indicate that the electrocatalytic performance of Ni-loaded Ti3C2Tx is superior to that of Co-loaded and Fe-loaded Ti3C2Tx. This work presents a promising strategy for synthesizing metal-loaded MXene.
Collapse
Affiliation(s)
- Yudong Xia
- School of Physical Science and Technology, Southwest Jiaotong University, Chengdu 610031, Sichuan, China.
| | - Shujun Wu
- School of Physical Science and Technology, Southwest Jiaotong University, Chengdu 610031, Sichuan, China.
| | - Yifan Yan
- School of Physical Science and Technology, Southwest Jiaotong University, Chengdu 610031, Sichuan, China.
| | - Lingyu Liu
- Key Laboratory of materials and surface technology (Ministry of Education), School of Materials Science and Engineering, Xihua University, Chengdu, 610039, Sichuan, China
| | - Fanggong Cai
- Key Laboratory of materials and surface technology (Ministry of Education), School of Materials Science and Engineering, Xihua University, Chengdu, 610039, Sichuan, China
| | - Yuxiang Ni
- School of Physical Science and Technology, Southwest Jiaotong University, Chengdu 610031, Sichuan, China.
| | - Kai Ou
- School of Physical Science and Technology, Southwest Jiaotong University, Chengdu 610031, Sichuan, China.
| | - Hongyan Wang
- School of Physical Science and Technology, Southwest Jiaotong University, Chengdu 610031, Sichuan, China.
| |
Collapse
|
13
|
Chen D, Gao T, Wei Z, Wang M, Ma Y, Xiao D, Cao C, Lee CY, Liu P, Wang D, Zhao S, Wang HT, Han L. WS 2 Moiré Superlattices Supporting Au Nanoclusters and Isolated Ru to Boost Hydrogen Production. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2410537. [PMID: 39300857 DOI: 10.1002/adma.202410537] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/20/2024] [Revised: 09/03/2024] [Indexed: 09/22/2024]
Abstract
Maximizing the catalytic activity of single-atom and nanocluster catalysts through the modulation of the interaction between these components and the corresponding supports is crucial but challenging. Herein, guided by theoretical calculations, a nanoporous bilayer WS2 Moiré superlattices (MSLs) supported Au nanoclusters (NCs) adjacent to Ru single atoms (SAs) (Ru1/Aun-2LWS2) is developed for alkaline hydrogen evolution reaction (HER) for the first time. Theoretical analysis suggests that the induced robust electronic metal-support interaction effect in Ru1/Aun-2LWS2 is prone to promote the charge redistribution among Ru SAs, Au NCs, and WS2 MSLs support, which is beneficial to reduce the energy barrier for water adsorption and thus promoting the subsequent H2 formation. As feedback, the well-designed Ru1/Aun-2LWS2 electrocatalyst exhibits outstanding HER performance with high activity (η10 = 19 mV), low Tafel slope (35 mV dec-1), and excellent long-term stability. Further, in situ, experimental studies reveal that the reconstruction of Ru SAs/NCs with S vacancies in Ru1/Aun-2LWS2 structure acts as the main catalytically active center, while high-valence Au NCs are responsible for activating and stabilizing Ru sites to prevent the dissolution and deactivation of active sites. This work offers guidelines for the rational design of high-performance atomic-scale electrocatalysts.
Collapse
Affiliation(s)
- Dechao Chen
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, 350002, China
- Fujian Science & Technology Innovation Laboratory for Optoelectronic Information of China, Fuzhou, Fujian, 350108, China
- School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing, 101408, China
| | - Tianyu Gao
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, 350002, China
- School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing, 101408, China
| | - Zengxi Wei
- Guangxi Key Laboratory of Petrochemical Resource Processing and Process Intensification Technology and School of Chemistry and Chemical Engineering, Guangxi University, Nanning, 530004, China
- State Key Laboratory of Featured Metal Materials and Life-cycle Safety for Composite Structures, Guangxi University, Nanning, 53004, China
| | - Mengjia Wang
- State Key Laboratory of Metal Matrix Composites, School of Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai, 200030, China
| | - Yingfei Ma
- Materials and Packaging Engineering, Fujian Polytechnic Normal University, Fuzhou, Fujian, 350330, China
| | - Dongdong Xiao
- Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing, 100190, China
| | - Changsheng Cao
- Key Laboratory of Advanced Carbon-Based Functional Materials (Fujian Province University), Fuzhou University, Fuzhou, Fujian, 350016, China
| | - Cheng-You Lee
- Bachelors's Program in Advanced Materials Science, Tamkang University, New Taipei, 251301, Taiwan
| | - Pan Liu
- State Key Laboratory of Metal Matrix Composites, School of Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai, 200030, China
| | - Dengchao Wang
- School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing, 101408, China
| | - Shuangliang Zhao
- Guangxi Key Laboratory of Petrochemical Resource Processing and Process Intensification Technology and School of Chemistry and Chemical Engineering, Guangxi University, Nanning, 530004, China
- State Key Laboratory of Featured Metal Materials and Life-cycle Safety for Composite Structures, Guangxi University, Nanning, 53004, China
| | - Hsiao-Tsu Wang
- Bachelors's Program in Advanced Materials Science, Tamkang University, New Taipei, 251301, Taiwan
| | - Lili Han
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, 350002, China
- School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing, 101408, China
| |
Collapse
|
14
|
Jiang S, Xue J, Liu T, Huang H, Xu A, Liu D, Luo Q, Bao J, Liu X, Ding T, Jiang Z, Yao T. Visualization of the Distance-Dependent Synergistic Interaction in Heterogeneous Dual-Site Catalysis. J Am Chem Soc 2024; 146:29084-29093. [PMID: 39394051 DOI: 10.1021/jacs.4c10613] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/13/2024]
Abstract
Understanding the characteristics of interfacial hydroxyl (OH) at the solid/liquid electrochemical interface is crucial for deciphering synergistic catalysis. However, it remains challenging to elucidate the influences of spatial distance between interfacial OH and neighboring reactants on reaction kinetics at the atomic level. Herein, we visualize the distance-dependent synergistic interaction in heterogeneous dual-site catalysis by using ex-situ infrared nanospectroscopy and in situ infrared spectroscopy techniques. These spectroscopic techniques achieve direct identification of the spatial distribution of synergistic species and reveal that OH facilitates the reactant deprotonation process depending on site distances in dual-site catalysts. Via modulating Ir-Co pair distances, we find that the dynamic equilibrium between generation and consumption of OH accounts for high-efficiency synergism at the optimized distance of 7.9 Å. At farther or shorter distances, spatial inaccessibility and resistance of OH with intermediates lead to OH accumulation, thereby diminishing the synergistic effect. Hence, a volcano-shaped curve has been established between the spatial distance and mass activity using formic acid oxidation as the probe reaction. This notion could also be extended to oxophilic metals, like Ir-Ru pairs, where volcano curves and dynamic equilibrium further evidence the universal significance of spatial distances.
Collapse
Affiliation(s)
- Shuaiwei Jiang
- School of Nuclear Science and Technology, Key Laboratory of Precision and Intelligent Chemistry, Hefei National Research Center for Physical Sciences at the Microscale, National Synchrotron Radiation Laboratory, University of Science and Technology of China, Hefei 230029, P.R. China
| | - Jiawei Xue
- School of Nuclear Science and Technology, Key Laboratory of Precision and Intelligent Chemistry, Hefei National Research Center for Physical Sciences at the Microscale, National Synchrotron Radiation Laboratory, University of Science and Technology of China, Hefei 230029, P.R. China
| | - Tong Liu
- School of Nuclear Science and Technology, Key Laboratory of Precision and Intelligent Chemistry, Hefei National Research Center for Physical Sciences at the Microscale, National Synchrotron Radiation Laboratory, University of Science and Technology of China, Hefei 230029, P.R. China
- College of Science, National University of Defense Technology, Changsha 410073, China
| | - Hui Huang
- School of Nuclear Science and Technology, Key Laboratory of Precision and Intelligent Chemistry, Hefei National Research Center for Physical Sciences at the Microscale, National Synchrotron Radiation Laboratory, University of Science and Technology of China, Hefei 230029, P.R. China
| | - Airong Xu
- School of Nuclear Science and Technology, Key Laboratory of Precision and Intelligent Chemistry, Hefei National Research Center for Physical Sciences at the Microscale, National Synchrotron Radiation Laboratory, University of Science and Technology of China, Hefei 230029, P.R. China
| | - Dong Liu
- School of Nuclear Science and Technology, Key Laboratory of Precision and Intelligent Chemistry, Hefei National Research Center for Physical Sciences at the Microscale, National Synchrotron Radiation Laboratory, University of Science and Technology of China, Hefei 230029, P.R. China
| | - Qiquan Luo
- Institutes of Physical Science and Information Technology, Anhui University, Hefei 230601, P.R. China
| | - Jun Bao
- School of Nuclear Science and Technology, Key Laboratory of Precision and Intelligent Chemistry, Hefei National Research Center for Physical Sciences at the Microscale, National Synchrotron Radiation Laboratory, University of Science and Technology of China, Hefei 230029, P.R. China
| | - Xiaokang Liu
- School of Nuclear Science and Technology, Key Laboratory of Precision and Intelligent Chemistry, Hefei National Research Center for Physical Sciences at the Microscale, National Synchrotron Radiation Laboratory, University of Science and Technology of China, Hefei 230029, P.R. China
| | - Tao Ding
- School of Nuclear Science and Technology, Key Laboratory of Precision and Intelligent Chemistry, Hefei National Research Center for Physical Sciences at the Microscale, National Synchrotron Radiation Laboratory, University of Science and Technology of China, Hefei 230029, P.R. China
| | - Zheng Jiang
- School of Nuclear Science and Technology, Key Laboratory of Precision and Intelligent Chemistry, Hefei National Research Center for Physical Sciences at the Microscale, National Synchrotron Radiation Laboratory, University of Science and Technology of China, Hefei 230029, P.R. China
| | - Tao Yao
- School of Nuclear Science and Technology, Key Laboratory of Precision and Intelligent Chemistry, Hefei National Research Center for Physical Sciences at the Microscale, National Synchrotron Radiation Laboratory, University of Science and Technology of China, Hefei 230029, P.R. China
| |
Collapse
|
15
|
Li D, Xu D, Pei Y, Zhang Q, Lu Y, Zhang B. Isolated Octahedral Pt-Induced Electron Transfer to Ultralow-Content Ruthenium-Doped Spinel Co 3O 4 for Enhanced Acidic Overall Water Splitting. J Am Chem Soc 2024; 146:28728-28738. [PMID: 39268752 DOI: 10.1021/jacs.4c07089] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/15/2024]
Abstract
The development of a highly active and stable oxygen evolution reaction (OER) electrocatalyst is desirable for sustainable and efficient hydrogen production via proton exchange membrane water electrolysis (PEMWE) powered by renewable electricity yet challenging. Herein, we report a robust Pt/Ru-codoped spinel cobalt oxide (PtRu-Co3O4) electrocatalyst with an ultralow precious metal loading for acidic overall water splitting. PtRu-Co3O4 exhibits excellent catalytic activity (1.63 V at 100 mA cm-2) and outstanding stability without significant performance degradation for 100 h operation. Experimental analysis and theoretical calculations indicate that Pt doping can induce electron transfer to Ru-doped Co3O4, optimize the absorption energy of oxygen intermediates, and stabilize metal-oxygen bonds, thus enhancing the catalytic performance through an adsorbate-evolving mechanism. As a consequence, the PEM electrolyzer featuring PtRu-Co3O4 catalyst with low precious metal mass loading of 0.23 mg cm-2 can drive a current density of 1.0 A cm-2 at 1.83 V, revealing great promise for the application of noniridium-based catalysts with low contents of precious metal for hydrogen production.
Collapse
Affiliation(s)
- Di Li
- State Key Laboratory of Chemical Engineering, Institute of Pharmaceutical Engineering, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310027, China
- ZJU-Hangzhou Global Scientific and Technological Innovation Center, Zhejiang University, Hangzhou 311215, China
| | - Danyun Xu
- School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China
- Zhejiang Institute of Tianjin University, Shaoxing 312300, China
| | - Yuhou Pei
- State Key Laboratory of Chemical Engineering, Institute of Pharmaceutical Engineering, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310027, China
- ZJU-Hangzhou Global Scientific and Technological Innovation Center, Zhejiang University, Hangzhou 311215, China
| | - Qicheng Zhang
- School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China
| | - Yingying Lu
- State Key Laboratory of Chemical Engineering, Institute of Pharmaceutical Engineering, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310027, China
- ZJU-Hangzhou Global Scientific and Technological Innovation Center, Zhejiang University, Hangzhou 311215, China
| | - Bing Zhang
- State Key Laboratory of Chemical Engineering, Institute of Pharmaceutical Engineering, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310027, China
- ZJU-Hangzhou Global Scientific and Technological Innovation Center, Zhejiang University, Hangzhou 311215, China
| |
Collapse
|
16
|
Liu T, Huang H, Xu A, Sun Z, Liu D, Jiang S, Xu L, Chen Y, Liu X, Luo Q, Ding T, Yao T. Manipulation of d-Orbital Electron Configurations in Nonplanar Fe-Based Electrocatalysts for Efficient Oxygen Reduction. ACS NANO 2024; 18:28433-28443. [PMID: 39365637 DOI: 10.1021/acsnano.4c11356] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/05/2024]
Abstract
Manipulation of the spin state holds great promise to improve the electrochemical activity of transition metal-based catalysts. However, the underlying relationship between the nonplanar metal coordination environment and spin states remains to be explored. Herein, we report the precise regulation of nonplanar Fe atomic d-orbital energy level into an irregular tetrahedral crystal field configuration by introducing P atoms. With the increase of P coordination number, the spin magnetic moment decreases linearly from 3.8 μB to 0.2 μB, and the high spin content decreases linearly from 31% to 5%. Significantly, a volcanic curve between the spin states of Fe-based catalysts (Fe-NxPy) and oxygen reduction reaction (ORR) activity has been unequivocally established based on the thermodynamic results. Thus, the Fe-N3P1 catalyst with a 19% medium spin state experimentally exhibits the optimal reaction activity with a high half-wave potential of 0.92 V. These findings indicate that regulating electron spin moments through coordination engineering is a promising catalyst design strategy, providing important insights into spin catalysis.
Collapse
Affiliation(s)
- Tong Liu
- Key Laboratory of Precision and Intelligent Chemistry, School of Nuclear Science and Technology, Hefei National Research Center for Physical Sciences at the Microscale, National Synchrotron Radiation Laboratory, University of Science and Technology of China, Hefei 230026, P. R. China
- College of Science, National University of Defense Technology, Changsha 410073, China
| | - Hui Huang
- Key Laboratory of Precision and Intelligent Chemistry, School of Nuclear Science and Technology, Hefei National Research Center for Physical Sciences at the Microscale, National Synchrotron Radiation Laboratory, University of Science and Technology of China, Hefei 230026, P. R. China
| | - Airong Xu
- Key Laboratory of Precision and Intelligent Chemistry, School of Nuclear Science and Technology, Hefei National Research Center for Physical Sciences at the Microscale, National Synchrotron Radiation Laboratory, University of Science and Technology of China, Hefei 230026, P. R. China
| | - Zhiguo Sun
- Key Laboratory of Precision and Intelligent Chemistry, School of Nuclear Science and Technology, Hefei National Research Center for Physical Sciences at the Microscale, National Synchrotron Radiation Laboratory, University of Science and Technology of China, Hefei 230026, P. R. China
| | - Dong Liu
- Key Laboratory of Precision and Intelligent Chemistry, School of Nuclear Science and Technology, Hefei National Research Center for Physical Sciences at the Microscale, National Synchrotron Radiation Laboratory, University of Science and Technology of China, Hefei 230026, P. R. China
| | - Shuaiwei Jiang
- Key Laboratory of Precision and Intelligent Chemistry, School of Nuclear Science and Technology, Hefei National Research Center for Physical Sciences at the Microscale, National Synchrotron Radiation Laboratory, University of Science and Technology of China, Hefei 230026, P. R. China
| | - Li Xu
- Key Laboratory of Precision and Intelligent Chemistry, School of Nuclear Science and Technology, Hefei National Research Center for Physical Sciences at the Microscale, National Synchrotron Radiation Laboratory, University of Science and Technology of China, Hefei 230026, P. R. China
| | - Yudan Chen
- Key Laboratory of Precision and Intelligent Chemistry, School of Nuclear Science and Technology, Hefei National Research Center for Physical Sciences at the Microscale, National Synchrotron Radiation Laboratory, University of Science and Technology of China, Hefei 230026, P. R. China
| | - Xiaokang Liu
- Key Laboratory of Precision and Intelligent Chemistry, School of Nuclear Science and Technology, Hefei National Research Center for Physical Sciences at the Microscale, National Synchrotron Radiation Laboratory, University of Science and Technology of China, Hefei 230026, P. R. China
| | - Qiquan Luo
- Institutes of Physical Science and Information Technology, Anhui University, Hefei 230601, China
| | - Tao Ding
- Key Laboratory of Precision and Intelligent Chemistry, School of Nuclear Science and Technology, Hefei National Research Center for Physical Sciences at the Microscale, National Synchrotron Radiation Laboratory, University of Science and Technology of China, Hefei 230026, P. R. China
| | - Tao Yao
- Key Laboratory of Precision and Intelligent Chemistry, School of Nuclear Science and Technology, Hefei National Research Center for Physical Sciences at the Microscale, National Synchrotron Radiation Laboratory, University of Science and Technology of China, Hefei 230026, P. R. China
| |
Collapse
|
17
|
Tan H, Si W, Zhang R, Peng W, Liu X, Zheng X, Hou F, Yin L, Liang J. Dual Active Sites with Charge-asymmetry in Organic Semiconductors Promoting C-C Coupling for Highly Efficient CO 2 Photoreduction to Ethanol. Angew Chem Int Ed Engl 2024:e202416684. [PMID: 39382047 DOI: 10.1002/anie.202416684] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2024] [Revised: 09/30/2024] [Accepted: 10/08/2024] [Indexed: 10/10/2024]
Abstract
Selective CO2 photoreduction into high-energy-density and high-value-added C2 products is an ideal strategy to achieve carbon neutrality and energy shortage, but it is still highly challenging due to the large energy barrier of the C-C coupling step and severe exciton annihilation in photocatalysts. Herein, strong and localized charge polarization is successfully induced on the surface of melon-based organic semiconductors by creating dual active sites with a large charge asymmetry. Confirmed by multiscale characterization and theoretical simulations, such asymmetric charge distribution, originated from the oxygen dopants and nitrogen vacancies over melon-based organic semiconductors, reduces exciton binding energy and boosts exciton dissociation. The as-formed charge polarization sites not only donate electrons to CO2 molecules but also accelerate the coupling of asymmetric *CO*CO intermediates for CO2 photoreduction into ethanol by lowering the energy barrier of this process. Consequently, an exceptionally high selectivity of up to 97 % for C2H5OH and C2H5OH yield of 0.80 mmol g-1 h-1 have been achieved on this dual active sites organic semiconductor. This work, with its potential applicability to a variety of non-metal multi-site catalysts, represents a versatile strategy for the development of advanced catalysts tailored for CO2 photoreduction reactions.
Collapse
Affiliation(s)
- Haotian Tan
- Key Laboratory of Advanced Ceramics and Machining Technology, Ministry of Education, School of Materials Science and Engineering, Tianjin University, Tianjin, 300072, China
| | - Wenping Si
- School of Material Science and Engineering, Hebei University of Technology, Dingzigu Road 1, Tianjin, 300130, China
| | - Rongao Zhang
- National Synchrotron Radiation Laboratory, University of Science and Technology of China, Hefei, Anhui, 230029, China
| | - Wei Peng
- Key Laboratory of Advanced Ceramics and Machining Technology, Ministry of Education, School of Materials Science and Engineering, Tianjin University, Tianjin, 300072, China
| | - Xiaoqing Liu
- Key Laboratory of Advanced Ceramics and Machining Technology, Ministry of Education, School of Materials Science and Engineering, Tianjin University, Tianjin, 300072, China
| | - Xusheng Zheng
- National Synchrotron Radiation Laboratory, University of Science and Technology of China, Hefei, Anhui, 230029, China
| | - Feng Hou
- Key Laboratory of Advanced Ceramics and Machining Technology, Ministry of Education, School of Materials Science and Engineering, Tianjin University, Tianjin, 300072, China
| | - Lichang Yin
- Shenyang National Laboratory for Materials Science, Institute of Metal Research, Chinese Academy of Sciences, Shenyang, Liaoning, 110016, China
| | - Ji Liang
- Key Laboratory of Advanced Ceramics and Machining Technology, Ministry of Education, School of Materials Science and Engineering, Tianjin University, Tianjin, 300072, China
| |
Collapse
|
18
|
Qian L, Wang F, Du Q, Huang RF, Wang D, Yang L. Revealing the Effect of Anion Regulation in NiCo 2X 4 (X = O, S, Se, Te) on Photoassisted Methanol Electrocatalytic Oxidation. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2024; 40:19134-19145. [PMID: 39195164 DOI: 10.1021/acs.langmuir.4c02252] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/29/2024]
Abstract
Designing nonprecious metal anode catalysts for photoassisted direct methanol fuel cells (PDMFCs) remains a challenge. As a semiconductor catalyst with a spinel structure, NiCo2O4 has good methanol catalytic oxidation activity and photocatalytic activity, making it a highly promising anode non-noble metal catalyst for PDMFCs. However, compared with the noble metal catalyst, the photoelectrocatalytic activity remained to be improved. In this report, an anion regulation strategy was adopted to improve the photoassisted methanol electrocatalytic activity. Using a CoNi-Aspartic (CoNi-Asp) nanorod as the precursor, the anion-regulated NiCo2X4 (X = O, S, Se, Te) was prepared by oxidation, sulfuration, selenization, and telluridation reactions. The regulation of anions and their effects on the electronic structure, intermediate product, and photoelectric catalytic performance of NiCo2X4 (X= O, S, Se, Te) was systematically discussed. Photoelectrochemical characterization and adsorption energy of •OH revealing the volcano-like correlation between the anion in NiCo2X4 (X = O, S, Se, Te) and their photoelectrocatalytic performance. The narrowest band gap (2.239 eV), the highest •OH adsorption energy (-3.32 eV), and the highest ratio of Co3+/Co2+ (2.19) ensure the best photoelectric catalytic performance of NiCo2S4, under the visible light irradiation, the photoresponse current density was 1.9 A g-1, the current density at 0.6 V was up to 21.9 A g-1. After 9 h of stability testing, the current retention rate was 80%. This report sheds an idea for the rational design of non-noble anode catalysts for PDMFCs.
Collapse
Affiliation(s)
- Lei Qian
- College of Materials and Chemistry & Chemical Engineering, Chengdu University of Technology, Chengdu, Sichuan 610059, China
| | - Fangxuan Wang
- College of Materials and Chemistry & Chemical Engineering, Chengdu University of Technology, Chengdu, Sichuan 610059, China
| | - Quan Du
- College of Materials and Chemistry & Chemical Engineering, Chengdu University of Technology, Chengdu, Sichuan 610059, China
| | - Rong-Fu Huang
- College of Materials and Chemistry & Chemical Engineering, Chengdu University of Technology, Chengdu, Sichuan 610059, China
| | - Dandan Wang
- College of Materials and Chemistry & Chemical Engineering, Chengdu University of Technology, Chengdu, Sichuan 610059, China
| | - Lingling Yang
- College of Materials and Chemistry & Chemical Engineering, Chengdu University of Technology, Chengdu, Sichuan 610059, China
| |
Collapse
|
19
|
Xie F, Wang Z, Kao CW, Lan J, Lu YR, Tan Y. Asymmetric Local Electric Field Induced by Dual Heteroatoms on Copper Boosts Efficient CO 2 Reduction Over Ultrawide Potential Window. Angew Chem Int Ed Engl 2024; 63:e202407661. [PMID: 38924201 DOI: 10.1002/anie.202407661] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Revised: 06/24/2024] [Accepted: 06/24/2024] [Indexed: 06/28/2024]
Abstract
Electrocatalytic reduction of CO2 powered by renewable electricity provides an elegant route for converting CO2 into valuable chemicals and feedstocks, but normally suffers from a high overpotential and low selectivity. Herein, Ag and Sn heteroatoms were simultaneously introduced into nanoporous Cu (np-Ag/Sn-Cu) mainly in the form of an asymmetric local electric field for CO2 electroreduction to CO in an aqueous solution. The designed np-Ag/Sn-Cu catalyst realizes a recorded 90 % energy efficiency and a 100 % CO Faradaic efficiency over ultrawide potential window (ΔE=1.4 V), outperforming state-of-the-art Au and Ag-based catalysts. Density functional theory calculations combined with in situ spectroscopy studies reveal that Ag and Sn heteroatoms incorporated into Cu matrix could generate strong and asymmetric local electric field, which promotes the activation of CO2 molecules, enhances the stabilization of the *COOH intermediate, and suppresses the hydrogen evolution reaction, thus favoring the production of CO during CO2RR.
Collapse
Affiliation(s)
- Feng Xie
- College of Materials Science and Engineering, State Key Laboratory of Advanced Design and Manufacturing Technology for Vehicle, Hunan University, Changsha, Hunan, 410082, China
| | - Zhen Wang
- College of Materials Science and Engineering, State Key Laboratory of Advanced Design and Manufacturing Technology for Vehicle, Hunan University, Changsha, Hunan, 410082, China
| | - Cheng-Wei Kao
- National Synchrotron Radiation Research Center, Hsinchu, 300092, Taiwan
| | - Jiao Lan
- College of Materials Science and Engineering, State Key Laboratory of Advanced Design and Manufacturing Technology for Vehicle, Hunan University, Changsha, Hunan, 410082, China
| | - Ying-Rui Lu
- National Synchrotron Radiation Research Center, Hsinchu, 300092, Taiwan
| | - Yongwen Tan
- College of Materials Science and Engineering, State Key Laboratory of Advanced Design and Manufacturing Technology for Vehicle, Hunan University, Changsha, Hunan, 410082, China
| |
Collapse
|
20
|
Miao K, Wen J, Luo M, Xiang D, Jiang Y, Duan D, Jiang Z, Sun W, Mei B, Xiong Y, Kang X. Phosphorus Coordination in Second Shell of Single-Atom Cu Catalyst toward Acetate Production in CO Electroreduction. NANO LETTERS 2024. [PMID: 39239908 DOI: 10.1021/acs.nanolett.4c03182] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/07/2024]
Abstract
It is challenging to achieve highly efficient CO-CO coupling toward C2 products in electrochemical CO and CO2 reductions on single-atom catalysts (SACs). Herein, we report a modulation strategy of phosphorus coordination in the second shell of Cu SACs with a Cu-N4 structure (Cu-N4-P4/C4) and demonstrate experimentally and theoretically the CO-CO coupling through an Eley-Rideal mechanism in electrochemical CO reduction (COR). Remarkably, the Cu SACs exhibit a selectivity of 63.9% toward acetate production in alkaline media on a gas diffusion electrode. Operando synchrotron-based X-ray absorption spectroscopy confirms the robust Cu-N4-P4/C4 structure of the Cu SACs against the harsh electrochemical reduction conditions throughout the electrochemical COR, instead of forming Cu clusters for Cu-N4 configuration, enabling an excellent COR performance toward acetate. This work not only unravels a new mechanism for CO-CO coupling toward C2 products in COR but also offers a novel strategy for SAC regulation toward multicarbon production with high activity, selectivity, and durability.
Collapse
Affiliation(s)
- Kanghua Miao
- New Energy Research Institute, School of Environment and Energy South China University of Technology, Higher Education Mega Center 382 East Waihuan Road, Guangzhou 510006, China
| | - Jingbo Wen
- New Energy Research Institute, School of Environment and Energy South China University of Technology, Higher Education Mega Center 382 East Waihuan Road, Guangzhou 510006, China
| | - Mi Luo
- New Energy Research Institute, School of Environment and Energy South China University of Technology, Higher Education Mega Center 382 East Waihuan Road, Guangzhou 510006, China
| | - Dong Xiang
- New Energy Research Institute, School of Environment and Energy South China University of Technology, Higher Education Mega Center 382 East Waihuan Road, Guangzhou 510006, China
| | - Yawen Jiang
- Hefei National Laboratory for Physical Sciences at the Microscale, School of Chemistry and Materials Science University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Delong Duan
- Hefei National Laboratory for Physical Sciences at the Microscale, School of Chemistry and Materials Science University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Zheng Jiang
- China National Synchrotron Radiation Laboratory, University of Science and Technology of China, Hefei 230029, China
| | - Wenming Sun
- Department of Chemistry, Capital Normal University, Beijing 100048, China
| | - Bingbao Mei
- Shanghai Synchrotron Radiation Facility, Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai 201800, China
| | - Yujie Xiong
- Hefei National Laboratory for Physical Sciences at the Microscale, School of Chemistry and Materials Science University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Xiongwu Kang
- New Energy Research Institute, School of Environment and Energy South China University of Technology, Higher Education Mega Center 382 East Waihuan Road, Guangzhou 510006, China
| |
Collapse
|
21
|
Choi J, Seo S, Kim M, Han Y, Shao X, Lee H. Relationship between Structure and Performance of Atomic-Scale Electrocatalysts for Water Splitting. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2304560. [PMID: 37544918 DOI: 10.1002/smll.202304560] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 07/17/2023] [Indexed: 08/08/2023]
Abstract
Atomic-scale electrocatalysts greatly improve the performance and efficiency of water splitting but require special adjustments of the supporting structures for anchoring and dispersing metal single atoms. Here, the structural evolution of atomic-scale electrocatalysts for water splitting is reviewed based on different synthetic methods and structural properties that create different environments for electrocatalytic activity. The rate-determining step or intermediate state for hydrogen or oxygen evolution reactions is energetically stabilized by the coordination environment to the single-atom active site from the supporting material. In large-scale practical use, maximizing the loading amount of metal single atoms increases the efficiency of the electrocatalyst and reduces the economic cost. Dual-atom electrocatalysts with two different single-atom active sites react with an increased number of water molecules and reduce the adsorption energy of water derived from the difference in electronegativity between the two metal atoms. In particular, single-atom dimers induce asymmetric active sites that promote the degradation of H2O to H2 or O2 evolution. Consequently, the structural properties of atomic-scale electrocatalysts clarify the atomic interrelation between the catalytic active sites and the supporting material to achieve maximum efficiency.
Collapse
Affiliation(s)
- Jungsue Choi
- Department of Chemistry, Sungkyunkwan University (SKKU), Suwon, 16419, Republic of Korea
| | - Sohyeon Seo
- Department of Chemistry, Sungkyunkwan University (SKKU), Suwon, 16419, Republic of Korea
- Creative Research Institute (CRI), Sungkyunkwan University (SKKU), Suwon, 16419, Republic of Korea
| | - Minsu Kim
- Department of Chemistry, Sungkyunkwan University (SKKU), Suwon, 16419, Republic of Korea
| | - Yeonsu Han
- Department of Chemistry, Sungkyunkwan University (SKKU), Suwon, 16419, Republic of Korea
| | - Xiaodong Shao
- Department of Chemistry, Sungkyunkwan University (SKKU), Suwon, 16419, Republic of Korea
| | - Hyoyoung Lee
- Department of Chemistry, Sungkyunkwan University (SKKU), Suwon, 16419, Republic of Korea
- Creative Research Institute (CRI), Sungkyunkwan University (SKKU), Suwon, 16419, Republic of Korea
- Department of Biophysics, Sungkyunkwan University (SKKU), Suwon, 16419, Republic of Korea
- Institute of Quantum Biophysics, Sungkyunkwan University (SKKU), Suwon, 16419, Republic of Korea
| |
Collapse
|
22
|
Saetta C, Barlocco I, Liberto GD, Pacchioni G. Key Ingredients for the Screening of Single Atom Catalysts for the Hydrogen Evolution Reaction: The Case of Titanium Nitride. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2401058. [PMID: 38671564 DOI: 10.1002/smll.202401058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Revised: 04/10/2024] [Indexed: 04/28/2024]
Abstract
A computational screening of Single Atom Catalysts (SACs) bound to titanium nitride (TiN) is presented, for the Hydrogen Evolution Reaction (HER), based on density functional theory. The role of fundamental ingredients is explored to account for a reliable screening of SACs. Namely, the formation of H2-complexes besides the classical H* one impacts the predicted HER activity, in line with previous studies on other SACs. Also, the results indicate that one needs to adopt self-interaction-corrected functionals. Finally, predicting an active catalyst is of little help without an assessment of its stability. Thus, it is included in the theoretical framework the analysis of the stability of the SACs in working conditions of pH and voltage. Once unconventional intermediates and stability are considered in a self-interaction corrected scheme, the number of potential good catalysts for HER is strongly reduced since i) some potentially good catalysts are not stable against dissolution and ii) the formation of unconventional intermediates leads to thermodynamic barriers. This study highlights the importance of including ingredients for the prediction of new systems, such as the formation of unconventional intermediates, estimating the stability of SACs, and the adoption of self-interaction corrected functionals. Also, this study highlights some interesting candidates deserving of dedicated work.
Collapse
Affiliation(s)
- Clara Saetta
- Dipartimento di Scienza dei Materiali, Università degli studi di Milano Bicocca, Via R. Cozzi 55, Milano, 20125, Italy
| | - Ilaria Barlocco
- Dipartimento di Scienza dei Materiali, Università degli studi di Milano Bicocca, Via R. Cozzi 55, Milano, 20125, Italy
| | - Giovanni Di Liberto
- Dipartimento di Scienza dei Materiali, Università degli studi di Milano Bicocca, Via R. Cozzi 55, Milano, 20125, Italy
| | - Gianfranco Pacchioni
- Dipartimento di Scienza dei Materiali, Università degli studi di Milano Bicocca, Via R. Cozzi 55, Milano, 20125, Italy
| |
Collapse
|
23
|
Lu S, Zhang Z, Cheng C, Zhang B, Shi Y. Unveiling the Aggregation of M-N-C Single Atoms into Highly Efficient MOOH Nanoclusters during Alkaline Water Oxidation. Angew Chem Int Ed Engl 2024:e202413308. [PMID: 39191657 DOI: 10.1002/anie.202413308] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2024] [Revised: 08/22/2024] [Accepted: 08/27/2024] [Indexed: 08/29/2024]
Abstract
M-N-C-type single-atom catalysts (SACs) are highly efficient for the electrocatalytic oxygen evolution reaction (OER). And the isolated metal atoms are usually considered real active sites. However, the oxidative structural evolution of coordinated N during the OER will probably damage the structure of M-N-C, hence resulting in a completely different reaction mechanism. Here, we reveal the aggregation of M-N-C materials during the alkaline OER. Taking Ni-N-C as an example, multiple characterizations show that the coordinated N on the surface of Ni-N-C is almost completely dissolved in the form of NO3 -, accompanied by the generation of abundant O functional groups on the surface of the carbon support. Accordingly, the Ni-N bonds are broken. Through a dissolution-redeposition mechanism and further oxidation, the isolated Ni atoms are finally converted to NiOOH nanoclusters supported by carbon as the real active sites for the enhanced OER. Fe-N-C and Co-N-C also have similar aggregation mechanism. Our findings provide unique insight into the structural evolution and activity origin of M-N-C-based catalysts under electrooxidative conditions.
Collapse
Affiliation(s)
- Shanshan Lu
- Department of Chemistry, Institute of Molecular Plus, School of Science, Tianjin University, 300072, Tianjin, China
| | - Zhipu Zhang
- Department of Chemistry, Institute of Molecular Plus, School of Science, Tianjin University, 300072, Tianjin, China
| | - Chuanqi Cheng
- Department of Chemistry, Institute of Molecular Plus, School of Science, Tianjin University, 300072, Tianjin, China
| | - Bin Zhang
- Department of Chemistry, Institute of Molecular Plus, School of Science, Tianjin University, 300072, Tianjin, China
| | - Yanmei Shi
- Department of Chemistry, Institute of Molecular Plus, School of Science, Tianjin University, 300072, Tianjin, China
| |
Collapse
|
24
|
Ruan Q, Lu S, Wu J, Shi Y, Zhang B. Structural Degradation of M-N-C (M=Co, Ni and Fe) Single-Atom Electrocatalysts at Industrial-Grade Current Density for Long-Term Reduction. Angew Chem Int Ed Engl 2024; 63:e202409000. [PMID: 38866731 DOI: 10.1002/anie.202409000] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Revised: 06/06/2024] [Accepted: 06/12/2024] [Indexed: 06/14/2024]
Abstract
M-N-C single-atom catalysts (SACs) are promising electrode materials for many electro-reduction reactions. However, their stability is far from practical applications, and their deactivation mechanism has been rarely investigated. Herein, we demonstrate the structural degradation of M-N-C (M=Co, Ni, and Fe) at industrial-grade current density for long-term electro-reduction. Both M-N and N-C bonds are broken, resulting in the gradual hydrogenation and dissolution of N in the form of ammonia. The residual M is finally converted to M-containing core-shell nanoparticles after sequential dissolution, redeposition, and electro-reduction. The destruction of the M-N-C structure and the formation of nanoparticles greatly affect the electrocatalytic performance. Our work highlights the structural degradation and deactivation mechanism of M-N-C-type SACs under strong reductive conditions and provides useful information for inspiring researchers to develop new strategies to improve the electrocatalytic stability of similar types of materials.
Collapse
Affiliation(s)
- Qingqing Ruan
- Institute of Molecular Plus, Department of Chemistry, School of Science, Tianjin University, Tianjin, 300072, China
| | - Shanshan Lu
- Institute of Molecular Plus, Department of Chemistry, School of Science, Tianjin University, Tianjin, 300072, China
| | - Jiaqi Wu
- Institute of Molecular Plus, Department of Chemistry, School of Science, Tianjin University, Tianjin, 300072, China
| | - Yanmei Shi
- Institute of Molecular Plus, Department of Chemistry, School of Science, Tianjin University, Tianjin, 300072, China
| | - Bin Zhang
- Institute of Molecular Plus, Department of Chemistry, School of Science, Tianjin University, Tianjin, 300072, China
| |
Collapse
|
25
|
Zhou CA, Ma K, Zhuang Z, Ran M, Shu G, Wang C, Song L, Zheng L, Yue H, Wang D. Tuning the Local Environment of Pt Species at CNT@MO 2-x (M = Sn and Ce) Heterointerfaces for Boosted Alkaline Hydrogen Evolution. J Am Chem Soc 2024; 146:21453-21465. [PMID: 39052434 DOI: 10.1021/jacs.4c04189] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/27/2024]
Abstract
As the most promising hydrogen evolution reaction (HER) electrocatalysts, platinum (Pt)-based catalysts still struggle with sluggish kinetics and expensive costs in alkaline media. Herein, we accelerate the alkaline hydrogen evolution kinetics by optimizing the local environment of Pt species and metal oxide heterointerfaces. The well-dispersed PtRu bimetallic clusters with adjacent MO2-x (M = Sn and Ce) on carbon nanotubes (PtRu/CNT@MO2-x) are demonstrated to be a potential electrocatalyst for alkaline HER, exhibiting an overpotential of only 75 mV at 100 mA cm-2 in 1 M KOH. The excellent mass activity of 12.3 mA μg-1Pt+Ru and specific activity of 32.0 mA cm-2ECSA at an overpotential of 70 mV are 56 and 64 times higher than those of commercial Pt/C. Experimental and theoretical investigations reveal that the heterointerfaces between Pt clusters and MO2-x can simultaneously promote H2O adsorption and activation, while the modification with Ru further optimizes H adsorption and H2O dissociation energy barriers. Then, the matching kinetics between the accelerated elementary steps achieved superb hydrogen generation in alkaline media. This work provides new insight into catalytic local environment design to simultaneously optimize the elementary steps for obtaining ideal alkaline HER performance.
Collapse
Affiliation(s)
- Chang-An Zhou
- Low-Carbon Technology and Chemical Reaction Engineering Laboratory, School of Chemical Engineering, Sichuan University, Chengdu 610065, China
| | - Kui Ma
- Low-Carbon Technology and Chemical Reaction Engineering Laboratory, School of Chemical Engineering, Sichuan University, Chengdu 610065, China
| | - Zechao Zhuang
- Department of Chemistry, Tsinghua University, Beijing 100084, China
| | - Meiling Ran
- Low-Carbon Technology and Chemical Reaction Engineering Laboratory, School of Chemical Engineering, Sichuan University, Chengdu 610065, China
| | - Guoqiang Shu
- Low-Carbon Technology and Chemical Reaction Engineering Laboratory, School of Chemical Engineering, Sichuan University, Chengdu 610065, China
| | - Chao Wang
- Low-Carbon Technology and Chemical Reaction Engineering Laboratory, School of Chemical Engineering, Sichuan University, Chengdu 610065, China
| | - Lei Song
- Low-Carbon Technology and Chemical Reaction Engineering Laboratory, School of Chemical Engineering, Sichuan University, Chengdu 610065, China
| | - Lirong Zheng
- Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, China
| | - Hairong Yue
- Low-Carbon Technology and Chemical Reaction Engineering Laboratory, School of Chemical Engineering, Sichuan University, Chengdu 610065, China
- Institute of New Energy and Low-Carbon Technology, Sichuan University, Chengdu 610207, China
| | - Dingsheng Wang
- Department of Chemistry, Tsinghua University, Beijing 100084, China
| |
Collapse
|
26
|
Shu S, Song T, Wang C, Dai H, Duan L. [2+1] Cycloadditions Modulate the Hydrophobicity of Ni-N 4 Single-Atom Catalysts for Efficient CO 2 Electroreduction. Angew Chem Int Ed Engl 2024; 63:e202405650. [PMID: 38695268 DOI: 10.1002/anie.202405650] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2024] [Indexed: 06/11/2024]
Abstract
Microenvironment regulation of M-N4 single-atom catalysts (SACs) is a promising way to tune their catalytic properties toward the electrochemical CO2 reduction reaction. However, strategies that can effectively introduce functional groups around the M-N4 sites through strong covalent bonding and under mild reaction conditions are highly desired. Taking the hydrophilic Ni-N4 SAC as a representative, we report herein a [2+1] cycloaddition reaction between Ni-N4 and in situ generated difluorocarbene (F2C:), and enable the surface fluorocarbonation of Ni-N4, resulting in the formation of a super-hydrophobic Ni-N4-CF2 catalyst. Meanwhile, the mild reaction conditions allow Ni-N4-CF2 to inherit both the electronic and structural configuration of the Ni-N4 sites from Ni-N4. Enhanced electrochemical CO2-to-CO Faradaic efficiency above 98 % is achieved in a wide operating potential window from -0.7 V to -1.3 V over Ni-N4-CF2. In situ spectroelectrochemical studies reveal that a highly hydrophobic microenvironment formed by the -CF2- group repels asymmetric H-bonded water at the electrified interface, inhibiting the hydrogen evolution reaction and promoting CO production. This work highlights the advantages of [2+1] cycloaddition reactions on the covalent modification of N-doped carbon-supported catalysts.
Collapse
Affiliation(s)
- Siyan Shu
- Department of Chemistry, Southern University of Science and Technology, Shenzhen, 518055, China
- Center of Artificial Photosynthesis for Solar Fuels and Department of Chemistry, School of Science, Westlake University, Hangzhou, 310024, China
| | - Tao Song
- Department of Chemistry, Southern University of Science and Technology, Shenzhen, 518055, China
- Center of Artificial Photosynthesis for Solar Fuels and Department of Chemistry, School of Science, Westlake University, Hangzhou, 310024, China
- School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin, 150001, China
| | - Cheng Wang
- Department of Chemistry, Southern University of Science and Technology, Shenzhen, 518055, China
- Center of Artificial Photosynthesis for Solar Fuels and Department of Chemistry, School of Science, Westlake University, Hangzhou, 310024, China
| | - Hao Dai
- Department of Chemistry, Southern University of Science and Technology, Shenzhen, 518055, China
- Center of Artificial Photosynthesis for Solar Fuels and Department of Chemistry, School of Science, Westlake University, Hangzhou, 310024, China
| | - Lele Duan
- Center of Artificial Photosynthesis for Solar Fuels and Department of Chemistry, School of Science, Westlake University, Hangzhou, 310024, China
- Division of Solar Energy Conversion and Catalysis at Westlake University, Zhejiang Baima Lake Laboratory Co., Ltd, Hangzhou, 310000, Zhejiang, China
- Institute of Natural Sciences, Westlake Institute for Advanced Study, Hangzhou, 310024, China
| |
Collapse
|
27
|
Liu X, Hoang DK, Nguyen QAT, Dinh Phuc D, Kim SG, Nam PC, Kumar A, Zhang F, Zhi C, Bui VQ. Advanced dual-atom catalysts on graphitic carbon nitride for enhanced hydrogen evolution via water splitting. NANOSCALE 2024; 16:13148-13160. [PMID: 38912906 DOI: 10.1039/d4nr01241k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/25/2024]
Abstract
In this comprehensive investigation, we explore the effectiveness of 55 dual-atom catalysts (DACs) supported on graphitic carbon nitride (gCN) for both alkaline and acidic hydrogen evolution reactions (HER). Employing density functional theory (DFT), we scrutinize the thermodynamic and kinetic profiles of these DACs, revealing their considerable potential across a diverse pH spectrum. For acidic HER, our results identify catalysts such as FePd-gCN, CrCr-gCN, and NiPd-gCN, displaying promising ΔGH* values of 0.0, 0.0, and -0.15 eV, respectively. This highlights their potential effectiveness in acidic environments, thereby expanding the scope of their applicability. Within the domain of alkaline HER, this study delves into the thermodynamic and kinetic profiles of DACs supported on gCN, utilizing DFT to illuminate their efficacy in alkaline HER. Through systematic evaluation, we identify that DACs such as CrCo-gCN, FeRu-gCN, and FeIr-gCN not only demonstrate favorable Gibbs free energy change (ΔGmax) for the overall water splitting reaction of 0.02, 0.27, and 0.38 eV, respectively, but also feature low activation energies (Ea) for water dissociation, with CrCo-gCN, FeRu-gCN, and FeIr-gCN notably exhibiting the Ea of just 0.42, 0.33, and 0.42 eV, respectively. The introduction of an electronic descriptor (φ), derived from d electron count (Nd) and electronegativity (ETM), provides a quantifiable relationship with catalytic activity, where a lower φ corresponds to enhanced reaction kinetics. Specifically, φ values between 4.0-4.6 correlate with the lowest kinetic barriers, signifying a streamlined HER process. Our findings suggest that DACs with optimized φ values present a robust approach for the development of high-performance alkaline HER electrocatalysts, offering a pathway towards the rational design of energy-efficient catalytic systems.
Collapse
Affiliation(s)
- Xinghui Liu
- School of Physics and Electronic Information, Yan'an University, Yan'an 716000, China
- Science and Technology on Aerospace Chemical Power Laboratory, Hubei Institute of Aerospace, Chemotechnology, Xiangyang 441003, China
- Department of Materials Science and Engineering, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, Hong Kong SAR, China
| | - Dang Kim Hoang
- Advanced Institute of Science and Technology, The University of Danang, 41 Le Duan, Danang, Vietnam.
| | - Quynh Anh T Nguyen
- Advanced Institute of Science and Technology, The University of Danang, 41 Le Duan, Danang, Vietnam.
| | - Do Dinh Phuc
- Department of Chemistry, Sungkyunkwan University, Suwon, 16419, Republic of Korea
| | - Seong-Gon Kim
- Department of Physics & Astronomy and Center for Computational Sciences, Mississippi State University, Starkville, Mississippi 39762, USA
| | - Pham Cam Nam
- Faculty of Chemical Engineering, The University of Danang-University of Science and Technology, Danang City 550000, Vietnam
| | - Ashwani Kumar
- Max-Planck-Institut für Kohlenforschung, 45470 Mülheim an der Ruhr, Germany
| | - Fuchun Zhang
- School of Physics and Electronic Information, Yan'an University, Yan'an 716000, China
| | - Chunyi Zhi
- Department of Materials Science and Engineering, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, Hong Kong SAR, China
| | - Viet Q Bui
- Advanced Institute of Science and Technology, The University of Danang, 41 Le Duan, Danang, Vietnam.
| |
Collapse
|
28
|
Xiao Y, Tan C, Zeng F, Liu W, Liu J. Structural regulation of amorphous molybdenum sulfide by atomic palladium doping for hydrogen evolution. J Colloid Interface Sci 2024; 665:60-67. [PMID: 38513408 DOI: 10.1016/j.jcis.2024.03.113] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Revised: 03/11/2024] [Accepted: 03/17/2024] [Indexed: 03/23/2024]
Abstract
Molybdenum sulfide materials have long been considered as attractive non-precious-metal electrocatalysts for the hydrogen evolution reaction (HER). However, comparing with the crystalline counterpart, amorphous MoSx has been less investigated previously. We here propose to increase the catalytical activity of a-MoSx by raising the reactant concentration at the catalytic interface via a chemical doping approach. The reconstruction of coordination structure of a-MoSx via Pd doping induces the formation of abundant unsaturated S atoms. Moreover, the reactant friendly catalytic interface is constructed through introducing hydrophilic groups to a-MoSx. The doped a-MoSx catalyst exhibits significantly enhanced HER activity in both acid and alkaline media.
Collapse
Affiliation(s)
- Yao Xiao
- College of Materials Science and Engineering, Qingdao University of Science and Technology, Qingdao 266042, China
| | - Cuiying Tan
- College of Materials Science and Engineering, Qingdao University of Science and Technology, Qingdao 266042, China
| | - Fangui Zeng
- College of Materials Science and Engineering, Qingdao University of Science and Technology, Qingdao 266042, China
| | - Wengang Liu
- College of Materials Science and Engineering, Qingdao University of Science and Technology, Qingdao 266042, China
| | - Jian Liu
- College of Materials Science and Engineering, Qingdao University of Science and Technology, Qingdao 266042, China; Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Shandong Energy Institute, Qingdao New Energy Shandong Laboratory, Qingdao 266101, China.
| |
Collapse
|
29
|
Wang Z, Yi Z, Wong LW, Tang X, Wang H, Wang H, Zhou C, He Y, Xiong W, Wang G, Zeng G, Zhao J, Xu P. Oxygen Doping Cooperated with Co-N-Fe Dual-Catalytic Sites: Synergistic Mechanism for Catalytic Water Purification within Nanoconfined Membrane. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2404278. [PMID: 38743014 DOI: 10.1002/adma.202404278] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/24/2024] [Revised: 05/05/2024] [Indexed: 05/16/2024]
Abstract
Atom-site catalysts, especially for graphitic carbon nitride-based catalysts, represents one of the most promising candidates in catalysis membrane for water decontamination. However, unravelling the intricate relationships between synthesis-structure-properties remains a great challenge. This study addresses the impacts of coordination environment and structure units of metal central sites based on Mantel test, correlation analysis, and evolution of metal central sites. An optimized unconventional oxygen doping cooperated with Co-N-Fe dual-sites (OCN Co/Fe) exhibits synergistic mechanism for efficient peroxymonosulfate activation, which benefits from a significant increase in charge density at the active sites and the regulation in the natural population of orbitals, leading to selective generation of SO4 •-. Building upon these findings, the OCN-Co/Fe/PVDF composite membrane demonstrates a 33 min-1 ciprofloxacin (CIP) rejection efficiency and maintains over 96% CIP removal efficiency (over 24 h) with an average permeance of 130.95 L m-2 h-1. This work offers a fundamental guide for elucidating the definitive origin of catalytic performance in advance oxidation process to facilitate the rational design of separation catalysis membrane with improved performance and enhanced stability.
Collapse
Affiliation(s)
- Ziwei Wang
- College of Environmental Science and Engineering, Hunan University and Key Laboratory of Environmental Biology and Pollution Control (Ministry of Education), Hunan University, Changsha, 410082, P. R. China
- Department of Applied Physics, The Hong Kong Polytechnic University, Kowloon, 999077, China
| | - Zhigang Yi
- College of Environmental Science and Engineering, Hunan University and Key Laboratory of Environmental Biology and Pollution Control (Ministry of Education), Hunan University, Changsha, 410082, P. R. China
| | - Lok Wing Wong
- Department of Applied Physics, The Hong Kong Polytechnic University, Kowloon, 999077, China
| | - Xiang Tang
- Fujian Provincial Key Laboratory of Soil Environmental Health and Regulation, College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou, 350002, P. R. China
| | - Hou Wang
- College of Environmental Science and Engineering, Hunan University and Key Laboratory of Environmental Biology and Pollution Control (Ministry of Education), Hunan University, Changsha, 410082, P. R. China
| | - Han Wang
- School of Metallurgy and Environment, Central South University, Changsha, Hunan, 410083, China
| | - Chengyun Zhou
- College of Environmental Science and Engineering, Hunan University and Key Laboratory of Environmental Biology and Pollution Control (Ministry of Education), Hunan University, Changsha, 410082, P. R. China
| | - Yangzhuo He
- College of Environmental Science and Engineering, Hunan University and Key Laboratory of Environmental Biology and Pollution Control (Ministry of Education), Hunan University, Changsha, 410082, P. R. China
| | - Weiping Xiong
- College of Environmental Science and Engineering, Hunan University and Key Laboratory of Environmental Biology and Pollution Control (Ministry of Education), Hunan University, Changsha, 410082, P. R. China
| | - Guangfu Wang
- College of Environmental Science and Engineering, Hunan University and Key Laboratory of Environmental Biology and Pollution Control (Ministry of Education), Hunan University, Changsha, 410082, P. R. China
| | - Guangming Zeng
- College of Environmental Science and Engineering, Hunan University and Key Laboratory of Environmental Biology and Pollution Control (Ministry of Education), Hunan University, Changsha, 410082, P. R. China
| | - Jiong Zhao
- Department of Applied Physics, The Hong Kong Polytechnic University, Kowloon, 999077, China
| | - Piao Xu
- College of Environmental Science and Engineering, Hunan University and Key Laboratory of Environmental Biology and Pollution Control (Ministry of Education), Hunan University, Changsha, 410082, P. R. China
| |
Collapse
|
30
|
Jing C, Li L, Chin YY, Pao CW, Huang WH, Liu M, Zhou J, Yuan T, Zhou X, Wang Y, Chen CT, Li DW, Wang JQ, Hu Z, Zhang L. Balance between Fe IV-Ni IV synergy and Lattice Oxygen Contribution for Accelerating Water Oxidation. ACS NANO 2024; 18:14496-14506. [PMID: 38771969 PMCID: PMC11155238 DOI: 10.1021/acsnano.4c01718] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/04/2024] [Revised: 04/27/2024] [Accepted: 05/03/2024] [Indexed: 05/23/2024]
Abstract
Hydrogen obtained from electrochemical water splitting is the most promising clean energy carrier, which is hindered by the sluggish kinetics of the oxygen evolution reaction (OER). Thus, the development of an efficient OER electrocatalyst using nonprecious 3d transition elements is desirable. Multielement synergistic effect and lattice oxygen oxidation are two well-known mechanisms to enhance the OER activity of catalysts. The latter is generally related to the high valence state of 3d transition elements leading to structural destabilization under the OER condition. We have found that Al doping in nanosheet Ni-Fe hydroxide exhibits 2-fold advantage: (1) a strong enhanced OER activity from 277 mV to 238 mV at 10 mA cm-2 as the Ni valence state increases from Ni3.58+ to Ni3.79+ observed from in situ X-ray absorption spectra. (2) Operational stability is strengthened, while weakness is expected since the increased NiIV content with 3d8L2 (L denotes O 2p hole) would lead to structural instability. This contradiction is attributed to a reduced lattice oxygen contribution to the OER upon Al doping, as verified through in situ Raman spectroscopy, while the enhanced OER activity is interpreted as an enormous gain in exchange energy of FeIV-NiIV, facilitated by their intersite hopping. This study reveals a mechanism of Fe-Ni synergy effect to enhance OER activity and simultaneously to strengthen operational stability by suppressing the contribution of lattice oxygen.
Collapse
Affiliation(s)
- Chao Jing
- Key
Laboratory of Interfacial Physics and Technology, Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Jialuo Road 2019, Shanghai 201800, P.R. China
- University
of Chinese Academy of Sciences, Beijing 100049, P.R. China
| | - Lili Li
- State
Key Laboratory of Crystal Materials and Institute of Crystal Materials, Shandong University, Jinan 250100, P.R. China
| | - Yi-Ying Chin
- Department
of Physics, National Chung Cheng University, Chiayi 621301, Taiwan, R.O. China.
| | - Chih-Wen Pao
- National
Synchrotron Radiation Research Center, 101 Hsin-Ann Road, Hsinchu 300092, Taiwan,
R.O. China
| | - Wei-Hsiang Huang
- National
Synchrotron Radiation Research Center, 101 Hsin-Ann Road, Hsinchu 300092, Taiwan,
R.O. China
| | - Miaomiao Liu
- Key
Laboratory of Interfacial Physics and Technology, Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Jialuo Road 2019, Shanghai 201800, P.R. China
| | - Jing Zhou
- Zhejiang
Institute of Photoelectronics & Zhejiang Institute for Advanced
Light Source, Zhejiang Normal University, Jinhua, Zhejiang 321004, P.R. China
| | - Taotao Yuan
- School
of Chemistry & Molecular Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, P.R. China
| | - Xiangqi Zhou
- Key
Laboratory of Interfacial Physics and Technology, Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Jialuo Road 2019, Shanghai 201800, P.R. China
| | - Yifeng Wang
- Key
Laboratory of Interfacial Physics and Technology, Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Jialuo Road 2019, Shanghai 201800, P.R. China
- University
of Chinese Academy of Sciences, Beijing 100049, P.R. China
| | - Chien-Te Chen
- National
Synchrotron Radiation Research Center, 101 Hsin-Ann Road, Hsinchu 300092, Taiwan,
R.O. China
| | - Da-Wei Li
- School
of Chemistry & Molecular Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, P.R. China
| | - Jian-Qiang Wang
- Key
Laboratory of Interfacial Physics and Technology, Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Jialuo Road 2019, Shanghai 201800, P.R. China
- University
of Chinese Academy of Sciences, Beijing 100049, P.R. China
| | - Zhiwei Hu
- Max
Planck Institute for Chemical Physics of Solids, Nöthnitzer Strasse 40, Dresden 01187, Germany
| | - Linjuan Zhang
- Key
Laboratory of Interfacial Physics and Technology, Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Jialuo Road 2019, Shanghai 201800, P.R. China
- University
of Chinese Academy of Sciences, Beijing 100049, P.R. China
| |
Collapse
|
31
|
Gao Y, Wang J, Sun M, Jing Y, Chen L, Liang Z, Yang Y, Zhang C, Yao J, Wang X. Tandem Catalysts Enabling Efficient C-N Coupling toward the Electrosynthesis of Urea. Angew Chem Int Ed Engl 2024; 63:e202402215. [PMID: 38581164 DOI: 10.1002/anie.202402215] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 03/21/2024] [Accepted: 04/02/2024] [Indexed: 04/08/2024]
Abstract
The development of a methodology for synthesizing value-added urea (CO(NH2)2) via a renewable electricity-driven C-N coupling reaction under mild conditions is highly anticipated. However, the complex catalytic active sites that act on the carbon and nitrogen species make the reaction mechanism unclear, resulting in a low efficiency of C-N coupling from the co-reduction of carbon dioxide (CO2) and nitrate (NO3 -). Herein, we propose a novel tandem catalyst of Mo-PCN-222(Co), in which the Mo sites serve to facilitate nitrate reduction to the *NH2 intermediate, while the Co sites enhance CO2 reduction to carbonic oxide (CO), thus synergistically promoting C-N coupling. The synthesized Mo-PCN-222(Co) catalyst exhibited a noteworthy urea yield rate of 844.11 mg h-1 g-1, alongside a corresponding Faradaic efficiency of 33.90 % at -0.4 V vs. reversible hydrogen electrode (RHE). By combining in situ spectroscopic techniques with density functional theory calculations, we demonstrate that efficient C-N coupling is attributed to a tandem system in which the *NH2 and *CO intermediates produced by the Mo and Co active sites of Mo-PCN-222(Co) stabilize the formation of the *CONH2 intermediate. This study provides an effective avenue for the design and synthesis of tandem catalysts for electrocatalytic urea synthesis.
Collapse
Affiliation(s)
- Yuhang Gao
- Key Laboratory of Photochemistry, Institute of Chemistry, Chinese Academy of Sciences, 100190, Beijing, P. R. China
- University of Chinese Academy of Sciences, 100049, Beijing, P. R. China
| | - Jingnan Wang
- Molecular Plus and Collaborative Innovation Center of Chemical Science and Engineering, Tianjin University, 300072, Tianjin, P. R. China
| | - Menglong Sun
- Key Laboratory of Photochemistry, Institute of Chemistry, Chinese Academy of Sciences, 100190, Beijing, P. R. China
- University of Chinese Academy of Sciences, 100049, Beijing, P. R. China
| | - Yuan Jing
- Key Laboratory of Photochemistry, Institute of Chemistry, Chinese Academy of Sciences, 100190, Beijing, P. R. China
- University of Chinese Academy of Sciences, 100049, Beijing, P. R. China
| | - Lili Chen
- Key Laboratory of Photochemistry, Institute of Chemistry, Chinese Academy of Sciences, 100190, Beijing, P. R. China
- University of Chinese Academy of Sciences, 100049, Beijing, P. R. China
| | - Zhiqin Liang
- Key Laboratory of Luminescence and Optical Information, Ministry of Education, School of Physical Science and Engineering, Beijing Jiaotong University, 100044, Beijing, P. R. China
- Tangshan Research Institute of Beijing Jiaotong University, 063000, Tangshan, P. R. China
| | - Yijun Yang
- Key Laboratory of Luminescence and Optical Information, Ministry of Education, School of Physical Science and Engineering, Beijing Jiaotong University, 100044, Beijing, P. R. China
- Tangshan Research Institute of Beijing Jiaotong University, 063000, Tangshan, P. R. China
| | - Chuang Zhang
- Key Laboratory of Photochemistry, Institute of Chemistry, Chinese Academy of Sciences, 100190, Beijing, P. R. China
- University of Chinese Academy of Sciences, 100049, Beijing, P. R. China
| | - Jiannian Yao
- Key Laboratory of Photochemistry, Institute of Chemistry, Chinese Academy of Sciences, 100190, Beijing, P. R. China
- University of Chinese Academy of Sciences, 100049, Beijing, P. R. China
| | - Xi Wang
- Key Laboratory of Luminescence and Optical Information, Ministry of Education, School of Physical Science and Engineering, Beijing Jiaotong University, 100044, Beijing, P. R. China
- Tangshan Research Institute of Beijing Jiaotong University, 063000, Tangshan, P. R. China
| |
Collapse
|
32
|
Feidenhans’l A, Regmi YN, Wei C, Xia D, Kibsgaard J, King LA. Precious Metal Free Hydrogen Evolution Catalyst Design and Application. Chem Rev 2024; 124:5617-5667. [PMID: 38661498 PMCID: PMC11082907 DOI: 10.1021/acs.chemrev.3c00712] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Revised: 02/27/2024] [Accepted: 02/28/2024] [Indexed: 04/26/2024]
Abstract
The quest to identify precious metal free hydrogen evolution reaction catalysts has received unprecedented attention in the past decade. In this Review, we focus our attention to recent developments in precious metal free hydrogen evolution reactions in acidic and alkaline electrolyte owing to their relevance to commercial and near-commercial low-temperature electrolyzers. We provide a detailed review and critical analysis of catalyst activity and stability performance measurements and metrics commonly deployed in the literature, as well as review best practices for experimental measurements (both in half-cell three-electrode configurations and in two-electrode device testing). In particular, we discuss the transition from laboratory-scale hydrogen evolution reaction (HER) catalyst measurements to those in single cells, which is a critical aspect crucial for scaling up from laboratory to industrial settings but often overlooked. Furthermore, we review the numerous catalyst design strategies deployed across the precious metal free HER literature. Subsequently, we showcase some of the most commonly investigated families of precious metal free HER catalysts; molybdenum disulfide-based, transition metal phosphides, and transition metal carbides for acidic electrolyte; nickel molybdenum and transition metal phosphides for alkaline. This includes a comprehensive analysis comparing the HER activity between several families of materials highlighting the recent stagnation with regards to enhancing the intrinsic activity of precious metal free hydrogen evolution reaction catalysts. Finally, we summarize future directions and provide recommendations for the field in this area of electrocatalysis.
Collapse
Affiliation(s)
| | - Yagya N. Regmi
- Faculty
of Science and Engineering, Manchester Metropolitan
University, Manchester M1 5GD, U.K.
- Manchester
Fuel Cell Innovation Centre, Manchester
Metropolitan University, Manchester M1 5GD, U.K.
| | - Chao Wei
- Department
of Physics, Technical University of Denmark, 2800 Kongens Lyngby, Denmark
| | - Dong Xia
- Faculty
of Science and Engineering, Manchester Metropolitan
University, Manchester M1 5GD, U.K.
- Manchester
Fuel Cell Innovation Centre, Manchester
Metropolitan University, Manchester M1 5GD, U.K.
| | - Jakob Kibsgaard
- Department
of Physics, Technical University of Denmark, 2800 Kongens Lyngby, Denmark
| | - Laurie A. King
- Faculty
of Science and Engineering, Manchester Metropolitan
University, Manchester M1 5GD, U.K.
- Manchester
Fuel Cell Innovation Centre, Manchester
Metropolitan University, Manchester M1 5GD, U.K.
| |
Collapse
|
33
|
Heppe N, Gallenkamp C, Snitkoff-Sol RZ, Paul SD, Segura-Salas N, Haak H, Moritz DC, Kaiser B, Jaegermann W, Potapkin V, Jafari A, Schünemann V, Leupold O, Elbaz L, Krewald V, Kramm UI. Applying Nuclear Forward Scattering as In Situ and Operando Tool for the Characterization of FeN 4 Moieties in the Hydrogen Evolution Reaction. J Am Chem Soc 2024; 146:12496-12510. [PMID: 38630640 PMCID: PMC11082898 DOI: 10.1021/jacs.4c00436] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Revised: 03/24/2024] [Accepted: 03/26/2024] [Indexed: 04/19/2024]
Abstract
Nuclear forward scattering (NFS) is a synchrotron-based technique relying on the recoil-free nuclear resonance effect similar to Mössbauer spectroscopy. In this work, we introduce NFS for in situ and operando measurements during electrocatalytic reactions. The technique enables faster data acquisition and better discrimination of certain iron sites in comparison to Mössbauer spectroscopy. It is directly accessible at various synchrotrons to a broad community of researchers and is applicable to multiple metal isotopes. We demonstrate the power of this technique with the hydrogen evolution mechanism of an immobilized iron porphyrin supported on carbon. Such catalysts are often considered as model systems for iron-nitrogen-carbon (FeNC) catalysts. Using in situ and operando NFS in combination with theoretical predictions of spectroscopic data enables the identification of the intermediate that is formed prior to the rate-determining step. The conclusions on the reaction mechanism can be used for future optimization of immobilized molecular catalysts and metal-nitrogen-carbon (MNC) catalysts.
Collapse
Affiliation(s)
- Nils Heppe
- Catalysts
and Electrocatalysts, Eduard-Zintl-Institute of Inorganic and Physical
Chemistry, Department of Chemistry, Technical
University Darmstadt, Otto-Berndt-Str. 3, 64287 Darmstadt, Germany
| | - Charlotte Gallenkamp
- Catalysts
and Electrocatalysts, Eduard-Zintl-Institute of Inorganic and Physical
Chemistry, Department of Chemistry, Technical
University Darmstadt, Otto-Berndt-Str. 3, 64287 Darmstadt, Germany
- Quantum
Chemistry, Eduard-Zintl-Institute of Inorganic and Physical Chemistry,
Department of Chemistry, Technical University
Darmstadt, Peter-Grünberg-Str.
4, 64287 Darmstadt, Germany
| | - Rifael Z. Snitkoff-Sol
- Bar-Ilan
Center for Nanotechnology and Advanced Materials and the Department
of Chemistry, Bar-Ilan University, Ramat-Gan 529002, Israel
| | - Stephen D. Paul
- Catalysts
and Electrocatalysts, Eduard-Zintl-Institute of Inorganic and Physical
Chemistry, Department of Chemistry, Technical
University Darmstadt, Otto-Berndt-Str. 3, 64287 Darmstadt, Germany
| | - Nicole Segura-Salas
- Catalysts
and Electrocatalysts, Eduard-Zintl-Institute of Inorganic and Physical
Chemistry, Department of Chemistry, Technical
University Darmstadt, Otto-Berndt-Str. 3, 64287 Darmstadt, Germany
| | - Hendrik Haak
- Catalysts
and Electrocatalysts, Eduard-Zintl-Institute of Inorganic and Physical
Chemistry, Department of Chemistry, Technical
University Darmstadt, Otto-Berndt-Str. 3, 64287 Darmstadt, Germany
| | - Dominik C. Moritz
- Surface
Science Division, Institute of Materials Science, Department of Materials
and Earth Sciences, Technical University
Darmstadt, Otto-Berndt-Str.
3, 64287 Darmstadt, Germany
| | - Bernhard Kaiser
- Surface
Science Division, Institute of Materials Science, Department of Materials
and Earth Sciences, Technical University
Darmstadt, Otto-Berndt-Str.
3, 64287 Darmstadt, Germany
| | - Wolfram Jaegermann
- Surface
Science Division, Institute of Materials Science, Department of Materials
and Earth Sciences, Technical University
Darmstadt, Otto-Berndt-Str.
3, 64287 Darmstadt, Germany
| | - Vasily Potapkin
- Catalysts
and Electrocatalysts, Eduard-Zintl-Institute of Inorganic and Physical
Chemistry, Department of Chemistry, Technical
University Darmstadt, Otto-Berndt-Str. 3, 64287 Darmstadt, Germany
| | - Atefeh Jafari
- Deutsches
Elektronen-Synchrotron, Notkestraße 85, 22607 Hamburg, Germany
| | - Volker Schünemann
- Department
of Physics, University of Kaiserslautern-Landau, Erwin-Schrödinger Straße
56, 67663 Kaiserslautern, Germany
| | - Olaf Leupold
- Deutsches
Elektronen-Synchrotron, Notkestraße 85, 22607 Hamburg, Germany
| | - Lior Elbaz
- Bar-Ilan
Center for Nanotechnology and Advanced Materials and the Department
of Chemistry, Bar-Ilan University, Ramat-Gan 529002, Israel
| | - Vera Krewald
- Quantum
Chemistry, Eduard-Zintl-Institute of Inorganic and Physical Chemistry,
Department of Chemistry, Technical University
Darmstadt, Peter-Grünberg-Str.
4, 64287 Darmstadt, Germany
| | - Ulrike I. Kramm
- Catalysts
and Electrocatalysts, Eduard-Zintl-Institute of Inorganic and Physical
Chemistry, Department of Chemistry, Technical
University Darmstadt, Otto-Berndt-Str. 3, 64287 Darmstadt, Germany
| |
Collapse
|
34
|
Zheng XQ, Zhang K, Wang Y, Liu Y, Peng SS, Shao XB, Kou J, Sun LB. Construction of Nickel Single Atoms by Using the Inherent Confined Space in Template-Occupied Mesoporous Silica. Inorg Chem 2024; 63:8312-8319. [PMID: 38651966 DOI: 10.1021/acs.inorgchem.4c00626] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/25/2024]
Abstract
Due to their maximum atomic use of metal sites, single-atom catalysts (SACs) exhibit excellent catalytic activity in a variety of reactions. Although many techniques have been reported for the production of SACs, the construction of single atoms through a convenient strategy is still challenging. Here, we provide a facile method to prepare nickel SACs by utilizing the inherent confined space between the template and silica walls in template-occupied mesoporous silica KIT-6 (TOK). After the introduction of nickel-containing precursors into the inherent confined space of the TOK by solid-phase grinding, Ni SACs can be produced promptly during calcination. Single Ni atoms create a covalent Ni-O-Si structure in the TOK, as indicated by density functional theory (DFT) calculations and experimental data. This synthetic approach is easy to scale up, and 10 g of sample can be effortlessly synthesized using ball milling. The resultant Ni SACs were applied to the oxygen evolution reaction and exhibited higher catalytic activity and stability than the comparative sample synthesized in the absence of confined space.
Collapse
Affiliation(s)
- Xiao-Qin Zheng
- State Key Laboratory of Materials-Oriented Chemical Engineering, 30 South Puzhu Road, Nanjing 211816, China
- College of Chemical Engineering, Nanjing Tech University, 30 South Puzhu Road, Nanjing 211816, China
| | - Kai Zhang
- State Key Laboratory of Materials-Oriented Chemical Engineering, 30 South Puzhu Road, Nanjing 211816, China
- College of Chemical Engineering, Nanjing Tech University, 30 South Puzhu Road, Nanjing 211816, China
| | - Yang Wang
- State Key Laboratory of Materials-Oriented Chemical Engineering, 30 South Puzhu Road, Nanjing 211816, China
- College of Chemical Engineering, Nanjing Tech University, 30 South Puzhu Road, Nanjing 211816, China
| | - Yang Liu
- State Key Laboratory of Materials-Oriented Chemical Engineering, 30 South Puzhu Road, Nanjing 211816, China
- College of Chemical Engineering, Nanjing Tech University, 30 South Puzhu Road, Nanjing 211816, China
| | - Song-Song Peng
- State Key Laboratory of Materials-Oriented Chemical Engineering, 30 South Puzhu Road, Nanjing 211816, China
- College of Chemical Engineering, Nanjing Tech University, 30 South Puzhu Road, Nanjing 211816, China
| | - Xiang-Bin Shao
- State Key Laboratory of Materials-Oriented Chemical Engineering, 30 South Puzhu Road, Nanjing 211816, China
- College of Chemical Engineering, Nanjing Tech University, 30 South Puzhu Road, Nanjing 211816, China
| | - Jiahui Kou
- State Key Laboratory of Materials-Oriented Chemical Engineering, 30 South Puzhu Road, Nanjing 211816, China
- College of Materials Science and Engineering, Nanjing Tech University, 30 South Puzhu Road, Nanjing 211816, China
| | - Lin-Bing Sun
- State Key Laboratory of Materials-Oriented Chemical Engineering, 30 South Puzhu Road, Nanjing 211816, China
- College of Chemical Engineering, Nanjing Tech University, 30 South Puzhu Road, Nanjing 211816, China
| |
Collapse
|
35
|
Mo Q, Meng Y, Qin L, Shi C, Zhang HB, Yu X, Rong J, Hou PX, Liu C, Cheng HM, Li JC. Universal Sublimation Strategy to Stabilize Single-Metal Sites on Flexible Single-Wall Carbon-Nanotube Films with Strain-Enhanced Activities for Zinc-Air Batteries and Water Splitting. ACS APPLIED MATERIALS & INTERFACES 2024; 16:16164-16174. [PMID: 38514249 DOI: 10.1021/acsami.3c19236] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/23/2024]
Abstract
Single-metal-site catalysts have recently aroused extensive research in electrochemical energy fields such as zinc-air batteries and water splitting, but their preparation is still a huge challenge, especially in flexible catalyst films. Herein, we propose a sublimation strategy in which metal phthalocyanine molecules with defined isolated metal-N4 sites are gasified by sublimation and then deposited on flexible single-wall carbon nanotube (SWCNT) films by means of π-π coupling interactions. Specifically, iron phthalocyanine anchored on the SWCNT film prepared was directly used to boost the cathodic oxygen reduction reaction of the zinc-air battery, showing a high peak power density of 247 mW cm-2. Nickel phthalocyanine and cobalt phthalocyanine were, respectively, stabilized on SWCNT films as the anodic and cathodic electrocatalysts for water splitting, showing a low potential of 1.655 V at 10 mA cm-2. In situ Raman spectra and theoretical studies demonstrate that highly efficient activities originate from strain-induced metal phthalocyanine on SWCNTs. This work provides a universal preparation method for single-metal-site catalysts and innovative insights for electrocatalytic mechanisms.
Collapse
Affiliation(s)
- Qian Mo
- Faculty of Chemical Engineering, Yunnan Provincial Key Laboratory of Energy Saving in Phosphorus Chemical Engineering and New Phosphorus Materials, Kunming University of Science and Technology, Kunming 650500, China
| | - Yu Meng
- Shenyang National Laboratory for Materials Science, Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, China
| | - Lei Qin
- Faculty of Materials Science and Engineering, Kunming University of Science and Technology, Kunming 650093, China
| | - Chao Shi
- Shenyang National Laboratory for Materials Science, Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, China
| | - Hong-Bo Zhang
- Faculty of Chemical Engineering, Yunnan Provincial Key Laboratory of Energy Saving in Phosphorus Chemical Engineering and New Phosphorus Materials, Kunming University of Science and Technology, Kunming 650500, China
| | - Xiaohua Yu
- Faculty of Materials Science and Engineering, Kunming University of Science and Technology, Kunming 650093, China
| | - Ju Rong
- Faculty of Materials Science and Engineering, Kunming University of Science and Technology, Kunming 650093, China
| | - Peng-Xiang Hou
- Shenyang National Laboratory for Materials Science, Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, China
| | - Chang Liu
- Shenyang National Laboratory for Materials Science, Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, China
| | - Hui-Ming Cheng
- Shenyang National Laboratory for Materials Science, Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, China
| | - Jin-Cheng Li
- Faculty of Chemical Engineering, Yunnan Provincial Key Laboratory of Energy Saving in Phosphorus Chemical Engineering and New Phosphorus Materials, Kunming University of Science and Technology, Kunming 650500, China
| |
Collapse
|
36
|
Liu L, Chen T, Chen Z. Understanding the Dynamic Aggregation in Single-Atom Catalysis. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2308046. [PMID: 38287886 PMCID: PMC10987127 DOI: 10.1002/advs.202308046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Revised: 11/22/2023] [Indexed: 01/31/2024]
Abstract
The dynamic response of single-atom catalysts to a reactive environment is an increasingly significant topic for understanding the reaction mechanism at the molecular level. In particular, single atoms may experience dynamic aggregation into clusters or nanoparticles driven by thermodynamic or kinetic factors. Herein, the inherent mechanistic nuances that determine the dynamic profile during the reaction will be uncovered, including the intrinsic stability and site-migration barrier of single atoms, external stimuli (temperature, voltage, and adsorbates), and the influence of catalyst support. Such dynamic aggregation can be beneficial or deleterious on the catalytic performance depending on the optimal initial state. Those examples will be highlighted where in situ formed clusters, rather than single atoms, serve as catalytically active sites for improved catalytic performance. This is followed by the introduction of operando techniques to understand the structural evolution. Finally, the emerging strategies via confinement and defect-engineering to regulate dynamic aggregation will be briefly discussed.
Collapse
Affiliation(s)
- Laihao Liu
- School of Science and EngineeringThe Chinese University of Hong KongShenzhenGuangdong518172China
| | - Tiankai Chen
- School of Science and EngineeringThe Chinese University of Hong KongShenzhenGuangdong518172China
| | - Zhongxin Chen
- School of Science and EngineeringThe Chinese University of Hong KongShenzhenGuangdong518172China
| |
Collapse
|
37
|
Liu Y, Hu Y, Zhao X, Zhu S, Min Y, Xu Q, Li Q. Oxygen Vacancy and Heterostructure Modulation of Co 2P/Fe 2P Electrocatalysts for Improving Total Water Splitting. ACS APPLIED MATERIALS & INTERFACES 2024; 16:13795-13805. [PMID: 38449335 DOI: 10.1021/acsami.3c19548] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/08/2024]
Abstract
Designing a stable and highly active catalyst for hydrogen evolution and oxygen evolution reactions (HER/OER) is essential for the industrialization of hydrogen energy but remains a major challenge. This work reports a simple approach to fabricating coupled Co2P/Fe2P nanorod array catalyst for overall water decomposition, demonstrating the source of excellent activity in the catalytic process. Under alkaline conditions, Co2P/Fe2P heterostructures exhibit an overpotential of 96 and 220 mV for HER and OER, respectively, at 10 mA cm-2. For total water splitting, a low voltage of 1.56 V is required to provide a current density of 10 mA cm-2. And the catalyst exhibits long-term durability for 30 h at a high current density of 250 mA cm-2. The analysis of the results revealed that the presence of interfacial oxygen vacancies and the strong interaction between Co2P/Fe2P provided the catalyst with more electrochemically active sites and a faster charge transfer capability, which improved the hydrolysis dissociation process. Electrochemically active metal (oxygen) hydroxide phases were produced after OER stability testing. The results of this study prove its great potential in practical industrial electrolysis and provide a reasonable and feasible strategy for the design of nonprecious metal phosphide electrocatalysts.
Collapse
Affiliation(s)
- Yue Liu
- Shanghai Key Laboratory of Materials Protection and Advanced Materials in Electric Power, College of Environmental and Chemical Engineering, Shanghai University of Electric Power, Shanghai 200090, China
| | - Yawen Hu
- Shanghai Key Laboratory of Materials Protection and Advanced Materials in Electric Power, College of Environmental and Chemical Engineering, Shanghai University of Electric Power, Shanghai 200090, China
| | - Xin Zhao
- Shanghai Key Laboratory of Materials Protection and Advanced Materials in Electric Power, College of Environmental and Chemical Engineering, Shanghai University of Electric Power, Shanghai 200090, China
| | - Sheng Zhu
- Shanghai Key Laboratory of Materials Protection and Advanced Materials in Electric Power, College of Environmental and Chemical Engineering, Shanghai University of Electric Power, Shanghai 200090, China
| | - Yulin Min
- Shanghai Key Laboratory of Materials Protection and Advanced Materials in Electric Power, College of Environmental and Chemical Engineering, Shanghai University of Electric Power, Shanghai 200090, China
- Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200090, China
| | - Qunjie Xu
- Shanghai Key Laboratory of Materials Protection and Advanced Materials in Electric Power, College of Environmental and Chemical Engineering, Shanghai University of Electric Power, Shanghai 200090, China
- Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200090, China
| | - Qiaoxia Li
- Shanghai Key Laboratory of Materials Protection and Advanced Materials in Electric Power, College of Environmental and Chemical Engineering, Shanghai University of Electric Power, Shanghai 200090, China
- Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200090, China
| |
Collapse
|
38
|
Yao R, Sun K, Zhang K, Wu Y, Du Y, Zhao Q, Liu G, Chen C, Sun Y, Li J. Stable hydrogen evolution reaction at high current densities via designing the Ni single atoms and Ru nanoparticles linked by carbon bridges. Nat Commun 2024; 15:2218. [PMID: 38472249 DOI: 10.1038/s41467-024-46553-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Accepted: 02/28/2024] [Indexed: 03/14/2024] Open
Abstract
Continuous and effective hydrogen evolution under high current densities remains a challenge for water electrolysis owing to the rapid performance degradation under continuous large-current operation. In this study, theoretical calculations, operando Raman spectroscopy, and CO stripping experiments confirm that Ru nanocrystals have a high resistance against deactivation because of the synergistic adsorption of OH intermediates (OHad) on the Ru and single atoms. Based on this conceptual model, we design the Ni single atoms modifying ultra-small Ru nanoparticle with defect carbon bridging structure (UP-RuNiSAs/C) via a unique unipolar pulse electrodeposition (UPED) strategy. As a result, the UP-RuNiSAs/C is found capable of running steadily for 100 h at 3 A cm-2, and shows a low overpotential of 9 mV at a current density of 10 mA cm-2 under alkaline conditions. Moreover, the UP-RuNiSAs/C allows an anion exchange membrane (AEM) electrolyzer to operate stably at 1.95 Vcell for 250 h at 1 A cm-2.
Collapse
Affiliation(s)
- Rui Yao
- College of Chemical Engineering and Technology, Shanxi Key Laboratory of Gas Energy Efficient and Clean Utilization, Taiyuan University of Technology, Taiyuan, 030024, China
| | - Kaian Sun
- College of Materials Science and Engineering, Fuzhou University, Fuzhou, 350108, China
| | - Kaiyang Zhang
- College of Chemical Engineering and Technology, Shanxi Key Laboratory of Gas Energy Efficient and Clean Utilization, Taiyuan University of Technology, Taiyuan, 030024, China
| | - Yun Wu
- College of Chemical Engineering and Technology, Shanxi Key Laboratory of Gas Energy Efficient and Clean Utilization, Taiyuan University of Technology, Taiyuan, 030024, China
| | - Yujie Du
- College of Chemical Engineering and Technology, Shanxi Key Laboratory of Gas Energy Efficient and Clean Utilization, Taiyuan University of Technology, Taiyuan, 030024, China
| | - Qiang Zhao
- College of Chemical Engineering and Technology, Shanxi Key Laboratory of Gas Energy Efficient and Clean Utilization, Taiyuan University of Technology, Taiyuan, 030024, China
| | - Guang Liu
- College of Chemical Engineering and Technology, Shanxi Key Laboratory of Gas Energy Efficient and Clean Utilization, Taiyuan University of Technology, Taiyuan, 030024, China.
| | - Chen Chen
- Department of Chemistry, Tsinghua University, Beijing, 100084, China
| | - Yuhan Sun
- Shanxi Research Institute of Huairou Laboratory, Taiyuan, 030031, China.
- 2060 Research Institute, Shanghai Tech University, Shanghai, 201210, China.
| | - Jinping Li
- College of Chemical Engineering and Technology, Shanxi Key Laboratory of Gas Energy Efficient and Clean Utilization, Taiyuan University of Technology, Taiyuan, 030024, China.
- Shanxi Research Institute of Huairou Laboratory, Taiyuan, 030031, China.
| |
Collapse
|
39
|
Zhu X, He M, Chen X, Zhou Y, Xu C, Li X, Luo Q, Yang J. First-Principles Insights into Tungsten Semicarbide-Based Single-Atom Catalysts: Single-Atom Migration and Mechanisms in Oxygen Reduction. J Phys Chem Lett 2024:2815-2824. [PMID: 38441004 DOI: 10.1021/acs.jpclett.4c00398] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/06/2024]
Abstract
Understanding the structural evolution of single-atom catalysts (SACs) in catalytic reactions is crucial for unraveling their catalytic mechanisms. In this study, we utilize density functional theory calculations to delve into the active phase evolution and the oxygen reduction reaction (ORR) mechanism of tungsten semicarbide-based transition metal SACs (TM1/W2C). The stable crystal phases and optimal surface exposures of W2C are identified by using ab initio atomistic thermodynamics simulations. Focusing on the W-terminated (001) surface, we screen 13 stable TM1/W2C variants, ultimately selecting Pt1/W2C(001) as our primary model. The surface Pourbaix diagram, mapped for this model under ORR conditions, reveals dynamic Pt1 migration on the surface, triggered by surface oxidation. This discovery suggests a novel single-atom evolution pathway. Remarkably, this single-atom migration behavior is also discerned in seven other group VIII SACs, enhancing both their catalytic activity and their stability. Our findings offer insights into the evolution of active phases in SACs, considering substrate structural arrangement, single-atom incorporation, and self-optimization of catalysts under various conditions.
Collapse
Affiliation(s)
- Xiangyu Zhu
- Institutes of Physical Science and Information Technology, Anhui University, Hefei, Anhui 230601, China
| | - Mingqi He
- Department of Chemical Physics, Key Laboratory of Precision and Intelligent Chemistry, Hefei National Research Center for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Xing Chen
- Institutes of Physical Science and Information Technology, Anhui University, Hefei, Anhui 230601, China
| | - Yanan Zhou
- School of Material Science and Chemical Engineering, Ningbo University, Ningbo 315211, China
| | - Chang Xu
- Department of Chemistry, Anhui University, Hefei 230601, China
| | - Xingxing Li
- Department of Chemical Physics, Key Laboratory of Precision and Intelligent Chemistry, Hefei National Research Center for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Qiquan Luo
- Institutes of Physical Science and Information Technology, Anhui University, Hefei, Anhui 230601, China
| | - Jinlong Yang
- Department of Chemical Physics, Key Laboratory of Precision and Intelligent Chemistry, Hefei National Research Center for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei, Anhui 230026, China
| |
Collapse
|
40
|
Li F, Cao J, Yu H, Lin H, Chen S. Superhydrophilic Dendritic FeP/Cu 3P Electrocatalyst for Urea Splitting via the Intramolecular Mechanism. Inorg Chem 2024; 63:4204-4213. [PMID: 38386868 DOI: 10.1021/acs.inorgchem.3c04285] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/24/2024]
Abstract
The electrocatalytic overall urea splitting can achieve the dual goals of urea treatment and hydrogen energy acquisition. Herein, we exploited the principle of precipitation dissolution equilibrium to obtain bimetallic phosphide FeP/Cu3P/CF for the simultaneous oxidation of urea and reduction of water and comprehensively reveal the inherent molecular thermodynamic mechanisms on the surface of catalysts. The excellent electrochemical performance can be derived from the super water affinity and synergistic effect. Especially, the theoretical calculation unveils that the synergistic effect between FeP and Cu3P can lower the activation energy required for urea electrooxidation, thereby promoting urea splitting. In situ differential electrochemical mass spectrometry (in situ DEMS) measurements further demonstrated that urea oxidation on FeP/Cu3P/CF proceeded according to the intramolecular mechanism. This work has laid the foundation for constructing highly efficient superhydrophilic bifunctional electrocatalysts.
Collapse
Affiliation(s)
- Fang Li
- Key Laboratory of Green and Precise Synthetic Chemistry and Applications, Ministry of Education, College of Chemistry and Materials Science, Huaibei Normal University, Huaibei 235000, Anhui, P. R. China
| | - Jing Cao
- Key Laboratory of Green and Precise Synthetic Chemistry and Applications, Ministry of Education, College of Chemistry and Materials Science, Huaibei Normal University, Huaibei 235000, Anhui, P. R. China
| | - Huiqin Yu
- Key Laboratory of Green and Precise Synthetic Chemistry and Applications, Ministry of Education, College of Chemistry and Materials Science, Huaibei Normal University, Huaibei 235000, Anhui, P. R. China
| | - Haili Lin
- Key Laboratory of Green and Precise Synthetic Chemistry and Applications, Ministry of Education, College of Chemistry and Materials Science, Huaibei Normal University, Huaibei 235000, Anhui, P. R. China
| | - Shifu Chen
- Key Laboratory of Green and Precise Synthetic Chemistry and Applications, Ministry of Education, College of Chemistry and Materials Science, Huaibei Normal University, Huaibei 235000, Anhui, P. R. China
| |
Collapse
|
41
|
Alam N, Noor T, Iqbal N. Catalyzing Sustainable Water Splitting with Single Atom Catalysts: Recent Advances. CHEM REC 2024; 24:e202300330. [PMID: 38372409 DOI: 10.1002/tcr.202300330] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Revised: 01/17/2024] [Indexed: 02/20/2024]
Abstract
Electrochemical water splitting for sustainable hydrogen and oxygen production have shown enormous potentials. However, this method needs low-cost and highly active catalysts. Traditional nano catalysts, while effective, have limits since their active sites are mostly restricted to the surface and edges, leaving interior surfaces unexposed in redox reactions. Single atom catalysts (SACs), which take advantage of high atom utilization and quantum size effects, have recently become appealing electrocatalysts. Strong interaction between active sites and support in SACs have considerably improved the catalytic efficiency and long-term stability, outperforming their nano-counterparts. This review's first section examines the Hydrogen Evolution Reaction (HER) and the Oxygen Evolution Reaction (OER). In the next section, SACs are categorized as noble metal, non-noble metal, and bimetallic synergistic SACs. In addition, this review emphasizes developing methodologies for effective SAC design, such as mass loading optimization, electrical structure modulation, and the critical role of support materials. Finally, Carbon-based materials and metal oxides are being explored as possible supports for SACs. Importantly, for the first time, this review opens a discussion on waste-derived supports for single atom catalysts used in electrochemical reactions, providing a cost-effective dimension to this vibrant research field. The well-known design techniques discussed here may help in development of electrocatalysts for effective water splitting.
Collapse
Affiliation(s)
- Nasar Alam
- School of Chemical and Materials Engineering (SCME), National University of Sciences and Technology (NUST), Islamabad, 44000, Pakistan
| | - Tayyaba Noor
- School of Chemical and Materials Engineering (SCME), National University of Sciences and Technology (NUST), Islamabad, 44000, Pakistan
| | - Naseem Iqbal
- U.S.-Pakistan Center for Advanced Studies in Energy (USPCAS-E), National University of Sciences and Technology (NUST), Islamabad, 44000, Pakistan
| |
Collapse
|
42
|
Barekati NS, Farsi H, Farrokhi A, Moghiminia S. A comparison between 2D and 3D cobalt-organic framework as catalysts for electrochemical CO 2 reduction. Heliyon 2024; 10:e26281. [PMID: 38375310 PMCID: PMC10875588 DOI: 10.1016/j.heliyon.2024.e26281] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Revised: 02/01/2024] [Accepted: 02/09/2024] [Indexed: 02/21/2024] Open
Abstract
Electrocatalytic CO2 reduction, as an effective way to reduce the CO2 concentration, has gained attention. In this study, we prepared ZIF-67 nanoparticles and nanosheets and investigated them as electrocatalysts for CO2 reduction. It was found that ZIF-67 nanosheets, because of their two-dimensional morphologies, provide more under-coordinated cobalt nodes and have lower overpotentials for both hydrogen evolution and CO2 reduction reactions. Also, the rate-determining step for hydrogen evolution changes from Volmer for ZIF-67 nanoparticles to Hyrovsky for ZIF-67 nanosheets. Also, the presence of Mg2+ ions in solution causes more facile CO2 reduction, especially for ZIF-67 nanosheets.
Collapse
Affiliation(s)
| | - Hossein Farsi
- Department of Chemistry, University of Birjand, Birjand, Iran
- DNEP Research Lab, University of Birjand, Birjand, Iran
| | | | | |
Collapse
|
43
|
Gu J, Li L, Yang Q, Tian F, Zhao W, Xie Y, Yu J, Zhang A, Zhang L, Li H, Zhong J, Jiang J, Wang Y, Liu J, Lu J. Twinning Engineering of Platinum/Iridium Nanonets as Turing-Type Catalysts for Efficient Water Splitting. J Am Chem Soc 2024; 146:5355-5365. [PMID: 38358943 DOI: 10.1021/jacs.3c12419] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/17/2024]
Abstract
The twin boundary, a common lattice plane of mirror-symmetric crystals, may have high reactivity due to special atomic coordination. However, twinning platinum and iridium nanocatalysts are grand challenges due to the high stacking fault energies that are nearly 1 order of magnitude larger than those of easy-twinning gold and silver. Here, we demonstrate that Turing structuring, realized by selective etching of superthin metal film, provides 14.3 and 18.9 times increases in twin-boundary densities for platinum and iridium nanonets, comparable to the highly twinned silver nanocatalysts. The Turing configurations with abundant low-coordination atoms contribute to the formation of nanotwins and create a large active surface area. Theoretical calculations reveal that the specific atom arrangement on the twin boundary changes the electronic structure and reduces the energy barrier of water dissociation. The optimal Turing-type platinum nanonets demonstrated excellent hydrogen-evolution-reaction performance with a 25.6 mV overpotential at 10.0 mA·cm-2 and a 14.8-fold increase in mass activity. And the bifunctional Turing iridium catalysts integrated in the water electrolyzer had a mass activity 23.0 times that of commercial iridium catalysts. This work opens a new avenue for nanocrystal twinning as a facile paradigm for designing high-performance nanocatalysts.
Collapse
Affiliation(s)
- Jialun Gu
- Department of Mechanical Engineering, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong 999077, China
- Hong Kong Branch of National Precious Metals Material Engineering Research Centre, City University of Hong Kong, Hong Kong 999077, China
| | - Lanxi Li
- Hong Kong Branch of National Precious Metals Material Engineering Research Centre, City University of Hong Kong, Hong Kong 999077, China
- Department of Materials Science and Engineering, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong 999077, China
| | - Qi Yang
- Department of Chemistry, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong 999077, China
| | - Fubo Tian
- State Key Laboratory of Superhard Materials, College of Physics, Jilin University, Changchun 130012, China
| | - Wei Zhao
- State Key Lab of New Ceramics and Fine Processing, School of Materials Science and Engineering, Tsinghua University, Beijing 100084, China
| | - Youneng Xie
- Department of Mechanical Engineering, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong 999077, China
- Hong Kong Branch of National Precious Metals Material Engineering Research Centre, City University of Hong Kong, Hong Kong 999077, China
| | - Jinli Yu
- Department of Chemistry, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong 999077, China
| | - An Zhang
- Department of Chemistry, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong 999077, China
| | - Lei Zhang
- Department of Mechanical Engineering, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong 999077, China
- Hong Kong Branch of National Precious Metals Material Engineering Research Centre, City University of Hong Kong, Hong Kong 999077, China
| | - Hongkun Li
- Hong Kong Branch of National Precious Metals Material Engineering Research Centre, City University of Hong Kong, Hong Kong 999077, China
- Department of Materials Science and Engineering, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong 999077, China
| | - Jing Zhong
- Hong Kong Branch of National Precious Metals Material Engineering Research Centre, City University of Hong Kong, Hong Kong 999077, China
- Department of Materials Science and Engineering, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong 999077, China
| | - Jiali Jiang
- Department of Mechanical Engineering, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong 999077, China
- Hong Kong Branch of National Precious Metals Material Engineering Research Centre, City University of Hong Kong, Hong Kong 999077, China
| | - Yanju Wang
- Department of Mechanical Engineering, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong 999077, China
- Hong Kong Branch of National Precious Metals Material Engineering Research Centre, City University of Hong Kong, Hong Kong 999077, China
| | - Jiahua Liu
- Hong Kong Branch of National Precious Metals Material Engineering Research Centre, City University of Hong Kong, Hong Kong 999077, China
- Department of Materials Science and Engineering, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong 999077, China
| | - Jian Lu
- Department of Mechanical Engineering, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong 999077, China
- Hong Kong Branch of National Precious Metals Material Engineering Research Centre, City University of Hong Kong, Hong Kong 999077, China
- Department of Materials Science and Engineering, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong 999077, China
- CityU-Shenzhen Futian Research Institute, No. 3, Binglang Road, Futian District, Shenzhen 518000, China
- Centre for Advanced Structural Materials, City University of Hong Kong Shenzhen Research Institute, Greater Bay Joint Division, Shenyang National Laboratory for Materials Science, Shenzhen 518000, China
| |
Collapse
|
44
|
Zheng X, Wu H, Gao Y, Chen S, Xue Y, Li Y. Controllable Assembly of Highly Oxidized Cobalt on Graphdiyne Surface for Efficient Conversion of Nitrogen into Nitric Acid. Angew Chem Int Ed Engl 2024; 63:e202316723. [PMID: 38192242 DOI: 10.1002/anie.202316723] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Revised: 12/25/2023] [Accepted: 01/08/2024] [Indexed: 01/10/2024]
Abstract
The manufacture of nitric acid (HNO3 ) consumes large amounts of energy and causes serious environmental pollution. Electrochemical synthesis is regarded as a key way to eliminate carbon emissions from the chemicals industry. The selective electrosynthesis of HNO3 from nitrogen was achieved by controllable assembly of cobalt metal on graphdiyne surface using a powerful tool of electrochemistry at ambient conditions. As an advanced material, graphdiyne (GDY) has a large conjugated structure on its surface and is rich in sp-C triple bond skeleton, which can achieve strong interaction with metal atoms, resulting in incomplete charge transfer between graphdiyne and cobalt atoms. The experimental and theoretical calculation results show that the highly oxidized cobalt on graphdiyne (HOCo/GDY) can selectively and efficiently activate and convert the nitrogen into the key intermediate *NO, which promotes the efficient overall conversion performance of nitrogen to nitric acid. Thus, the highest nitric acid yield (192.0 μg h-1 mg-1 ) and Faradaic efficiency (21.5 %) were achieved at low potentials.
Collapse
Affiliation(s)
- Xuchen Zheng
- CAS Key Laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China
- School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Han Wu
- CAS Key Laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China
- School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Yang Gao
- CAS Key Laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China
| | - Siao Chen
- CAS Key Laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China
- School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Yurui Xue
- CAS Key Laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China
- Shandong Provincial Key Laboratory for Science of Material Creation and Energy Conversion, Science Center for Material Creation and Energy Conversion, School of Chemistry and Chemical Engineering, Shandong University, Jinan, 250100, China
| | - Yuliang Li
- CAS Key Laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China
- School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| |
Collapse
|
45
|
Yu X, Lin L, Pei C, Ji S, Sun Y, Wang Y, Kyu Kim J, Seok Park H, Pang H. Immobilizing Bimetallic RuCo Nanoalloys on Few-Layered MXene as a Robust Bifunctional Electrocatalyst for Overall Water Splitting. Chemistry 2024; 30:e202303524. [PMID: 37965774 DOI: 10.1002/chem.202303524] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Revised: 11/15/2023] [Accepted: 11/15/2023] [Indexed: 11/16/2023]
Abstract
Doping Co atoms into Ru lattices can tune the electronic structure of active sites, and the conductive MXene can adjust the electrical conductivity of catalysts, which are both favorable for improving the electrocatalytic activity of the catalyst for water splitting. Here, ruthenium-cobalt bimetallic nanoalloys coupled with exfoliated Ti3 C2 Tx MXene (RuCo-Ti3 C2 Tx ) have been constructed by ice-templated and thermal activation. Due to the strong interaction between the RuCo nanoalloys and conductive MXene, RuCo-Ti3 C2 Tx not only exhibits an excellent hydrogen evolution reaction (HER) performance with a low overpotential and Tafel slope (60 mV, 34.8 mV dec-1 in 0.5 M H2 SO4 and 52 mV, 38.7 mV dec-1 in 1 M KOH), but also good oxygen evolution reaction (OER) performance in an alkaline electrolyte (266 mV, 111.1 mV dec-1 in 1 M KOH). The assembled RuCo-Ti3 C2 Tx ||RuCo-Ti3 C2 Tx electrolyzer requires a lower potential (1.56 V) than does the Pt/C||RuO2 electrolyzer at 10 mA cm-2 . A boosted catalytic HER activity from immobilizing the RuCo nanoalloys on MXene was unveiled by density functional theory calculations. This study provides a feasible and efficient strategy for developing MXene-based catalysts for overall water splitting.
Collapse
Affiliation(s)
- Xu Yu
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou, 225002, P. R. China
| | - Longjie Lin
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou, 225002, P. R. China
| | - Chengang Pei
- School of Chemical Engineering, College of Engineering, Sungkyunkwan University, 2066, Seobu-ro, Jangan-gu, Suwon-si, Gyeonggi-do, 440-746, Republic of Korea
| | - Shenjing Ji
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou, 225002, P. R. China
| | - Yuanyuan Sun
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou, 225002, P. R. China
| | - Yang Wang
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou, 225002, P. R. China
| | - Jung Kyu Kim
- School of Chemical Engineering, College of Engineering, Sungkyunkwan University, 2066, Seobu-ro, Jangan-gu, Suwon-si, Gyeonggi-do, 440-746, Republic of Korea
| | - Ho Seok Park
- School of Chemical Engineering, College of Engineering, Sungkyunkwan University, 2066, Seobu-ro, Jangan-gu, Suwon-si, Gyeonggi-do, 440-746, Republic of Korea
| | - Huan Pang
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou, 225002, P. R. China
| |
Collapse
|
46
|
Zhao X, Li WP, Cao Y, Portniagin A, Tang B, Wang S, Liu Q, Yu DYW, Zhong X, Zheng X, Rogach AL. Dual-Atom Co/Ni Electrocatalyst Anchored at the Surface-Modified Ti 3C 2T x MXene Enables Efficient Hydrogen and Oxygen Evolution Reactions. ACS NANO 2024; 18:4256-4268. [PMID: 38265044 DOI: 10.1021/acsnano.3c09639] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/25/2024]
Abstract
Dual-atom catalytic sites on conductive substrates offer a promising opportunity for accelerating the kinetics of multistep hydrogen and oxygen evolution reactions (HER and OER, respectively). Using MXenes as substrates is a promising strategy for depositing those dual-atom electrocatalysts, if the efficient surface anchoring strategy ensuring metal-substrate interactions and sufficient mass loading is established. We introduce a surface-modification strategy of MXene substrates by preadsorbing L-tryptophan molecules, which enabled attachment of dual-atom Co/Ni electrocatalyst at the surface of Ti3C2Tx by forming N-Co/Ni-O bonds, with mass loading reaching as high as 5.6 wt %. The electron delocalization resulting from terminated O atoms on MXene substrates, N atoms in L-tryptophan anchoring moieties, and catalytic metal atoms Co and Ni provides an optimal adsorption strength of intermediates and boosts the HER and OER kinetics, thereby notably promoting the intrinsic activity of the electrocatalyst. CoNi-Ti3C2Tx electrocatalyst displayed HER and OER overpotentials of 31 and 241 mV at 10 mA cm-2, respectively. Importantly, the CoNi-Ti3C2Tx electrocatalyst also exhibited high operational stability for both OER and HER over 100 h at an industrially relevant current density of 500 mA cm-2. Our study provided guidance for constructing dual-atom active metal sites on MXene substrates to synergistically enhance the electrochemical efficiency and stability of the energy conversion and storage systems.
Collapse
Affiliation(s)
- Xin Zhao
- Department of Materials Science and Engineering, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, Hong Kong S.A.R. 999077, P.R. China
| | - Wan-Peng Li
- Department of Materials Science and Engineering, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, Hong Kong S.A.R. 999077, P.R. China
| | - Yanhui Cao
- School of Materials Science and Engineering, Tianjin University, Tianjin 300072, P. R. China
| | - Arsenii Portniagin
- Department of Materials Science and Engineering, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, Hong Kong S.A.R. 999077, P.R. China
| | - Bing Tang
- Department of Materials Science and Engineering, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, Hong Kong S.A.R. 999077, P.R. China
| | - Shixun Wang
- Department of Materials Science and Engineering, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, Hong Kong S.A.R. 999077, P.R. China
| | - Qi Liu
- Department of Materials Science and Engineering, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, Hong Kong S.A.R. 999077, P.R. China
| | - Denis Y W Yu
- Research Center for Energy and Environmental Materials (GREEN), National Institute for Materials Science, Namiki 1-1, Tsukuba, Ibaraki 305-0044, Japan
| | - Xiaoyan Zhong
- Department of Materials Science and Engineering, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, Hong Kong S.A.R. 999077, P.R. China
| | - Xuerong Zheng
- Department of Materials Science and Engineering, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, Hong Kong S.A.R. 999077, P.R. China
- School of Materials Science and Engineering, Tianjin University, Tianjin 300072, P. R. China
- Key Laboratory of Pico Electron Microscopy of Hainan Province, School of Materials Science and Engineering, Hainan University, Haikou 570228, P.R. China
| | - Andrey L Rogach
- Department of Materials Science and Engineering, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, Hong Kong S.A.R. 999077, P.R. China
| |
Collapse
|
47
|
Dan M, Zhang X, Yang Y, Yang J, Wu F, Zhao S, Liu ZQ. Dual-axial engineering on atomically dispersed catalysts for ultrastable oxygen reduction in acidic and alkaline solutions. Proc Natl Acad Sci U S A 2024; 121:e2318174121. [PMID: 38289955 PMCID: PMC10861853 DOI: 10.1073/pnas.2318174121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Accepted: 12/13/2023] [Indexed: 02/01/2024] Open
Abstract
Atomically dispersed catalysts are a promising alternative to platinum group metal catalysts for catalyzing the oxygen reduction reaction (ORR), while limited durability during the electrocatalytic process severely restricts their practical application. Here, we report an atomically dispersed Co-doped carbon-nitrogen bilayer catalyst with unique dual-axial Co-C bonds (denoted as Co/DACN) by a smart phenyl-carbon-induced strategy, realizing highly efficient electrocatalytic ORR in both alkaline and acidic media. The corresponding half-wave potential for ORR is up to 0.85 and 0.77 V (vs. reversible hydrogen electrode (RHE)) in 0.5 M H2SO4 and 0.1 M KOH, respectively, representing the best ORR activity among all non-noble metal catalysts reported to date. Impressively, the Zn-air battery (ZAB) equipped with Co/DACN cathode achieves outstanding durability after 1,688 h operation at 10 mA cm-2 with a high current density (154.2 mA cm-2) and a peak power density (210.1 mW cm-2). Density functional theory calculations reveal that the unique dual-axial cross-linking Co-C bonds of Co/DACN significantly enhance the stability during ORR and also facilitate the 4e- ORR pathway by forming a joint electron pool due to the improved interlayer electron mobility. We believe that axial engineering opens a broad avenue to develop high-performance heterogeneous electrocatalysts for advanced energy conversion and storage.
Collapse
Affiliation(s)
- Meng Dan
- School of Chemistry and Chemical Engineering/Institute of Clean Energy Materials/Guangzhou Key Laboratory for Clean Energy and Materials/Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, Guangzhou University, Guangzhou510006, People’s Republic of China
- College of Materials Science & Engineering, Taiyuan University of Technology, Shanxi030024, People’s Republic of China
| | - Xiting Zhang
- School of Chemistry and Chemical Engineering/Institute of Clean Energy Materials/Guangzhou Key Laboratory for Clean Energy and Materials/Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, Guangzhou University, Guangzhou510006, People’s Republic of China
| | - Yongchao Yang
- School of Chemical and Biomolecular Engineering, The University of Sydney, Sydney, NSW2006, Australia
| | - Jingfei Yang
- School of Chemistry and Chemical Engineering/Institute of Clean Energy Materials/Guangzhou Key Laboratory for Clean Energy and Materials/Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, Guangzhou University, Guangzhou510006, People’s Republic of China
| | - Fengxiu Wu
- School of Chemistry and Chemical Engineering/Institute of Clean Energy Materials/Guangzhou Key Laboratory for Clean Energy and Materials/Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, Guangzhou University, Guangzhou510006, People’s Republic of China
| | - Shenlong Zhao
- School of Chemical and Biomolecular Engineering, The University of Sydney, Sydney, NSW2006, Australia
| | - Zhao-Qing Liu
- School of Chemistry and Chemical Engineering/Institute of Clean Energy Materials/Guangzhou Key Laboratory for Clean Energy and Materials/Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, Guangzhou University, Guangzhou510006, People’s Republic of China
| |
Collapse
|
48
|
Liu G, Shih AJ, Deng H, Ojha K, Chen X, Luo M, McCrum IT, Koper MTM, Greeley J, Zeng Z. Site-specific reactivity of stepped Pt surfaces driven by stress release. Nature 2024; 626:1005-1010. [PMID: 38418918 DOI: 10.1038/s41586-024-07090-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2022] [Accepted: 01/18/2024] [Indexed: 03/02/2024]
Abstract
Heterogeneous catalysts are widely used to promote chemical reactions. Although it is known that chemical reactions usually happen on catalyst surfaces, only specific surface sites have high catalytic activity. Thus, identifying active sites and maximizing their presence lies at the heart of catalysis research1-4, in which the classic model is to categorize active sites in terms of distinct surface motifs, such as terraces and steps1,5-10. However, such a simple categorization often leads to orders of magnitude errors in catalyst activity predictions and qualitative uncertainties of active sites7,8,11,12, thus limiting opportunities for catalyst design. Here, using stepped Pt(111) surfaces and the electrochemical oxygen reduction reaction (ORR) as examples, we demonstrate that the root cause of larger errors and uncertainties is a simplified categorization that overlooks atomic site-specific reactivity driven by surface stress release. Specifically, surface stress release at steps introduces inhomogeneous strain fields, with up to 5.5% compression, leading to distinct electronic structures and reactivity for terrace atoms with identical local coordination, and resulting in atomic site-specific enhancement of ORR activity. For the terrace atoms flanking both sides of the step edge, the enhancement is up to 50 times higher than that of the atoms in the middle of the terrace, which permits control of ORR reactivity by either varying terrace widths or controlling external stress. Thus, the discovery of the above synergy provides a new perspective for both fundamental understanding of catalytically active atomic sites and design principles of heterogeneous catalysts.
Collapse
Affiliation(s)
- Guangdong Liu
- Hunan Provincial Key Laboratory of High-Energy Scale Physics and Applications, School of Physics and Electronics, Hunan University, Changsha, China
| | - Arthur J Shih
- Leiden Institute of Chemistry, Leiden University, Leiden, The Netherlands
| | - Huiqiu Deng
- Hunan Provincial Key Laboratory of High-Energy Scale Physics and Applications, School of Physics and Electronics, Hunan University, Changsha, China
| | - Kasinath Ojha
- Leiden Institute of Chemistry, Leiden University, Leiden, The Netherlands
| | - Xiaoting Chen
- Leiden Institute of Chemistry, Leiden University, Leiden, The Netherlands
| | - Mingchuan Luo
- Leiden Institute of Chemistry, Leiden University, Leiden, The Netherlands
| | - Ian T McCrum
- Department of Chemical and Biomolecular Engineering, Clarkson University, Potsdam, NY, USA
| | - Marc T M Koper
- Leiden Institute of Chemistry, Leiden University, Leiden, The Netherlands
| | - Jeffrey Greeley
- Davidson School of Chemical Engineering, Purdue University, West Lafayette, IN, USA.
| | - Zhenhua Zeng
- Davidson School of Chemical Engineering, Purdue University, West Lafayette, IN, USA.
| |
Collapse
|
49
|
Xu W, Zeng R, Rebarchik M, Posada-Borbón A, Li H, Pollock CJ, Mavrikakis M, Abruña HD. Atomically Dispersed Zn/Co-N-C as ORR Electrocatalysts for Alkaline Fuel Cells. J Am Chem Soc 2024; 146:2593-2603. [PMID: 38235653 DOI: 10.1021/jacs.3c11355] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2024]
Abstract
Hydrogen fuel cells have drawn increasing attention as one of the most promising next-generation power sources for future automotive transportation. Developing efficient, durable, and low-cost electrocatalysts, to accelerate the sluggish oxygen reduction reaction (ORR) kinetics, is urgently needed to advance fuel cell technologies. Herein, we report on metal-organic frameworks-derived nonprecious dual metal single-atom catalysts (SACs) (Zn/Co-N-C), consisting of Co-N4 and Zn-N4 local structures. These catalysts exhibited superior ORR activity with a half-wave potential (E1/2) of 0.938 V versus RHE (reversible hydrogen electrode) and robust stability (ΔE1/2 = -8.5 mV) after 50k electrochemical cycles. Moreover, this remarkable performance was validated under realistic fuel cell working conditions, achieving a record-high peak power density of ∼1 W cm-2 among the reported SACs for alkaline fuel cells. Operando X-ray absorption spectroscopy was conducted to identify the active sites and reveal catalytic mechanistic insights. The results indicated that the Co atom in the Co-N4 structure was the main catalytically active center, where one axial oxygenated species binds to form an Oads-Co-N4 moiety during the ORR. In addition, theoretical studies, based on a potential-dependent microkinetic model and core-level shift calculations, showed good agreement with the experimental results and provided insights into the bonding of oxygen species on Co-N4 centers during the ORR. This work provides a comprehensive mechanistic understanding of the active sites in the Zn/Co-N-C catalysts and will pave the way for the future design and advancement of high-performance single-site electrocatalysts for fuel cells and other energy applications.
Collapse
Affiliation(s)
- Weixuan Xu
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, New York 14853, United States
| | - Rui Zeng
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, New York 14853, United States
| | - Michael Rebarchik
- Department of Chemical & Biological Engineering, University of Wisconsin-Madison, Madison, Wisconsin 53706, United States
| | - Alvaro Posada-Borbón
- Department of Chemical & Biological Engineering, University of Wisconsin-Madison, Madison, Wisconsin 53706, United States
| | - Huiqi Li
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, New York 14853, United States
| | - Christopher J Pollock
- Cornell High Energy Synchrotron Source, Wilson Laboratory, Cornell University, Ithaca, New York 14853, United States
| | - Manos Mavrikakis
- Department of Chemical & Biological Engineering, University of Wisconsin-Madison, Madison, Wisconsin 53706, United States
| | - Héctor D Abruña
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, New York 14853, United States
| |
Collapse
|
50
|
Song W, Xiao C, Ding J, Huang Z, Yang X, Zhang T, Mitlin D, Hu W. Review of Carbon Support Coordination Environments for Single Metal Atom Electrocatalysts (SACS). ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2301477. [PMID: 37078970 DOI: 10.1002/adma.202301477] [Citation(s) in RCA: 34] [Impact Index Per Article: 34.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Revised: 04/08/2023] [Indexed: 05/03/2023]
Abstract
This topical review focuses on the distinct role of carbon support coordination environment of single-atom catalysts (SACs) for electrocatalysis. The article begins with an overview of atomic coordination configurations in SACs, including a discussion of the advanced characterization techniques and simulation used for understanding the active sites. A summary of key electrocatalysis applications is then provided. These processes are oxygen reduction reaction (ORR), oxygen evolution reaction (OER), hydrogen evolution reaction (HER), nitrogen reduction reaction (NRR), and carbon dioxide reduction reaction (CO2 RR). The review then shifts to modulation of the metal atom-carbon coordination environments, focusing on nitrogen and other non-metal coordination through modulation at the first coordination shell and modulation in the second and higher coordination shells. Representative case studies are provided, starting with the classic four-nitrogen-coordinated single metal atom (MN4 ) based SACs. Bimetallic coordination models including homo-paired and hetero-paired active sites are also discussed, being categorized as emerging approaches. The theme of the discussions is the correlation between synthesis methods for selective doping, the carbon structure-electron configuration changes associated with the doping, the analytical techniques used to ascertain these changes, and the resultant electrocatalysis performance. Critical unanswered questions as well as promising underexplored research directions are identified.
Collapse
Affiliation(s)
- Wanqing Song
- Key Laboratory of Advanced Ceramics and Machining Technology (Ministry of Education), School of Materials Science and Engineering, Tianjin University, Tianjin, 300072, China
| | - Caixia Xiao
- Key Laboratory of Advanced Ceramics and Machining Technology (Ministry of Education), School of Materials Science and Engineering, Tianjin University, Tianjin, 300072, China
| | - Jia Ding
- Key Laboratory of Advanced Ceramics and Machining Technology (Ministry of Education), School of Materials Science and Engineering, Tianjin University, Tianjin, 300072, China
| | - Zechuan Huang
- Key Laboratory of Advanced Ceramics and Machining Technology (Ministry of Education), School of Materials Science and Engineering, Tianjin University, Tianjin, 300072, China
| | - Xinyi Yang
- Key Laboratory of Advanced Ceramics and Machining Technology (Ministry of Education), School of Materials Science and Engineering, Tianjin University, Tianjin, 300072, China
| | - Tao Zhang
- Key Laboratory of Advanced Ceramics and Machining Technology (Ministry of Education), School of Materials Science and Engineering, Tianjin University, Tianjin, 300072, China
| | - David Mitlin
- Materials Science Program and Texas Materials Institute, The University of Texas at Austin, Austin, TX, 78712-1591, USA
| | - Wenbin Hu
- Key Laboratory of Advanced Ceramics and Machining Technology (Ministry of Education), School of Materials Science and Engineering, Tianjin University, Tianjin, 300072, China
| |
Collapse
|