1
|
Verma R, Singhvi C, Venkatesh A, Polshettiwar V. Defects tune the acidic strength of amorphous aluminosilicates. Nat Commun 2024; 15:6899. [PMID: 39134554 PMCID: PMC11319355 DOI: 10.1038/s41467-024-51233-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Accepted: 07/17/2024] [Indexed: 08/15/2024] Open
Abstract
Crystalline zeolites have high acidity but limited utility due to microporosity, whereas mesoporous amorphous aluminosilicates offer better porosity but lack sufficient acidity. In this work, we investigated defect engineering to fine-tune the acidity of amorphous acidic aluminosilicates (AAS). Here we introduced oxygen vacancies in AAS to synthesize defective acidic aluminosilicates (D-AAS). 1H, 27Al, and 17O solid-state nuclear magnetic resonance (NMR) studies indicated that defects induced localized structural changes around the acidic sites, thereby modifying their acidity. X-ray photoelectron spectroscopy (XPS) and Fourier transform infrared (FTIR) spectroscopy studies substantiated that oxygen vacancies alter the chemical environment of Brønsted acidic sites of AAS. The effect of defect creation in AAS on its acidity and catalytic behavior was demonstrated using four different acid-catalyzed reactions namely, styrene oxide ring opening, vesidryl synthesis, Friedel-Crafts alkylation, and jasminaldehyde synthesis. The defects played a role in activating reactants during AAS-catalyzed reactions, enhancing the overall catalytic process. This was supported by in-situ FTIR, which provided insights into the molecular-level reaction mechanism and the role of defects in reactant activation. This study demonstrates defect engineering as a promising approach to fine-tune acidity in amorphous aluminosilicates, bridging the porosity and acidity gaps between mesoporous amorphous aluminosilicates and crystalline zeolites.
Collapse
Affiliation(s)
- Rishi Verma
- Department of Chemical Sciences, Tata Institute of Fundamental Research (TIFR), Mumbai, 400005, India
| | - Charvi Singhvi
- Department of Chemical Sciences, Tata Institute of Fundamental Research (TIFR), Mumbai, 400005, India
| | - Amrit Venkatesh
- National High Magnetic Field Laboratory, Florida State University, Tallahassee, FL, 32310, USA.
| | - Vivek Polshettiwar
- Department of Chemical Sciences, Tata Institute of Fundamental Research (TIFR), Mumbai, 400005, India.
| |
Collapse
|
2
|
Merino P, Martínez L, Santoro G, Martínez JI, Lauwaet K, Accolla M, Ruiz Del Arbol N, Sánchez-Sánchez C, Martín-Jimenez A, Otero R, Piantek M, Serrate D, Lebrón-Aguilar R, Quintanilla-López JE, Mendez J, De Andres PL, Martín-Gago JA. n-Alkanes formed by methyl-methylene addition as a source of meteoritic aliphatics. Commun Chem 2024; 7:165. [PMID: 39080475 PMCID: PMC11289383 DOI: 10.1038/s42004-024-01248-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Accepted: 07/18/2024] [Indexed: 08/02/2024] Open
Abstract
Aliphatics prevail in asteroids, comets, meteorites and other bodies in our solar system. They are also found in the interstellar and circumstellar media both in gas-phase and in dust grains. Among aliphatics, linear alkanes (n-CnH2n+2) are known to survive in carbonaceous chondrites in hundreds to thousands of parts per billion, encompassing sequences from CH4 to n-C31H64. Despite being systematically detected, the mechanism responsible for their formation in meteorites has yet to be identified. Based on advanced laboratory astrochemistry simulations, we propose a gas-phase synthesis mechanism for n-alkanes starting from carbon and hydrogen under conditions of temperature and pressure that mimic those found in carbon-rich circumstellar envelopes. We characterize the analogs generated in a customized sputter gas aggregation source using a combination of atomically precise scanning tunneling microscopy, non-contact atomic force microscopy and ex-situ gas chromatography-mass spectrometry. Within the formed carbon nanostructures, we identify the presence of n-alkanes with sizes ranging from n-C8H18 to n-C32H66. Ab-initio calculations of formation free energies, kinetic barriers, and kinetic chemical network modelling lead us to propose a gas-phase growth mechanism for the formation of large n-alkanes based on methyl-methylene addition (MMA). In this process, methylene serves as both a reagent and a catalyst for carbon chain growth. Our study provides evidence of an aliphatic gas-phase synthesis mechanism around evolved stars and provides a potential explanation for its presence in interstellar dust and meteorites.
Collapse
Affiliation(s)
- P Merino
- Instituto de Ciencia de Materiales de Madrid (ICMM), CSIC, Sor Juana Inés de la Cruz 3, 28049, Madrid, Spain.
| | - L Martínez
- Instituto de Ciencia de Materiales de Madrid (ICMM), CSIC, Sor Juana Inés de la Cruz 3, 28049, Madrid, Spain
| | - G Santoro
- Instituto de Estructura de la Materia (IEM), CSIC, Serrano 121, 28006, Madrid, Spain
| | - J I Martínez
- Instituto de Ciencia de Materiales de Madrid (ICMM), CSIC, Sor Juana Inés de la Cruz 3, 28049, Madrid, Spain
| | - K Lauwaet
- Instituto Madrileño de Estudios Avanzados IMDEA Nanociencia, Madrid, Spain
| | - M Accolla
- Instituto de Ciencia de Materiales de Madrid (ICMM), CSIC, Sor Juana Inés de la Cruz 3, 28049, Madrid, Spain
- INAF-Osservatorio Astrofisico di Catania, Via Santa Sofia 78, 95123, Catania, Italy
| | - N Ruiz Del Arbol
- Instituto de Ciencia de Materiales de Madrid (ICMM), CSIC, Sor Juana Inés de la Cruz 3, 28049, Madrid, Spain
| | - C Sánchez-Sánchez
- Instituto de Ciencia de Materiales de Madrid (ICMM), CSIC, Sor Juana Inés de la Cruz 3, 28049, Madrid, Spain
| | - A Martín-Jimenez
- Instituto Madrileño de Estudios Avanzados IMDEA Nanociencia, Madrid, Spain
| | - R Otero
- Instituto Madrileño de Estudios Avanzados IMDEA Nanociencia, Madrid, Spain
- Dep. De Física de la Materia Condensada, Universidad Autónoma de Madrid, 28049, Madrid, Spain
- IFIMAC, Universidad Autónoma de Madrid, 28049, Madrid, Spain
| | - M Piantek
- Laboratorio de Microscopias Avanzadas, Universidad de Zaragoza, 50018, Zaragoza, Spain
- Departamento de Física de la Materia Condensada, Universidad de Zaragoza, 50018, Zaragoza, Spain
| | - D Serrate
- Laboratorio de Microscopias Avanzadas, Universidad de Zaragoza, 50018, Zaragoza, Spain
- Departamento de Física de la Materia Condensada, Universidad de Zaragoza, 50018, Zaragoza, Spain
- Instituto de Nanociencia y Materiales de Aragón (INMA), CSIC-UNIZAR, 50009, Zaragoza, Spain
| | - R Lebrón-Aguilar
- Instituto de Química-Física "Blas Cabrera" (IQF), CSIC, Serrano, 119, 28006, Madrid, Spain
| | - J E Quintanilla-López
- Instituto de Química-Física "Blas Cabrera" (IQF), CSIC, Serrano, 119, 28006, Madrid, Spain
| | - J Mendez
- Instituto de Ciencia de Materiales de Madrid (ICMM), CSIC, Sor Juana Inés de la Cruz 3, 28049, Madrid, Spain
| | - P L De Andres
- Instituto de Ciencia de Materiales de Madrid (ICMM), CSIC, Sor Juana Inés de la Cruz 3, 28049, Madrid, Spain
| | - J A Martín-Gago
- Instituto de Ciencia de Materiales de Madrid (ICMM), CSIC, Sor Juana Inés de la Cruz 3, 28049, Madrid, Spain
| |
Collapse
|
3
|
Hao Z, Liu G, Wang P, Zhang W, Sun W, Zheng L, Guo S, Zhan S. In situ visualizing reveals potential drive of lattice expansion on defective support toward efficient removal of nitrogen oxides. Proc Natl Acad Sci U S A 2024; 121:e2311180121. [PMID: 38830101 PMCID: PMC11181023 DOI: 10.1073/pnas.2311180121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2023] [Accepted: 04/04/2024] [Indexed: 06/05/2024] Open
Abstract
As a sustainable and promising approach of removing of nitrogen oxides (NOx), catalytic reduction of NOx with H2 is highly desirable with a precise understanding to the structure-activity relationship of supported catalysts. In particular, the dynamic evolution of support at microscopic scale may play a critical role in heterogeneous catalysis, however, identifying the in situ structural change of support under working condition with atomic precision and revealing its role in catalysis is still a grand challenge. Herein, we visually capture the surface lattice expansion of WO3-x support in Pt-WO3-x catalyst induced by NO in the exemplified reduction of NO with H2 using in situ transmission electron microscopy and first reveal its important role in enhancing catalysis. We find that NO can adsorb on the oxygen vacancy sites of WO3-x and favorably induce the reversible stretching of W-O-W bonds during the reaction, which can reduce the adsorption energy of NO on Pt4 centers and the energy barrier of the rate-determining step. The comprehensive studies reveal that lattice expansion of WO3-x support can tune the catalytic performance of Pt-WO3-x catalyst, leading to 20% catalytic activity enhancement for the exemplified reduction of NO with H2. This work reveals that the lattice expansion of defective support can tune and optimize the catalytic performance at the atomic scale.
Collapse
Affiliation(s)
- Zhifei Hao
- Ministry of Education Key Laboratory of Pollution Processes and Environmental Criteria Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, Tianjin300350, People’s Republic of China
| | - Guoquan Liu
- Ministry of Education Key Laboratory of Pollution Processes and Environmental Criteria Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, Tianjin300350, People’s Republic of China
| | - Pengfei Wang
- Ministry of Education Key Laboratory of Pollution Processes and Environmental Criteria Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, Tianjin300350, People’s Republic of China
| | - Weiyu Zhang
- School of Materials Science and Engineering, Peking University, Beijing100871, People’s Republic of China
| | - Wenming Sun
- Department of Chemistry, Beijing Key Laboratory for Optical Materials and Photonic Devices, Capital Normal University, Beijing100048, People’s Republic of China
| | - Lirong Zheng
- Beijing Synchrotron Radiation Facility, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing100049, People’s Republic of China
| | - Shaojun Guo
- School of Materials Science and Engineering, Peking University, Beijing100871, People’s Republic of China
| | - Sihui Zhan
- Ministry of Education Key Laboratory of Pollution Processes and Environmental Criteria Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, Tianjin300350, People’s Republic of China
| |
Collapse
|
4
|
Jensen S, Mammen MHR, Hedevang M, Li Z, Lammich L, Lauritsen JV. Visualizing the gas-sensitive structure of the CuZn surface in methanol synthesis catalysis. Nat Commun 2024; 15:3865. [PMID: 38719827 PMCID: PMC11079032 DOI: 10.1038/s41467-024-48168-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Accepted: 04/23/2024] [Indexed: 05/12/2024] Open
Abstract
Methanol formation over Cu/ZnO catalysts is linked with a catalytically active phase created by contact between Cu nanoparticles and Zn species whose chemical and structural state depends on reaction conditions. Herein, we use variable-temperature scanning tunneling microscopy at elevated pressure conditions combined with X-ray photoelectron spectroscopy measurements to investigate the surface structures and chemical states that evolve when a CuZn/Cu(111) surface alloy is exposed to reaction gas mixtures. In CO2 hydrogenation conditions, Zn stays embedded in the CuZn surface, but once CO gas is added to the mixture, the Zn segregates onto the Cu surface. The Zn segregation is CO-induced, and establishes a new dynamic state of the catalyst surface where Zn is continually exchanged at the Cu surface. Candidates for the migrating few-atom Zn clusters are further identified in time-resolved imaging series. The findings point to a significant role of CO affecting the distribution of Zn in the multiphasic ZnO/CuZn/Cu catalysts.
Collapse
Affiliation(s)
- Sigmund Jensen
- Interdisciplinary Nanoscience Center (iNANO), Aarhus University, 8000, Aarhus C, Denmark
| | - Mathias H R Mammen
- Interdisciplinary Nanoscience Center (iNANO), Aarhus University, 8000, Aarhus C, Denmark
| | - Martin Hedevang
- Interdisciplinary Nanoscience Center (iNANO), Aarhus University, 8000, Aarhus C, Denmark
| | - Zheshen Li
- Department of Physics and Astronomy, Aarhus University, 8000, Aarhus C, Denmark
| | - Lutz Lammich
- Interdisciplinary Nanoscience Center (iNANO), Aarhus University, 8000, Aarhus C, Denmark
- Department of Physics and Astronomy, Aarhus University, 8000, Aarhus C, Denmark
| | - Jeppe V Lauritsen
- Interdisciplinary Nanoscience Center (iNANO), Aarhus University, 8000, Aarhus C, Denmark.
| |
Collapse
|
5
|
Pastor E, Lian Z, Xia L, Ecija D, Galán-Mascarós JR, Barja S, Giménez S, Arbiol J, López N, García de Arquer FP. Complementary probes for the electrochemical interface. Nat Rev Chem 2024; 8:159-178. [PMID: 38388837 DOI: 10.1038/s41570-024-00575-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/09/2024] [Indexed: 02/24/2024]
Abstract
The functions of electrochemical energy conversion and storage devices rely on the dynamic junction between a solid and a fluid: the electrochemical interface (EI). Many experimental techniques have been developed to probe the EI, but they provide only a partial picture. Building a full mechanistic understanding requires combining multiple probes, either successively or simultaneously. However, such combinations lead to important technical and theoretical challenges. In this Review, we focus on complementary optoelectronic probes and modelling to address the EI across different timescales and spatial scales - including mapping surface reconstruction, reactants and reaction modulators during operation. We discuss how combining these probes can facilitate a predictive design of the EI when closely integrated with theory.
Collapse
Affiliation(s)
- Ernest Pastor
- CNRS, IPR (Institut de Physique de Rennes), University of Rennes, Rennes, France.
- CNRS, Univ Rennes, DYNACOM (Dynamical Control of Materials Laboratory) - IRL2015, The University of Tokyo, Tokyo, Japan.
| | - Zan Lian
- ICIQ-Institute of Chemical Research of Catalonia, The Barcelona Institute of Science and Technology, Tarragona, Spain
| | - Lu Xia
- ICFO-Institut de Ciències Fotòniques, The Barcelona Institute of Science and Technology, Barcelona, Spain
| | - David Ecija
- IMDEA Nanoscience, Campus Universitario de Cantoblanco, Madrid, Spain
| | - José Ramón Galán-Mascarós
- ICIQ-Institute of Chemical Research of Catalonia, The Barcelona Institute of Science and Technology, Tarragona, Spain
- ICREA, Barcelona, Spain
| | - Sara Barja
- Department of Polymers and Advanced Materials, Centro de Física de Materiales (CFM), University of the Basque Country UPV/EHU, San Sebastián, Spain
- Donostia International Physics Center (DIPC), San Sebastián, Spain
- IKERBASQUE, Basque Foundation for Science, Bilbao, Spain
| | - Sixto Giménez
- Institute of Advanced Materials (INAM) Universitat Jaume I, Castelló, Spain
| | - Jordi Arbiol
- ICREA, Barcelona, Spain
- Catalan Institute of Nanoscience and Nanotechnology (ICN2), CSIC and BIST, Campus UAB, Bellaterra, Barcelona, Catalonia, Spain
| | - Núria López
- ICIQ-Institute of Chemical Research of Catalonia, The Barcelona Institute of Science and Technology, Tarragona, Spain
| | - F Pelayo García de Arquer
- ICFO-Institut de Ciències Fotòniques, The Barcelona Institute of Science and Technology, Barcelona, Spain.
| |
Collapse
|
6
|
Luo D, Liu X, Chang T, Bai J, Guo W, Zheng W, Wen X. Towards understanding the lower CH 4 selectivity of HCP-Co than FCC-Co in Fischer-Tropsch synthesis. Phys Chem Chem Phys 2024; 26:5704-5712. [PMID: 38289691 DOI: 10.1039/d3cp06041a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2024]
Abstract
In Fischer-Tropsch synthesis (FTS), the cobalt catalyst has higher C5+ and lower CH4 selectivity in the hcp phase than in the fcc phase. However, a detailed explanation of the intrinsic mechanism is still missing. The underlying reason was explored combining density functional theory, Wulff construction, and a particle-level descriptor based on the slab model of surfaces that are prevalent in the Wulff shape to provide single-particle level understanding. Using a particle-level indicator of the reaction rates, we have shown that it is more difficult to form CH4 on hcp-Co than on fcc-Co, due to the larger effective barrier difference of CH4 formation and C-C coupling on hcp-Co particles, which leads to the lower CH4 selectivity of hcp-Co in FTS. Among the exposed facets of fcc-Co, the (311) surface plays a pivotal role in promoting CH4 formation. The reduction of CH4 selectivity in cobalt-based FTS is achievable through phase engineering of Co from fcc to hcp or by tuning the temperature and size of the particles.
Collapse
Affiliation(s)
- Dan Luo
- Shanxi Key Laboratory of Ecological Protection and Resources Utilization of Yuncheng Salt Lake, Department of Applied Chemistry, Yuncheng University, 1155 Fudan West Street, Yuncheng 044000, China
- State Key Laboratory of Coal Conversion, Institute of Coal Chemistry, Chinese Academy of Sciences, Taiyuan, 030001, China.
| | - Xingchen Liu
- State Key Laboratory of Coal Conversion, Institute of Coal Chemistry, Chinese Academy of Sciences, Taiyuan, 030001, China.
- University of Chinese Academy of Sciences, No. 19A Yuquan Road, Beijing, 100049, P. R. China
| | - Tong Chang
- Shanxi Key Laboratory of Ecological Protection and Resources Utilization of Yuncheng Salt Lake, Department of Applied Chemistry, Yuncheng University, 1155 Fudan West Street, Yuncheng 044000, China
| | - Jiawei Bai
- State Key Laboratory of Coal Conversion, Institute of Coal Chemistry, Chinese Academy of Sciences, Taiyuan, 030001, China.
| | - Wenping Guo
- National Energy Center for Coal to Liquids, Synfuels China Co., Ltd, Huairou District, Beijing, 101400, China
| | - Wentao Zheng
- State Key Laboratory of Coal Conversion, Institute of Coal Chemistry, Chinese Academy of Sciences, Taiyuan, 030001, China.
| | - Xiaodong Wen
- State Key Laboratory of Coal Conversion, Institute of Coal Chemistry, Chinese Academy of Sciences, Taiyuan, 030001, China.
- University of Chinese Academy of Sciences, No. 19A Yuquan Road, Beijing, 100049, P. R. China
- National Energy Center for Coal to Liquids, Synfuels China Co., Ltd, Huairou District, Beijing, 101400, China
| |
Collapse
|
7
|
Fang Z, Bao A, Lai Y, Yao L, Zeng Z, Hou R, Li J, Tang D, Chen X, Huang C, Tan Y, Chen X, Guo Q, Yang X, Yang W. Direct Visualization of CO Interaction on Oxygen Poisoned Co(0001). J Phys Chem Lett 2023; 14:9385-9391. [PMID: 37823819 DOI: 10.1021/acs.jpclett.3c02479] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/13/2023]
Abstract
The poisoning of catalysts has always been a vital issue in catalytic reactions. In this study, direct observation of the interaction of CO and oxygen-poisoned Co(0001) has been achieved with scanning tunneling microscopy (STM), temperature-programmed desorption (TPD), and density functional theory calculation. A two-stage adsorption process of CO on a well-prepared p(2×2)-O layer covered Co(0001) was directly visualized. With increasing annealing time at a certain temperature after the CO dosage, the ordered (2 × 2) pattern formed in the first stage can be recovered, suggesting the weak interaction of CO with the O-covered Co(0001) surface in the latter stage. Compared to the clean Co(0001) surface, on an oxygen-poisoned surface, no further reaction was observed, illustrating the poisoning of the catalyst. Moreover, TPD results are in good agreement with the STM observation; a desorption energy of 0.35 eV is evaluated with a simple but accurate scheme.
Collapse
Affiliation(s)
- Zihao Fang
- Hangzhou Institute of Advanced Studies, Zhejiang Normal University, Hangzhou 311231, China
| | - Anran Bao
- Hangzhou Institute of Advanced Studies, Zhejiang Normal University, Hangzhou 311231, China
| | - Yuemiao Lai
- Department of Chemistry, Southern University of Science and Technology, Shenzhen, Guangdong 518055, China
| | - Lanlan Yao
- Hangzhou Institute of Advanced Studies, Zhejiang Normal University, Hangzhou 311231, China
| | - Ziling Zeng
- Hangzhou Institute of Advanced Studies, Zhejiang Normal University, Hangzhou 311231, China
| | - Ruijie Hou
- Hangzhou Institute of Advanced Studies, Zhejiang Normal University, Hangzhou 311231, China
| | - Junhao Li
- Hangzhou Institute of Advanced Studies, Zhejiang Normal University, Hangzhou 311231, China
| | - Dengfang Tang
- Hangzhou Institute of Advanced Studies, Zhejiang Normal University, Hangzhou 311231, China
| | - Xiao Chen
- Department of Chemistry, Southern University of Science and Technology, Shenzhen, Guangdong 518055, China
- Institute of Advanced Science Facilities, Shenzhen, Guangdong 518107, China
| | - Chuanqi Huang
- Hangzhou Institute of Advanced Studies, Zhejiang Normal University, Hangzhou 311231, China
| | - Yuan Tan
- Hangzhou Institute of Advanced Studies, Zhejiang Normal University, Hangzhou 311231, China
| | - Xingkun Chen
- Hangzhou Institute of Advanced Studies, Zhejiang Normal University, Hangzhou 311231, China
| | - Qing Guo
- Department of Chemistry, Southern University of Science and Technology, Shenzhen, Guangdong 518055, China
| | - Xueming Yang
- Hangzhou Institute of Advanced Studies, Zhejiang Normal University, Hangzhou 311231, China
- Department of Chemistry, Southern University of Science and Technology, Shenzhen, Guangdong 518055, China
| | - Wenshao Yang
- Hangzhou Institute of Advanced Studies, Zhejiang Normal University, Hangzhou 311231, China
| |
Collapse
|
8
|
Rao Z, Wang K, Cao Y, Feng Y, Huang Z, Chen Y, Wei S, Liu L, Gong Z, Cui Y, Li L, Tu X, Ma D, Zhou Y. Light-Reinforced Key Intermediate for Anticoking To Boost Highly Durable Methane Dry Reforming over Single Atom Ni Active Sites on CeO 2. J Am Chem Soc 2023. [PMID: 37792912 DOI: 10.1021/jacs.3c07077] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/06/2023]
Abstract
Dry reforming of methane (DRM) has been investigated for more than a century; the paramount stumbling block in its industrial application is the inevitable sintering of catalysts and excessive carbon emissions at high temperatures. However, the low-temperature DRM process still suffered from poor reactivity and severe catalyst deactivation from coking. Herein, we proposed a concept that highly durable DRM could be achieved at low temperatures via fabricating the active site integration with light irradiation. The active sites with Ni-O coordination (NiSA/CeO2) and Ni-Ni coordination (NiNP/CeO2) on CeO2, respectively, were successfully constructed to obtain two targeted reaction paths that produced the key intermediate (CH3O*) for anticoking during DRM. In particular, the operando diffuse reflectance infrared Fourier transform spectroscopy coupling with steady-state isotopic transient kinetic analysis (operando DRIFTS-SSITKA) was utilized and successfully tracked the anticoking paths during the DRM process. It was found that the path from CH3* to CH3O* over NiSA/CeO2 was the key path for anticoking. Furthermore, the targeted reaction path from CH3* to CH3O* was reinforced by light irradiation during the DRM process. Hence, the NiSA/CeO2 catalyst exhibits excellent stability with negligible carbon deposition for 230 h under thermo-photo catalytic DRM at a low temperature of 472 °C, while NiNP/CeO2 shows apparent coke deposition behavior after 0.5 h in solely thermal-driven DRM. The findings are vital as they provide critical insights into the simultaneous achievement of low-temperature and anticoking DRM process through distinguishing and directionally regulating the key intermediate species.
Collapse
Affiliation(s)
- Zhiqiang Rao
- State Key Laboratory of Oil and Gas Reservoir Geology and Exploitation, Southwest Petroleum University, Chengdu 610500, People's Republic of China
- School of New Energy and Materials, Southwest Petroleum University, Chengdu 610500, People's Republic of China
| | - Kaiwen Wang
- Beijing Key Lab of Microstructure and Properties of Advanced Materials, Beijing University of Technology, Beijing 100020, People's Republic of China
| | - Yuehan Cao
- School of New Energy and Materials, Southwest Petroleum University, Chengdu 610500, People's Republic of China
| | - Yibo Feng
- Beijing Key Lab of Microstructure and Properties of Advanced Materials, Beijing University of Technology, Beijing 100020, People's Republic of China
| | - Zeai Huang
- School of New Energy and Materials, Southwest Petroleum University, Chengdu 610500, People's Republic of China
| | - Yaolin Chen
- School of New Energy and Materials, Southwest Petroleum University, Chengdu 610500, People's Republic of China
| | - Shiqian Wei
- School of New Energy Materials and Chemistry, Leshan Normal University, Leshan 614000, People's Republic of China
| | - Luyu Liu
- School of New Energy and Materials, Southwest Petroleum University, Chengdu 610500, People's Republic of China
| | - Zhongmiao Gong
- Vacuum Interconnected Nanotech Workstation, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou 610500, People's Republic of China
| | - Yi Cui
- Vacuum Interconnected Nanotech Workstation, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou 610500, People's Republic of China
| | - Lina Li
- Shanghai Synchrotron Radiation Facility, Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai 201210, People's Republic of China
| | - Xin Tu
- Department of Electrical Engineering and Electronics, University of Liverpool, Liverpool L69 3GJ, United Kingdom
| | - Ding Ma
- Beijing National Laboratory for Molecular Sciences, College of Chemistry and Molecular Engineering and College of Engineering, Peking University, Beijing 100871, People's Republic of China
| | - Ying Zhou
- State Key Laboratory of Oil and Gas Reservoir Geology and Exploitation, Southwest Petroleum University, Chengdu 610500, People's Republic of China
- School of New Energy and Materials, Southwest Petroleum University, Chengdu 610500, People's Republic of China
| |
Collapse
|
9
|
Wenzel S, Boden D, van Lent R, Motaee E, Prabhu MK, Achour H, Groot IMN. Spectroscopic investigation of a Co(0001) model catalyst during exposure to H 2 and CO at near-ambient pressures. Phys Chem Chem Phys 2023; 25:25094-25104. [PMID: 37498615 PMCID: PMC10528786 DOI: 10.1039/d3cp02739b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Accepted: 07/13/2023] [Indexed: 07/28/2023]
Abstract
Cobalt catalysts, although already used industrially for Fischer-Tropsch synthesis, are prone to a number of deactivation mechanisms such as oxidation of the active phase, and the deposition of carbon and reaction products. We have performed near-ambient-pressure X-ray photoelectron spectroscopy on Co(0001) model catalysts during exposure to gases relevant to Fischer-Tropsch synthesis, i.e., CO and H2, at 0.25 mbar total pressure. At this pressure, CO seems to be more efficient at keeping the Co(0001) surface metallic than H2, which is the opposite behavior as reported in the literature for other pressure ranges. We offer an interpretation of these differences based on the preferred adsorption and dissociation sites of CO and H2 compared to the oxidizing agent water (present as impurity in the gas feed and one of the products of the reaction). Additionally, detailed carbon spectra measured at the HIPPIE beamline of MAX IV allow for the distinction of different adsorbed species: CO and COx species are present in correlation to the presence of oxygen on the surface. Carbidic carbon and graphitic carbon can both be removed by hydrogen, whereas adsorbed hydrocarbons possibly poison the surface.
Collapse
Affiliation(s)
- Sabine Wenzel
- Leiden Institute of Chemistry, Einsteinweg 55, 2333 CC Leiden, The Netherlands.
| | - Dajo Boden
- Leiden Institute of Chemistry, Einsteinweg 55, 2333 CC Leiden, The Netherlands.
| | - Richard van Lent
- Leiden Institute of Chemistry, Einsteinweg 55, 2333 CC Leiden, The Netherlands.
| | - Elahe Motaee
- Leiden Institute of Chemistry, Einsteinweg 55, 2333 CC Leiden, The Netherlands.
| | - Mahesh K Prabhu
- Leiden Institute of Chemistry, Einsteinweg 55, 2333 CC Leiden, The Netherlands.
| | - Hamed Achour
- Leiden Institute of Chemistry, Einsteinweg 55, 2333 CC Leiden, The Netherlands.
| | - Irene M N Groot
- Leiden Institute of Chemistry, Einsteinweg 55, 2333 CC Leiden, The Netherlands.
| |
Collapse
|
10
|
Luo GG, Pan ZH, Han BL, Dong GL, Deng CL, Azam M, Tao YW, He J, Sun CF, Sun D. Total Structure, Electronic Structure and Catalytic Hydrogenation Activity of Metal-Deficient Chiral Polyhydride Cu 57 Nanoclusters. Angew Chem Int Ed Engl 2023; 62:e202306849. [PMID: 37469101 DOI: 10.1002/anie.202306849] [Citation(s) in RCA: 14] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Revised: 07/16/2023] [Accepted: 07/17/2023] [Indexed: 07/21/2023]
Abstract
Accurate identifying and in-depth understanding of the defect sites in a working nanomaterial could hinge on establishing specific defect-activity relationships. Yet, atomically precise coinage-metal nanoclusters (NCs) possessing surface vacancy defects are scarce primarily owing to challenges in the synthesis and isolation of such defective NCs. Herein we report a mixed-ligand strategy to synthesizing an intrinsically chiral and metal-deficient copper hydride-rich NC [Cu57 H20 (PET)36 (TPP)4 ]+ (Cu57 H20 ). Its total structure (including hydrides) and electronic structure are well established by combined experimental and computational results. Crystal structure reveals Cu57 H20 features a cube-like Cu8 kernel embedded in a corner-missing metal-ligand shell of Cu49 (PET)36 (TPP)4 . Single Cu vacancy defect site occurs at one corner of the shell, evocative of mono-lacunary polyoxometalates. Theoretical calculations demonstrate that the above-mentioned point vacancy causes one surface hydride exposed as an interfacial capping μ3 -H- , which is accessible in chemical reaction, as proved by deuterated experiment. Moreover, Cu57 H20 shows catalytic activity in the hydrogenation of nitroarene. The success of this work opens the way for the research on well-defined chiral metal-deficient Cu and other metal NCs, including exploring their application in asymmetrical catalysis.
Collapse
Affiliation(s)
- Geng-Geng Luo
- College of Materials Science and Engineering, Huaqiao University, Xiamen, 361021, P. R. China
| | - Zhong-Hua Pan
- College of Materials Science and Engineering, Huaqiao University, Xiamen, 361021, P. R. China
| | - Bao-Liang Han
- School of Chemistry and Chemical Engineering, State Key Laboratory of Crystal Materials, Shandong University, Jinan, 250100, P. R. China
| | - Guang-Lei Dong
- College of Materials Science and Engineering, Huaqiao University, Xiamen, 361021, P. R. China
| | - Cheng-Long Deng
- College of Materials Science and Engineering, Huaqiao University, Xiamen, 361021, P. R. China
| | - Mohammad Azam
- Department of Chemistry, College of Science, King Saud University, P. O. Box 2455, Riyadh, 11451, Saudi Arabia
| | - Yun-Wen Tao
- Department of Chemistry, Southern Methodist University, 3215 Daniel Avenue, Dallas, TX, 75275-0314, USA
| | - Jiao He
- College of Materials Science and Engineering, Huaqiao University, Xiamen, 361021, P. R. China
| | - Cun-Fa Sun
- College of Materials Science and Engineering, Huaqiao University, Xiamen, 361021, P. R. China
| | - Di Sun
- School of Chemistry and Chemical Engineering, State Key Laboratory of Crystal Materials, Shandong University, Jinan, 250100, P. R. China
| |
Collapse
|
11
|
Lee SW, Luna ML, Berdunov N, Wan W, Kunze S, Shaikhutdinov S, Cuenya BR. Unraveling surface structures of gallium promoted transition metal catalysts in CO 2 hydrogenation. Nat Commun 2023; 14:4649. [PMID: 37532720 PMCID: PMC10397205 DOI: 10.1038/s41467-023-40361-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Accepted: 07/20/2023] [Indexed: 08/04/2023] Open
Abstract
Gallium-containing alloys have recently been reported to hydrogenate CO2 to methanol at ambient pressures. However, a full understanding of the Ga-promoted catalysts is still missing due to the lack of information about the surface structures formed under reaction conditions. Here, we employed near ambient pressure scanning tunneling microscopy and x-ray photoelectron spectroscopy to monitor the evolution of well-defined Cu-Ga surfaces during CO2 hydrogenation. We show the formation of two-dimensional Ga(III) oxide islands embedded into the Cu surface in the reaction atmosphere. The islands are a few atomic layers in thickness and considerably differ from bulk Ga2O3 polymorphs. Such a complex structure, which could not be determined with conventional characterization methods on powder catalysts, should be used for elucidating the reaction mechanism on the Ga-promoted metal catalysts.
Collapse
Affiliation(s)
- Si Woo Lee
- Department of Interface Science, Fritz Haber Institute of the Max Planck Society, 14195, Berlin, Germany
| | - Mauricio Lopez Luna
- Department of Interface Science, Fritz Haber Institute of the Max Planck Society, 14195, Berlin, Germany
| | - Nikolay Berdunov
- Department of Interface Science, Fritz Haber Institute of the Max Planck Society, 14195, Berlin, Germany
| | - Weiming Wan
- Department of Interface Science, Fritz Haber Institute of the Max Planck Society, 14195, Berlin, Germany
| | - Sebastian Kunze
- Department of Interface Science, Fritz Haber Institute of the Max Planck Society, 14195, Berlin, Germany
| | - Shamil Shaikhutdinov
- Department of Interface Science, Fritz Haber Institute of the Max Planck Society, 14195, Berlin, Germany.
| | - Beatriz Roldan Cuenya
- Department of Interface Science, Fritz Haber Institute of the Max Planck Society, 14195, Berlin, Germany
| |
Collapse
|
12
|
Yin H, de Groot JG, Brune H. Highly Ordered and Thermally Stable FeRh Cluster Superlattice on Graphene for Low-Temperature Catalytic CO Oxidation. Chemphyschem 2023; 24:e202200648. [PMID: 36380531 DOI: 10.1002/cphc.202200648] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Revised: 11/13/2022] [Accepted: 11/14/2022] [Indexed: 11/18/2022]
Abstract
We report on bimetallic FeRh clusters with a narrow size-distribution grown on graphene on Ir(111) as a carbon-supported model catalyst to promote low-temperature catalytic CO oxidation. By combining scanning tunneling microscopy with catalytic performance measurements, we reveal that Fe-Rh interfaces are active sites for oxygen activation and CO oxidation, especially at low temperatures. Rh core Fe shell clusters not only provide the active sites for the reaction, but also thermally stabilize surface Fe atoms towards coarsening compared with pure Fe clusters. Alternate isotope-labelled CO/O2 pulse experiments show opposite trends on preferential oxidation (PROX) performance because of surface hydroxyl species formation and competitive adsorption between CO and O2 . The present results introduce a general strategy to stabilize metallic clusters and to reveal the reaction mechanisms on bimetallic structures for low-temperature catalytic CO oxidation as well as preferential oxidation.
Collapse
Affiliation(s)
- Hao Yin
- Institute of Physics, École Polytechnique Fédérale de Lausanne (EPFL), 1015, Lausanne, Switzerland
| | - Jean-Guillaume de Groot
- Institute of Physics, École Polytechnique Fédérale de Lausanne (EPFL), 1015, Lausanne, Switzerland
| | - Harald Brune
- Institute of Physics, École Polytechnique Fédérale de Lausanne (EPFL), 1015, Lausanne, Switzerland
| |
Collapse
|
13
|
Zou Z, Sala A, Panighel M, Tosi E, Lacovig P, Lizzit S, Scardamaglia M, Kokkonen E, Cepek C, Africh C, Comelli G, Günther S, Patera LL. In Situ Observation of C-C Coupling and Step Poisoning During the Growth of Hydrocarbon Chains on Ni(111). Angew Chem Int Ed Engl 2023; 62:e202213295. [PMID: 36325959 PMCID: PMC10108169 DOI: 10.1002/anie.202213295] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2022] [Indexed: 11/06/2022]
Abstract
The synthesis of high-value fuels and plastics starting from small hydrocarbon molecules plays a central role in the current transition towards renewable energy. However, the detailed mechanisms driving the growth of hydrocarbon chains remain to a large extent unknown. Here we investigated the formation of hydrocarbon chains resulting from acetylene polymerization on a Ni(111) model catalyst surface. Exploiting X-ray photoelectron spectroscopy up to near-ambient pressures, the intermediate species and reaction products have been identified. Complementary in situ scanning tunneling microscopy observations shed light onto the C-C coupling mechanism. While the step edges of the metal catalyst are commonly assumed to be the active sites for the C-C coupling, we showed that the polymerization occurs instead on the flat terraces of the metallic surface.
Collapse
Affiliation(s)
- Zhiyu Zou
- CNR-IOM Materials Foundry Institute34149TriesteItaly
| | - Alessandro Sala
- CNR-IOM Materials Foundry Institute34149TriesteItaly
- Department of PhysicsUniversity of Trieste34127TriesteItaly
| | | | | | | | | | | | | | - Cinzia Cepek
- CNR-IOM Materials Foundry Institute34149TriesteItaly
| | | | - Giovanni Comelli
- CNR-IOM Materials Foundry Institute34149TriesteItaly
- Department of PhysicsUniversity of Trieste34127TriesteItaly
| | - Sebastian Günther
- Department of Chemistry and Catalysis Research CenterTechnical University of Munich85748GarchingGermany
| | - Laerte L. Patera
- Department of Chemistry and Catalysis Research CenterTechnical University of Munich85748GarchingGermany
- Institute of Physical ChemistryUniversity of Innsbruck6020InnsbruckAustria
| |
Collapse
|
14
|
Svenum IH, Strømsheim MD, Knudsen J, Venvik HJ. Activity and segregation behavior of Pd75%Ag25%(111) during CO oxidation– an in situ NAP-XPS investigation. J Catal 2022. [DOI: 10.1016/j.jcat.2022.11.038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
15
|
Denchy MA, Wang L, Bilik BR, Hansen L, Albornoz S, Lizano F, Blando N, Hicks Z, Gantefoer G, Bowen KH. Ultrasmall Cluster Model for Investigating Single Atom Catalysis: Dehydrogenation of 1-Propanamine by Size-Selected Pt 1Zr 2O 7 Clusters Supported on HOPG. J Phys Chem A 2022; 126:7578-7590. [PMID: 36257817 DOI: 10.1021/acs.jpca.2c03149] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The selective dehydrogenation of hydrocarbons and their functionalized derivatives is a promising pathway in the realization of endothermic fuel systems for powering important technologies such as hypersonic aircraft. The recent surge in interest in single atom catalysts (SACs) over the past decade offers the opportunity to achieve the ultimate levels of selectivity through the subnanoscale design tailoring of novel catalysts. Experimental techniques capable of investigating the fundamental nature of the active sites of novel SACs in well-controlled model studies offer the chance to reveal promising insights. We report here an approach to accomplish this through the soft landing of mass-selected, ultrasmall metal oxide cluster ions, in which a single noble metal atom bound to a metal oxide moiety serves as a model SAC active site. This method allows the preparation of model catalysts in which monodispersed neutral SAC model active sites are decorated across an inert electrically conductive support at submonolayer surface coverage, in this case, Pt1Zr2O7 clusters supported on highly oriented pyrolytic graphite (HOPG). The results contained herein show the characterization of the Pt1Zr2O7/HOPG model catalyst by X-ray photoelectron spectroscopy (XPS), along with an investigation of its reactivity toward the functionalized hydrocarbon molecule, 1-propanamine. Through temperature-programmed desorption/reaction (TPD/R) experiments it was shown that Pt1Zr2O7/HOPG decomposes 1-propanamine exclusively into propionitrile and H2, which desorb at 425 and 550 K, respectively. Conversely, clusters without the single platinum atom, that is, Zr2O7/HOPG, exhibited no reactivity toward 1-propanamine. Hence, the single platinum atom in Pt1Zr2O7/HOPG was found to play a critical role in the observed reactivity.
Collapse
Affiliation(s)
- Michael A Denchy
- Department of Chemistry, Johns Hopkins University, Baltimore, Maryland 21218, United States
| | - Linjie Wang
- Department of Chemistry, Johns Hopkins University, Baltimore, Maryland 21218, United States
| | - Benjamin R Bilik
- Department of Chemistry, Johns Hopkins University, Baltimore, Maryland 21218, United States
| | - Lucas Hansen
- Department of Chemistry, Johns Hopkins University, Baltimore, Maryland 21218, United States
| | - Sandra Albornoz
- Department of Chemistry, Johns Hopkins University, Baltimore, Maryland 21218, United States
| | - Francisco Lizano
- Department of Chemistry, Johns Hopkins University, Baltimore, Maryland 21218, United States
| | - Nicolas Blando
- Department of Chemistry, Johns Hopkins University, Baltimore, Maryland 21218, United States
| | - Zachary Hicks
- Department of Chemistry, Johns Hopkins University, Baltimore, Maryland 21218, United States
| | - Gerd Gantefoer
- Fachbereich fuer Physik, Universitaet Konstanz, 78457 Konstanz, Germany
| | - Kit H Bowen
- Department of Chemistry, Johns Hopkins University, Baltimore, Maryland 21218, United States
| |
Collapse
|
16
|
Suo Y, Yao Y, Zhang Y, Xing S, Yuan ZY. Recent advances in cobalt-based Fischer-Tropsch synthesis catalysts. J IND ENG CHEM 2022. [DOI: 10.1016/j.jiec.2022.08.026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
17
|
Golder KM, Wintterlin J. In Situ/Operando STM of the Fischer–Tropsch Synthesis on a Co(101̅15) Surface─A Study to Bridge the Materials Gap between Single-Crystal Models and Supported Catalysts. ACS Catal 2022. [DOI: 10.1021/acscatal.2c00703] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Katharina M. Golder
- Department of Chemistry, Ludwig-Maximilians-Universität München, Butenandtstr. 5-13, 81377 Munich, Germany
| | - Joost Wintterlin
- Department of Chemistry, Ludwig-Maximilians-Universität München, Butenandtstr. 5-13, 81377 Munich, Germany
- Center for NanoScience, Schellingstr. 4, 80799 Munich, Germany
| |
Collapse
|
18
|
Hou R, Zeng Z, Wang S, Tang D, Tan Y, Chen X, Yang W, Huang C, Guo Q, Ding Y, Yang X. Atomic-Scale Observation of Sequential Oxidation Process on Co(0001). J Phys Chem Lett 2022; 13:5131-5136. [PMID: 35657666 DOI: 10.1021/acs.jpclett.2c01238] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Oxygen dissociation and activation on surfaces play a crucial role in heterogeneous catalysis and oxidation processes. In this study, we have conducted a series of scanning tunneling microscopy (STM) experiments combined with density functional theory calculation to investigate the oxidation process in a single crystal Co(0001) surface. For the first time, we show a comprehensive in situ STM study of the oxidation process of Co(0001) from an atomic point of view. With low O2 exposure at 90 K, chemisorbed oxygen pairs are observed showing a dumbbell-like STM feature. At a relatively higher temperature range of 160-250 K, a large-scale p(2 × 2)-O adlayer forms and the O adatoms show surprisingly high mobility. With the temperature of Co(0001) kept at ≥300 K, adsorption of oxygen leads to fast oxidation of the surface to amorphous cotton-like protrusions, which occur initially at the step/edge sites and interstitial defect sites.
Collapse
Affiliation(s)
- Ruijie Hou
- Hangzhou Institute of Advanced Studies, Zhejiang Normal University, Hangzhou 311231, China
| | - Ziling Zeng
- Hangzhou Institute of Advanced Studies, Zhejiang Normal University, Hangzhou 311231, China
| | - Shaoshan Wang
- Hangzhou Institute of Advanced Studies, Zhejiang Normal University, Hangzhou 311231, China
| | - Dengfang Tang
- Hangzhou Institute of Advanced Studies, Zhejiang Normal University, Hangzhou 311231, China
| | - Yuan Tan
- Hangzhou Institute of Advanced Studies, Zhejiang Normal University, Hangzhou 311231, China
| | - Xingkun Chen
- Hangzhou Institute of Advanced Studies, Zhejiang Normal University, Hangzhou 311231, China
| | - Wenshao Yang
- Hangzhou Institute of Advanced Studies, Zhejiang Normal University, Hangzhou 311231, China
| | - Chuanqi Huang
- Hangzhou Institute of Advanced Studies, Zhejiang Normal University, Hangzhou 311231, China
| | - Qing Guo
- Department of Chemistry, Southern University of Science and Technology, Shenzhen, Guangdong 518055, China
| | - Yunjie Ding
- Hangzhou Institute of Advanced Studies, Zhejiang Normal University, Hangzhou 311231, China
- Dalian National Laboratory for Clean Energy, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian 116023, China
- The State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian 116023, China
| | - Xueming Yang
- Hangzhou Institute of Advanced Studies, Zhejiang Normal University, Hangzhou 311231, China
- Department of Chemistry, Southern University of Science and Technology, Shenzhen, Guangdong 518055, China
| |
Collapse
|
19
|
CO adsorption on Co(0001) revisited: high-coverage CO superstructures on the close-packed surface of cobalt. J Catal 2022. [DOI: 10.1016/j.jcat.2022.03.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
20
|
Abstract
Catalysis is at the core of chemistry and has been essential to make all the goods surrounding us, including fuels, coatings, plastics and other functional materials. In the near future, catalysis will also be an essential tool in making the shift from a fossil-fuel-based to a more renewable and circular society. To make this reality, we have to better understand the fundamental concept of the active site in catalysis. Here, we discuss the physical meaning - and deduce the validity and, therefore, usefulness - of some common approaches in heterogeneous catalysis, such as linking catalyst activity to a 'turnover frequency' and explaining catalytic performance in terms of 'structure sensitivity' or 'structure insensitivity'. Catalytic concepts from the fields of enzymatic and homogeneous catalysis are compared, ultimately realizing that the struggle that one encounters in defining the active site in most solid catalysts is likely the one we must overcome to reach our end goal: tailoring the precise functioning of the active sites with respect to many different parameters to satisfy our ever-growing needs. This article ends with an outlook of what may become feasible within the not-too-distant future with modern experimental and theoretical tools at hand.
Collapse
|
21
|
Yasuda S, Kunitake Y, Osuga R, Nakamura K, Matsumoto T, Sago K, Kondo JN, Yabushita M, Muramatsu A, Yokoi T. Supported Nickel Zeolite Catalyst for Oxidative Conversion of Methane: Effect of Heteroatoms in the Zeolite Framework on Its Physicochemical and Catalytic Properties. CHEM LETT 2022. [DOI: 10.1246/cl.210563] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Shuhei Yasuda
- Institute of Innovative Research, Tokyo Institute of Technology, 4259 Nagatsuta, Midori-ku, Yokohama, Kanagawa 226-8503, Japan
| | - Yusuke Kunitake
- Institute of Innovative Research, Tokyo Institute of Technology, 4259 Nagatsuta, Midori-ku, Yokohama, Kanagawa 226-8503, Japan
| | - Ryota Osuga
- Institute of Multidisciplinary Research for Advanced Materials, Tohoku University, 2-1-1 Katahira, Aoba-ku, Sendai, Miyagi 980-8577, Japan
| | - Kengo Nakamura
- Institute of Innovative Research, Tokyo Institute of Technology, 4259 Nagatsuta, Midori-ku, Yokohama, Kanagawa 226-8503, Japan
| | - Takeshi Matsumoto
- Institute of Innovative Research, Tokyo Institute of Technology, 4259 Nagatsuta, Midori-ku, Yokohama, Kanagawa 226-8503, Japan
| | - Keita Sago
- Institute of Innovative Research, Tokyo Institute of Technology, 4259 Nagatsuta, Midori-ku, Yokohama, Kanagawa 226-8503, Japan
| | - Junko N. Kondo
- Institute of Innovative Research, Tokyo Institute of Technology, 4259 Nagatsuta, Midori-ku, Yokohama, Kanagawa 226-8503, Japan
| | - Mizuho Yabushita
- Department of Applied Chemistry, School of Engineering, Tohoku University, 6-6-07 Aoba, Aramaki, Aoba-ku, Sendai, Miyagi 980-8579, Japan
| | - Atsushi Muramatsu
- Institute of Multidisciplinary Research for Advanced Materials, Tohoku University, 2-1-1 Katahira, Aoba-ku, Sendai, Miyagi 980-8577, Japan
- Core Research for Evolutional Science and Technology, Japan Science and Technology Agency, 4-1-8 Honcho, Kawaguchi, Saitama 332-0012, Japan
| | - Toshiyuki Yokoi
- Institute of Innovative Research, Tokyo Institute of Technology, 4259 Nagatsuta, Midori-ku, Yokohama, Kanagawa 226-8503, Japan
| |
Collapse
|
22
|
Van Belleghem J, Yang J, Janssens P, Poissonnier J, Chen D, Marin GB, Thybaut JW. Microkinetic model validation for Fischer-Tropsch synthesis at methanation conditions based on steady state isotopic transient kinetic analysis. J IND ENG CHEM 2022. [DOI: 10.1016/j.jiec.2021.09.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
23
|
|
24
|
Golder KM, Böller B, Stienen G, Sickerling J, Wintterlin J. A highly sensitive gas chromatograph for in situ and operando experiments on catalytic reactions. THE REVIEW OF SCIENTIFIC INSTRUMENTS 2021; 92:124103. [PMID: 34972407 DOI: 10.1063/5.0068021] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/22/2021] [Accepted: 11/20/2021] [Indexed: 06/14/2023]
Abstract
We describe an automated gas sampling and injection unit for a gas chromatograph (GC). It has specially been designed for low concentrations of products formed in catalytic in situ and operando experiments when slow reactions on single crystal models are investigated. The unit makes use of a buffer volume that is filled with gas samples from the reactor at a reduced pressure. The gas samples are then compressed by He to the injection pressure of 1000 mbar and pushed into two sample loops of the GC, without major intermixing with He. With an additional cryo trap at one of the GC column heads, the design aims at concentrating the gas samples and focusing the peaks. The performance is characterized by experiments on the Fischer-Tropsch synthesis, using H2/CO mixtures (syngas) at 200 and 950 mbar and a Co(0001) single crystal sample as model catalyst. Chromatograms recorded during the reaction display sharp, well separated peaks of saturated and unsaturated C1 to C4 hydrocarbons formed by the reaction, whereas the syngas matrix only gives moderate signals that can be well separated from the product peaks. Detection and quantification limits of 0.4 and 1.3 ppb, respectively, have been achieved and turnover numbers as low as 10-5 s-1 could be measured. The system can be combined with all known analysis techniques used in in situ and operando experiments.
Collapse
Affiliation(s)
- Katharina M Golder
- Department Chemie, Ludwig-Maximilians-Universität München, 80377 Munich, Germany
| | - Bernhard Böller
- Department Chemie, Ludwig-Maximilians-Universität München, 80377 Munich, Germany
| | | | | | - Joost Wintterlin
- Department Chemie, Ludwig-Maximilians-Universität München, 80377 Munich, Germany
| |
Collapse
|
25
|
Full life cycle characterization strategies for spatiotemporal evolution of heterogeneous catalysts. CHINESE JOURNAL OF CATALYSIS 2021. [DOI: 10.1016/s1872-2067(20)63786-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
26
|
Sun Y, Wang Y, He J, Yusuf A, Wang Y, Yang G, Xiao X. Comprehensive kinetic model for acetylene pretreated mesoporous silica supported bimetallic Co-Ni catalyst during Fischer-Trospch synthesis. Chem Eng Sci 2021. [DOI: 10.1016/j.ces.2021.116828] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
27
|
Ferreira de Brito J, Corradini PG, Silva AB, Mascaro LH. Reduction of CO
2
by Photoelectrochemical Process Using Non‐Oxide Two‐Dimensional Nanomaterials – A Review. ChemElectroChem 2021. [DOI: 10.1002/celc.202101030] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Affiliation(s)
- Juliana Ferreira de Brito
- Department of Chemistry Federal University of São Carlos Rod. Washington Luiz, Km 235 CEP 13565-905 São Carlos – SP Brazil
| | - Patricia Gon Corradini
- Department of Chemistry Federal University of São Carlos Rod. Washington Luiz, Km 235 CEP 13565-905 São Carlos – SP Brazil
- Fluminense Federal Institute of Education, Science, and Technology Campus Itaperuna, BR 356, Km 3 CEP 28300-000 Itaperuna – RJ Brazil
| | - Anelisse Brunca Silva
- Department of Chemistry Federal University of São Carlos Rod. Washington Luiz, Km 235 CEP 13565-905 São Carlos – SP Brazil
| | - Lucia Helena Mascaro
- Department of Chemistry Federal University of São Carlos Rod. Washington Luiz, Km 235 CEP 13565-905 São Carlos – SP Brazil
| |
Collapse
|
28
|
Besenbacher F, Lauritsen J. Applications of high-resolution scanning probe microscopy in hydroprocessing catalysis studies. J Catal 2021. [DOI: 10.1016/j.jcat.2021.02.003] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
29
|
Lbadaoui-Darvas M, Garberoglio G, Karadima KS, Cordeiro MNDS, Nenes A, Takahama S. Molecular simulations of interfacial systems: challenges, applications and future perspectives. MOLECULAR SIMULATION 2021. [DOI: 10.1080/08927022.2021.1980215] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/09/2023]
Affiliation(s)
- Mária Lbadaoui-Darvas
- ENAC/IIE; Swiss Federal Institute of Technology Lausanne (EPFL), Lausanne, Switzerland
| | - Giovanni Garberoglio
- European Centre for Theoretical Studies in Nuclear Physics and Related Areas (FBK-ECT*), Trento, Italy
- Trento Institute for Fundamental Physics and Applications (TIFPA-INFN), Trento, Italy
| | - Katerina S. Karadima
- Department of Chemical Engineering, University of Patras, Patras, Greece
- Institute of Chemical Engineering Sciences, Foundation for Research and Technology Hellas(FORTH-ICE/HT), Patras, Greece
| | | | - Athanasios Nenes
- ENAC/IIE; Swiss Federal Institute of Technology Lausanne (EPFL), Lausanne, Switzerland
- Institute of Chemical Engineering Sciences, Foundation for Research and Technology Hellas(FORTH-ICE/HT), Patras, Greece
| | - Satoshi Takahama
- ENAC/IIE; Swiss Federal Institute of Technology Lausanne (EPFL), Lausanne, Switzerland
| |
Collapse
|
30
|
Piccolo L. Restructuring effects of the chemical environment in metal nanocatalysis and single-atom catalysis. Catal Today 2021. [DOI: 10.1016/j.cattod.2020.03.052] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
31
|
Liu X, Liu J, Yang Y, Li YW, Wen X. Theoretical Perspectives on the Modulation of Carbon on Transition-Metal Catalysts for Conversion of Carbon-Containing Resources. ACS Catal 2021. [DOI: 10.1021/acscatal.0c04739] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- Xingchen Liu
- State Key Laboratory of Coal Conversion, Institute of Coal Chemistry, Chinese Academy of Sciences, Taiyuan 030001, People’s Republic of China
- The University of Chinese Academy of Sciences, Beijing 100049, People’s Republic of China
| | - Jinjia Liu
- State Key Laboratory of Coal Conversion, Institute of Coal Chemistry, Chinese Academy of Sciences, Taiyuan 030001, People’s Republic of China
- The University of Chinese Academy of Sciences, Beijing 100049, People’s Republic of China
| | - Yong Yang
- State Key Laboratory of Coal Conversion, Institute of Coal Chemistry, Chinese Academy of Sciences, Taiyuan 030001, People’s Republic of China
- The University of Chinese Academy of Sciences, Beijing 100049, People’s Republic of China
- National Energy Center for Coal to Liquids, Synfuels China Co., Ltd., Beijing 101400, People’s Republic of China
| | - Yong-Wang Li
- State Key Laboratory of Coal Conversion, Institute of Coal Chemistry, Chinese Academy of Sciences, Taiyuan 030001, People’s Republic of China
- The University of Chinese Academy of Sciences, Beijing 100049, People’s Republic of China
- National Energy Center for Coal to Liquids, Synfuels China Co., Ltd., Beijing 101400, People’s Republic of China
| | - Xiaodong Wen
- State Key Laboratory of Coal Conversion, Institute of Coal Chemistry, Chinese Academy of Sciences, Taiyuan 030001, People’s Republic of China
- The University of Chinese Academy of Sciences, Beijing 100049, People’s Republic of China
- National Energy Center for Coal to Liquids, Synfuels China Co., Ltd., Beijing 101400, People’s Republic of China
| |
Collapse
|
32
|
Meng G, Sun J, Tao L, Ji K, Wang P, Wang Y, Sun X, Cui T, Du S, Chen J, Wang D, Li Y. Ru1Con Single-Atom Alloy for Enhancing Fischer–Tropsch Synthesis. ACS Catal 2021. [DOI: 10.1021/acscatal.0c04162] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Ge Meng
- Department of Chemistry, Tsinghua University, Beijing 100084, China
| | - Jiaqiang Sun
- State Key Laboratory of Coal Conversion, Institute of Coal Chemistry, Chinese Academy of Sciences, Taiyuan 030001, Shanxi, China
- School of Chemical Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Lei Tao
- Institute of Physics & University of Chinese Academy of Sciences, Chinese Academy of Sciences, Beijing 100190, China
| | - Kaiyue Ji
- Department of Chemistry, Tsinghua University, Beijing 100084, China
| | - Pengfei Wang
- State Key Laboratory of Coal Conversion, Institute of Coal Chemistry, Chinese Academy of Sciences, Taiyuan 030001, Shanxi, China
| | - Yu Wang
- Shanghai Synchrotron Radiation Facility, Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai 201204, China
| | - Xiaohui Sun
- Department of Chemistry, Tsinghua University, Beijing 100084, China
| | - Tingting Cui
- Department of Chemistry, Tsinghua University, Beijing 100084, China
| | - Shixuan Du
- Institute of Physics & University of Chinese Academy of Sciences, Chinese Academy of Sciences, Beijing 100190, China
- CAS Center for Excellence in Topological Quantum Computation, University of Chinese Academy of Sciences, Beijing 100190, China
| | - Jiangang Chen
- State Key Laboratory of Coal Conversion, Institute of Coal Chemistry, Chinese Academy of Sciences, Taiyuan 030001, Shanxi, China
| | - Dingsheng Wang
- Department of Chemistry, Tsinghua University, Beijing 100084, China
| | - Yadong Li
- Department of Chemistry, Tsinghua University, Beijing 100084, China
| |
Collapse
|
33
|
Abstract
This is a Review of recent studies on surface structures of crystalline materials in the presence of gases in the mTorr to atmospheric pressure range, which brings surface science into a brand new direction. Surface structure is not only a property of the material but also depends on the environment surrounding it. This Review emphasizes that high/ambient pressure goes hand-in-hand with ambient temperature, because weakly interacting species can be densely covering surfaces at room temperature only when in equilibrium with a sufficiently high gas pressure. At the same time, ambient temperatures help overcome activation barriers that impede diffusion and reactions. Even species with weak binding energy can have residence lifetimes on the surface that allow them to trigger reconstructions of the atomic structure. The consequences of this are far from trivial because under ambient conditions the structure of the surface dynamically adapts to its environment and as a result completely new structures are often formed. This new era of surface science emerged and spread rapidly after the retooling of characterization techniques that happened in the last two decades. This Review is focused on the new surface structures enabled particularly by one of the new tools: high-pressure scanning tunneling microscopy. We will cover several important surfaces that have been intensely scrutinized, including transition metals, oxides, and alloys.
Collapse
Affiliation(s)
- Miquel Salmeron
- Materials Sciences Division, Lawrence Berkeley National Laboratory, 1 Cyclotron Road, Berkeley, California 94720, United States.,Department of Materials Science and Engineering, University of California, Berkeley, Berkeley, California 94720, United States
| | - Baran Eren
- Department of Chemical and Biological Physics, Weizmann Institute of Science, 234 Herzl Street, 76100 Rehovot, Israel
| |
Collapse
|
34
|
Böller B, Zeller P, Günther S, Wintterlin J. High-Pressure CO Phases on Co(0001) and Their Possible Role in the Fischer–Tropsch Synthesis. ACS Catal 2020. [DOI: 10.1021/acscatal.0c02221] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Bernhard Böller
- Department Chemie, Ludwig-Maximilians-Universität München, Butenandtstr. 5-13, 81377 Munich, Germany
- Center for NanoScience, Schellingstr. 4, 80799 Munich, Germany
| | - Patrick Zeller
- Elettra—Sincrotrone Trieste S.C.p.A., SS14−km 163.5, 34149 Basovizza, Trieste, Italy
| | - Sebastian Günther
- Fakultät für Chemie, Technische Universität München, Lichtenbergstr. 4, 85748 Garching, Germany
- Catalysis Research Center, 85748 Garching, Germany
| | - Joost Wintterlin
- Department Chemie, Ludwig-Maximilians-Universität München, Butenandtstr. 5-13, 81377 Munich, Germany
- Center for NanoScience, Schellingstr. 4, 80799 Munich, Germany
| |
Collapse
|
35
|
Zeolite-supported ultra-small nickel as catalyst for selective oxidation of methane to syngas. Commun Chem 2020; 3:129. [PMID: 36703370 PMCID: PMC9814408 DOI: 10.1038/s42004-020-00375-0] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2020] [Accepted: 08/17/2020] [Indexed: 01/29/2023] Open
Abstract
The development of simple catalysts with high performance in the selective oxidation of methane to syngas at low temperature has attracted much attention. Here we report a nickel-based solid catalyst for the oxidation of methane, synthesised by a facile impregnation method. Highly dispersed ultra-small NiO particles of 1.6 nm in size are successfully formed on the MOR-type zeolite. The zeolite-supported nickel catalyst gives continuously 97-98% methane conversion, 91-92% of CO yield with a H2/CO ratio of 2.0, and high durability without serious carbon deposition onto the catalyst at 973 K. DFT calculations demonstrate the effect of NiO particle size on the C-H dissociation process of CH4. A decrease in the NiO particle size enhances the production of oxygen originating from the NiO nanoparticles, which contributes to the oxidation of methane under a reductive environment, effectively producing syngas.
Collapse
|
36
|
In situ XRD and Raman Investigation of the Activation Process over K–Cu–Fe/SiO2 Catalyst for Fischer–Tropsch Synthesis Reaction. Catal Letters 2020. [DOI: 10.1007/s10562-020-03147-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
37
|
Mechanistic insight into carbon-carbon bond formation on cobalt under simulated Fischer-Tropsch synthesis conditions. Nat Commun 2020; 11:750. [PMID: 32029729 PMCID: PMC7005166 DOI: 10.1038/s41467-020-14613-5] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2019] [Accepted: 01/13/2020] [Indexed: 12/04/2022] Open
Abstract
Facile C-C bond formation is essential to the formation of long hydrocarbon chains in Fischer-Tropsch synthesis. Various chain growth mechanisms have been proposed previously, but spectroscopic identification of surface intermediates involved in C-C bond formation is scarce. We here show that the high CO coverage typical of Fischer-Tropsch synthesis affects the reaction pathways of C2Hx adsorbates on a Co(0001) model catalyst and promote C-C bond formation. In-situ high resolution x-ray photoelectron spectroscopy shows that a high CO coverage promotes transformation of C2Hx adsorbates into the ethylidyne form, which subsequently dimerizes to 2-butyne. The observed reaction sequence provides a mechanistic explanation for CO-induced ethylene dimerization on supported cobalt catalysts. For Fischer-Tropsch synthesis we propose that C-C bond formation on the close-packed terraces of a cobalt nanoparticle occurs via methylidyne (CH) insertion into long chain alkylidyne intermediates, the latter being stabilized by the high surface coverage under reaction conditions. The mechanism by which C-C bonds form during Fischer-Tropsch synthesis remains debated while spectroscopic identification of reaction intermediates remains scarce. Here, the authors identify alkylidynes as reactive intermediates for C-C bond formation on cobalt terrace sites and moreover show that these intermediates are stabilized by the high surface coverage typical for Fischer-Tropsch synthesis.
Collapse
|