1
|
Cheng M, Li D, Cao J, Sun T, Sun Q, Zhang W, Zha Z, Shi M, Zhang K, Tao Z. "Anions-in-Colloid" Hydrated Deep Eutectic Electrolyte for High Reversible Zinc Metal Anodes. Angew Chem Int Ed Engl 2024; 63:e202410210. [PMID: 39023074 DOI: 10.1002/anie.202410210] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Revised: 07/05/2024] [Accepted: 07/17/2024] [Indexed: 07/20/2024]
Abstract
Zn metal as a promising anode for aqueous batteries suffers from severe zinc dendrites, anion-related side reactions, hydrogen evolution reaction (HER) and narrow electrochemical stable window (ESW). Herein, an "anions-in-colloid" hydrated deep eutectic electrolyte consisting of Zn(ClO4)2 ⋅ 6H2O, β-cyclodextrin (β-CD), and H2O with mass ratio of 7 : 4.5 : 3 (ACDE-3) is designed to improve the stability of zinc anode. The ACDE-3 reconfigures the hydrogen-bond (HB) network and regulates the solvation shell. More importantly, the hydroxyl-rich β-cyclodextrins (β-CDs) in ACDE-3 self-assemble into micelles, in which the steric effect between adjacent β-CDs in micelles restricts the movement of anions. This unique "anions-in-colloid" structure enables the eutectic system with a high Zn2+ transference number (tZn 2+) of 0.84. Thus, ACDE-3 inhibits the formation of dendrite, prevents the anion-involved side reactions, suppresses the HER, and enlarges the ESW to 2.32 V. The Zn//Zn symmetric cell delivers a long lifespan of 900 hours at 0.5 mA cm-2, and the Zn//Cu half cells have a high average columbic efficiency (ACE) of 97.9 % at 0.5 mA cm-2 from cycle 15 to 200 with a uniform and compact zinc deposition. When matched with a poly(1,5-naphthalenediamine) (poly(1, 5-NAPD)) cathode, the full battery with a low negative/positive capacity (N/P) ratio of 2 can still cycle steadily for 200 cycles at a current density of 1.0 A g-1. Additionally, this electrolyte has been proven to be operative over a wide temperature range from -40 °C to 40 °C.
Collapse
Affiliation(s)
- Min Cheng
- State Key Laboratory of Advanced Chemical Power Sources, Key Laboratory of Advanced Energy Materials Chemistry (Ministry of Education), Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Renewable Energy Conversion and Storage Center (RECAST), College of Chemistry, Nankai University, Tianjin, 300071, China
- Haihe Laboratory of Sustainable Chemical Transformations, Tianjin, 300192, China
| | - Diantao Li
- State Key Laboratory of Advanced Chemical Power Sources, Key Laboratory of Advanced Energy Materials Chemistry (Ministry of Education), Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Renewable Energy Conversion and Storage Center (RECAST), College of Chemistry, Nankai University, Tianjin, 300071, China
- Haihe Laboratory of Sustainable Chemical Transformations, Tianjin, 300192, China
| | - Junlun Cao
- School of Science, RMIT University, Melbourne, VIC, 3000, Australia
| | - Tianjiang Sun
- State Key Laboratory of Advanced Chemical Power Sources, Key Laboratory of Advanced Energy Materials Chemistry (Ministry of Education), Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Renewable Energy Conversion and Storage Center (RECAST), College of Chemistry, Nankai University, Tianjin, 300071, China
- Haihe Laboratory of Sustainable Chemical Transformations, Tianjin, 300192, China
| | - Qiong Sun
- State Key Laboratory of Advanced Chemical Power Sources, Key Laboratory of Advanced Energy Materials Chemistry (Ministry of Education), Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Renewable Energy Conversion and Storage Center (RECAST), College of Chemistry, Nankai University, Tianjin, 300071, China
- Haihe Laboratory of Sustainable Chemical Transformations, Tianjin, 300192, China
| | - Weijia Zhang
- State Key Laboratory of Advanced Chemical Power Sources, Key Laboratory of Advanced Energy Materials Chemistry (Ministry of Education), Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Renewable Energy Conversion and Storage Center (RECAST), College of Chemistry, Nankai University, Tianjin, 300071, China
- Haihe Laboratory of Sustainable Chemical Transformations, Tianjin, 300192, China
| | - Zhengtai Zha
- State Key Laboratory of Advanced Chemical Power Sources, Key Laboratory of Advanced Energy Materials Chemistry (Ministry of Education), Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Renewable Energy Conversion and Storage Center (RECAST), College of Chemistry, Nankai University, Tianjin, 300071, China
- Haihe Laboratory of Sustainable Chemical Transformations, Tianjin, 300192, China
| | - Mengyao Shi
- State Key Laboratory of Advanced Chemical Power Sources, Key Laboratory of Advanced Energy Materials Chemistry (Ministry of Education), Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Renewable Energy Conversion and Storage Center (RECAST), College of Chemistry, Nankai University, Tianjin, 300071, China
- Haihe Laboratory of Sustainable Chemical Transformations, Tianjin, 300192, China
| | - Kai Zhang
- State Key Laboratory of Advanced Chemical Power Sources, Key Laboratory of Advanced Energy Materials Chemistry (Ministry of Education), Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Renewable Energy Conversion and Storage Center (RECAST), College of Chemistry, Nankai University, Tianjin, 300071, China
- Haihe Laboratory of Sustainable Chemical Transformations, Tianjin, 300192, China
| | - Zhanliang Tao
- State Key Laboratory of Advanced Chemical Power Sources, Key Laboratory of Advanced Energy Materials Chemistry (Ministry of Education), Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Renewable Energy Conversion and Storage Center (RECAST), College of Chemistry, Nankai University, Tianjin, 300071, China
- Haihe Laboratory of Sustainable Chemical Transformations, Tianjin, 300192, China
| |
Collapse
|
2
|
Lee HE, Okumura T, Ooka H, Adachi K, Hikima T, Hirata K, Kawano Y, Matsuura H, Yamamoto M, Yamamoto M, Yamaguchi A, Lee JE, Takahashi H, Nam KT, Ohara Y, Hashizume D, McGlynn SE, Nakamura R. Osmotic energy conversion in serpentinite-hosted deep-sea hydrothermal vents. Nat Commun 2024; 15:8193. [PMID: 39322632 PMCID: PMC11424637 DOI: 10.1038/s41467-024-52332-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Accepted: 08/28/2024] [Indexed: 09/27/2024] Open
Abstract
Cells harvest energy from ionic gradients by selective ion transport across membranes, and the same principle is recently being used for osmotic power generation from salinity gradients at ocean-river interfaces. Common to these ionic gradient conversions is that they require intricate nanoscale structures. Here, we show that natural submarine serpentinite-hosted hydrothermal vent (HV) precipitates are capable of converting ionic gradients into electrochemical energy by selective transport of Na+, K+, H+, and Cl-. Layered hydroxide nanocrystals are aligned radially outwards from the HV fluid channels, constituting confined nanopores that span millimeters in the HV wall. The nanopores change the surface charge depending on adsorbed ions, allowing the mineral to function as a cation- and anion-selective ion transport membrane. Our findings indicate that chemical disequilibria originating from flow and concentration gradients in geologic environments generate confined nanospaces which enable the spontaneous establishment of osmotic energy conversion.
Collapse
Affiliation(s)
- Hye-Eun Lee
- RIKEN Center for Sustainable Resource Science, Wako, Saitama, Japan.
- Earth-Life Science Institute, Tokyo Institute of Technology, Tokyo, Japan.
| | | | - Hideshi Ooka
- RIKEN Center for Sustainable Resource Science, Wako, Saitama, Japan
| | - Kiyohiro Adachi
- RIKEN Center for Emergent Matter Science, Wako, Saitama, Japan
| | | | | | | | | | | | - Masahiro Yamamoto
- Institute for Extra-cutting-edge Science and Technology Avant-garde Research, Japan Agency for Marine-Earth Science and Technology, Yokosuka, Kanagawa, Japan
| | - Akira Yamaguchi
- RIKEN Center for Sustainable Resource Science, Wako, Saitama, Japan
- Department of Materials Science and Engineering, Tokyo Institute of Technology, Tokyo, Japan
| | - Ji-Eun Lee
- RIKEN Center for Sustainable Resource Science, Wako, Saitama, Japan
| | - Hiroya Takahashi
- RIKEN Center for Sustainable Resource Science, Wako, Saitama, Japan
- Earth-Life Science Institute, Tokyo Institute of Technology, Tokyo, Japan
| | - Ki Tae Nam
- Department of Materials Science and Engineering, Seoul National University, Seoul, South Korea
| | - Yasuhiko Ohara
- Research Institute for Marine Geodynamics, Japan Agency for Marine-Earth Science and Technology, Yokosuka, Kanagawa, Japan
- Hydrographic and Oceanographic Department of Japan, Tokyo, Japan
- Graduate School of Environmental Studies, Nagoya University, Nagoya, Japan
| | | | - Shawn Erin McGlynn
- RIKEN Center for Sustainable Resource Science, Wako, Saitama, Japan
- Earth-Life Science Institute, Tokyo Institute of Technology, Tokyo, Japan
| | - Ryuhei Nakamura
- RIKEN Center for Sustainable Resource Science, Wako, Saitama, Japan.
- Earth-Life Science Institute, Tokyo Institute of Technology, Tokyo, Japan.
| |
Collapse
|
3
|
Potts DS, Komar JK, Jacobson MA, Locht H, Flaherty DW. Consequences of Pore Polarity and Solvent Structure on Epoxide Ring-Opening in Lewis and Brønsted Acid Zeolites. JACS AU 2024; 4:3501-3518. [PMID: 39328744 PMCID: PMC11423312 DOI: 10.1021/jacsau.4c00398] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/03/2024] [Revised: 06/10/2024] [Accepted: 06/20/2024] [Indexed: 09/28/2024]
Abstract
The structure of solvent molecules within zeolite pores influences the rates and selectivities of catalytic reactions by altering the free energies of reactive species. Here, we examine the consequences of these effects on the kinetics and thermodynamics of 1,2-epoxybutane (C4H8O) ring-opening with methanol (CH3OH) in acetonitrile (CH3CN) cosolvent over Lewis acidic (Zr-BEA) and Brønsted acidic (Al-BEA) zeolites of varying (SiOH) x density. Despite ostensibly identical reaction mechanisms across materials, turnover rates depend differently on (SiOH) x density between acid types. (SiOH) x -rich Zr-BEA (Zr-BEA-OH) provides ∼10 times greater rates than a (SiOH) x -poor material (Zr-BEA-F), while Al-BEA-OH and Al-BEA-F give turnover rates within a factor of 2. Zr-BEA-OH shows more positive activation enthalpies and entropies than Zr-BEA-F across the range of [CH3OH], which reflect the displacement of solvent molecules and lead to greater rates in Zr-BEA-OH due to the dominant role of entropic gains. Measurements of the density and composition of solvent within the pores show that the (SiOH) x nests within Zr-BEA-OH promote hydrogen-bonded solvent structures distinct from Zr-BEA-F, while the Brønsted acid sites confer interactions similar to (SiOH) x nests and give solvent structures within Al-BEA-F that resemble those within Al-BEA-OH. Correlations between apparent activation enthalpies and C4H8O adsorption enthalpies show that interactions with solvent molecules give proportional changes to both C4H8O adsorption and ring-opening transition state formation. The differences in intrapore environment carry consequences for both rates and regioselectivities of epoxide ring-opening, as demonstrated by product regioselectivities that increase by a factor of 3 in response to changes in solvent composition and the type of acid site in the *BEA structure (i.e., Lewis or Brønsted). These results demonstrate the ability to control rates, regioselectivities, and adsorption thermodynamics relevant for industrially relevant liquid-phase reactions through the design of noncovalent interactions among solvating molecules, reactive species, and (SiOH) x functions.
Collapse
Affiliation(s)
- David S Potts
- Department of Chemical and Biomolecular Engineering, University of Illinois Urbana-Champaign, Urbana, Illinois 61801, United States
| | - Jessica K Komar
- Department of Chemical and Biomolecular Engineering, University of Illinois Urbana-Champaign, Urbana, Illinois 61801, United States
| | - Matthew A Jacobson
- Department of Chemical and Biomolecular Engineering, University of Illinois Urbana-Champaign, Urbana, Illinois 61801, United States
- School of Chemical and Biomolecular Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
| | - Huston Locht
- Department of Chemical and Biomolecular Engineering, University of Illinois Urbana-Champaign, Urbana, Illinois 61801, United States
- School of Chemical and Biomolecular Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
| | - David W Flaherty
- Department of Chemical and Biomolecular Engineering, University of Illinois Urbana-Champaign, Urbana, Illinois 61801, United States
- School of Chemical and Biomolecular Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
| |
Collapse
|
4
|
Wu L, Li Z, Xiang Y, Dong W, Qi X, Ling Z, Xu Y, Wu H, Levi MD, Shpigel N, Zhang X. Revisiting the Charging Mechanism of α-MnO 2 in Mildly Acidic Aqueous Zinc Electrolytes. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024:e2404583. [PMID: 39077979 DOI: 10.1002/smll.202404583] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Revised: 07/05/2024] [Indexed: 07/31/2024]
Abstract
In recent years, there have been extensive debates regarding the charging mechanism of MnO2 cathodes in aqueous Zn electrolytes. The discussion centered on several key aspects including the identity of the charge carriers contributing to the overall capacity, the nature of the electrochemical process, and the role of the zinc hydroxy films that are reversibly formed during the charging/discharging. Intense studies are also devoted to understanding the effect of the Mn2+ additive on the performance of the cathodes. Nevertheless, it seems that a consistent explanation of the α-MnO2 charging mechanism is still lacking. To address this, a step-by-step analysis of the MnO2 cathodes is conducted. Valuable information is obtained by using in situ electrochemical quartz crystal microbalance with dissipation (EQCM-D) monitoring, supplemented by solid-state nuclear magnetic resonance (NMR), X-ray diffraction (XRD) in Characterization of Materials, and pH measurements. The findings indicate that the charging mechanism is dominated by the insertion of H3O+ ions, while no evidence of Zn2+ intercalation is found. The role of the Mn2+ additive in promoting the generation of protons by forming MnOOH, enhancing the stability of Zn/α-MnO2 batteries is thoroughly investigated. This work provides a comprehensive overview on the electrochemical and the chemical reactions associated with the α-MnO2 electrodes, and will pave the way for further development of aqueous cathodes for Zn-ion batteries.
Collapse
Affiliation(s)
- LangYuan Wu
- Jiangsu Key Laboratory of Materials and Technologies for Energy Storage, College of Materials Science and Technology, Nanjing University of Aeronautics and Astronautics, Nanjing, 210016, P. R. China
| | - ZhiWei Li
- Jiangsu Key Laboratory of Materials and Technologies for Energy Storage, College of Materials Science and Technology, Nanjing University of Aeronautics and Astronautics, Nanjing, 210016, P. R. China
| | - YuXuan Xiang
- Research Center for Industries of the Future, Westlake University, Hangzhou, Zhejiang, 310030, P. R. China
- School of Engineering, Westlake University, Hangzhou, Zhejiang, 310030, P. R. China
| | - WenDi Dong
- Jiangsu Key Laboratory of Materials and Technologies for Energy Storage, College of Materials Science and Technology, Nanjing University of Aeronautics and Astronautics, Nanjing, 210016, P. R. China
| | - XiaoDong Qi
- Jiangsu Key Laboratory of Materials and Technologies for Energy Storage, College of Materials Science and Technology, Nanjing University of Aeronautics and Astronautics, Nanjing, 210016, P. R. China
| | - ZhenXiao Ling
- Jiangsu Key Laboratory of Materials and Technologies for Energy Storage, College of Materials Science and Technology, Nanjing University of Aeronautics and Astronautics, Nanjing, 210016, P. R. China
| | - YingHong Xu
- Jiangsu Key Laboratory of Materials and Technologies for Energy Storage, College of Materials Science and Technology, Nanjing University of Aeronautics and Astronautics, Nanjing, 210016, P. R. China
| | - HaiYang Wu
- Jiangsu Key Laboratory of Materials and Technologies for Energy Storage, College of Materials Science and Technology, Nanjing University of Aeronautics and Astronautics, Nanjing, 210016, P. R. China
| | - Mikhael D Levi
- Deparment of Chemistry and BINA-BIU Centre for Nanotechnology and Advanced Materials, Department of Chemistry, Bar-Ilan University, Ramat-Gan, 5290002, Israel
| | - Netanel Shpigel
- Department of Chemical Sciences, Ariel University, Ariel, 40700, Israel
| | - XiaoGang Zhang
- Jiangsu Key Laboratory of Materials and Technologies for Energy Storage, College of Materials Science and Technology, Nanjing University of Aeronautics and Astronautics, Nanjing, 210016, P. R. China
- Key Laboratory for Intelligent Nano Materials and Devices of the Ministry of Education, Nanjing University of Aeronautics and Astronautics, Nanjing, 210016, P. R. China
| |
Collapse
|
5
|
Kwon O, Zeynep Ayla E, Potts DS, Flaherty DW. Influence of Ti-incorporated Zeolite Topology and Pore Condensation on Vapor Phase Propylene Epoxidation Kinetics with Gaseous H 2O 2. Angew Chem Int Ed Engl 2024; 63:e202405950. [PMID: 38735848 DOI: 10.1002/anie.202405950] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Revised: 05/02/2024] [Accepted: 05/06/2024] [Indexed: 05/14/2024]
Abstract
Vapor-phase propylene (C3H6) epoxidation kinetics with hydrogen peroxide (H2O2) strongly reflects the physical properties of Ti-incorporated zeolite catalysts and the presence of spectating molecules ("solvent") near active sites even without a bulk liquid phase. Steady-state turnover rates of C3H6 epoxidation and product selectivities vary by orders of magnitudes, depending on the zeolite silanol ((SiOH)x) density, pore topology (MFI, *BEA, FAU), and the quantity of condensed acetonitrile (CH3CN) molecules nearby active sites, under identical reaction mechanisms sharing activated H2O2 intermediates on Ti surfaces. Individual kinetic analyses for propylene oxide (PO) ring-opening, homogeneous diol oxidative cleavage, and homogeneous aldehyde oxidation reveal that secondary reaction kinetics following C3H6 epoxidation responds more sensitively to the changes in zeolite physical properties and pore condensation with CH3CN. Thus, higher PO selectivities achieved in hydrophilic Ti-MFI at steady-state reflect the preferential stabilization of transition states for C3H6 epoxidation (a primary reaction) relative to PO ring-opening and oxidative cleavage (secondary reactions) that solvation effects that reflect interactions among condensed CH3CN within pores and the extended pore structure.
Collapse
Affiliation(s)
- Ohsung Kwon
- Department of Chemical and Biomolecular Engineering, University of Illinois Urbana-Champaign, Urbana, IL 61801, USA
| | - E Zeynep Ayla
- Department of Chemical and Biomolecular Engineering, University of Illinois Urbana-Champaign, Urbana, IL 61801, USA
| | - David S Potts
- Department of Chemical and Biomolecular Engineering, University of Illinois Urbana-Champaign, Urbana, IL 61801, USA
| | - David W Flaherty
- Department of Chemical and Biomolecular Engineering, University of Illinois Urbana-Champaign, Urbana, IL 61801, USA
- School of Chemical and Biomolecular Engineering, Georgia Institute of Technology, Atlanta, GA 30332, USA
| |
Collapse
|
6
|
Li S, Chen H. Solvent effect in H-BEA catalyzed cyclohexanol dehydration reaction. J Chem Phys 2024; 160:231101. [PMID: 38884394 DOI: 10.1063/5.0211554] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2024] [Accepted: 05/29/2024] [Indexed: 06/18/2024] Open
Abstract
The solvent effect on H-BEA catalyzed cyclohexanol dehydration was investigated in water, dioxane, and cyclohexanol. The dynamic evolution of the Brønsted acid site of zeolite and its interaction with reactant molecules in different solvents were explored with ab initio molecular dynamics simulations, providing reliable configuration sampling to obtain configurations at equilibrium. Solvent profoundly changes the adsorption as well as the dehydration reaction of cyclohexanol in H-BEA, where the reaction is determined to follow the E2 mechanism in water and dioxane but the E1 mechanism in cyclohexanol untill saturation uptake. Near saturation uptake, all three solvents significantly reduce the cyclohexanol dehydration rates in H-BEA. Cyclohexanol loading also dramatically affects the kinetics of the dehydration reaction, displaying an overall decreasing trend with a local minimum present at intermediate loading of 6 molecules per unit cell, which is a result of the entropic effect associated with greater freedom of motion of the transition state. Rigorous quantification of enthalpy and entropy contributions to cyclohexanol adsorption and activation shed light on the solvent effect of zeolite-catalyzed alcohol dehydration.
Collapse
Affiliation(s)
- Sha Li
- Chemistry and Chemical Engineering Guangdong Laboratory, Shantou 515021, China
| | - Huimin Chen
- Chemistry and Chemical Engineering Guangdong Laboratory, Shantou 515021, China
| |
Collapse
|
7
|
Zou Z, Shen Y, Zhang X, Li W, Chen C, Fan D, Zhang H, Zhao H, Wang G. Toward High-Performance Hydrogenation at Room Temperature Through Tailoring Nickel Catalysts Stable in Aqueous Solution. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2309303. [PMID: 38582516 PMCID: PMC11199984 DOI: 10.1002/advs.202309303] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Revised: 03/14/2024] [Indexed: 04/08/2024]
Abstract
The development of highly active, reusable catalysts for aqueous-phase reactions is challenging. Herein, metallic nickel is encapsulated in a nitrogen-doped carbon-silica composite (SiO2@Ni@NC) as a catalyst for the selective hydrogenation of vanillin in aqueous media. The constructed catalyst achieved 99.8% vanillin conversion and 100% 4-hydroxymethyl-2-methoxyphenol selectivity at room temperature. Based on combined scanning transmission electron microscopy, X-ray photoelectron spectroscopy, and Raman analyses, the satisfactory catalytic performance is attributed to the composite structure consisting of an active metal, carbon, and silica. The hydrophilic silica core promoted dispersion of the catalyst in aqueous media. Moreover, the external hydrophobic NC layer has multiple functions, including preventing oxidation or leaching of the internal metal, acting as a reducing agent to reduce the internal metal, regulating the active-site microenvironment by enriching the concentrations of H2 and organic reactants, and modifying the electronic structure of the active metal via metal-support interactions. Density functional theory calculations indicated that NC facilitates vanillin adsorption and hydrogen dissociation to promote aqueous-phase hydrogenation. This study provides an efficient strategy for constructing encapsulated Ni-based amphiphilic catalysts to upgrade biomass-derived compounds.
Collapse
Affiliation(s)
- Zidan Zou
- Key Laboratory of Materials Physics, Centre for Environmental and Energy NanomaterialsInstitute of Solid State Phycis, HFIPS, Chinese Academy of Sciences350 Shushanhu roadHefei230031China
- Science Island BranchGraduate School of USTCHefei230026China
| | - Yue Shen
- Key Laboratory of Materials Physics, Centre for Environmental and Energy NanomaterialsInstitute of Solid State Phycis, HFIPS, Chinese Academy of Sciences350 Shushanhu roadHefei230031China
- Science Island BranchGraduate School of USTCHefei230026China
| | - Xiao Zhang
- Key Laboratory of Materials Physics, Centre for Environmental and Energy NanomaterialsInstitute of Solid State Phycis, HFIPS, Chinese Academy of Sciences350 Shushanhu roadHefei230031China
| | - Wenchao Li
- Key Laboratory of Materials Physics, Centre for Environmental and Energy NanomaterialsInstitute of Solid State Phycis, HFIPS, Chinese Academy of Sciences350 Shushanhu roadHefei230031China
| | - Chun Chen
- Key Laboratory of Materials Physics, Centre for Environmental and Energy NanomaterialsInstitute of Solid State Phycis, HFIPS, Chinese Academy of Sciences350 Shushanhu roadHefei230031China
- Science Island BranchGraduate School of USTCHefei230026China
| | - Diancai Fan
- Anhui Haoyuan Chemical Group Co., Ltd.Fuyang236056China
| | - Haimin Zhang
- Key Laboratory of Materials Physics, Centre for Environmental and Energy NanomaterialsInstitute of Solid State Phycis, HFIPS, Chinese Academy of Sciences350 Shushanhu roadHefei230031China
- Science Island BranchGraduate School of USTCHefei230026China
| | - Huijun Zhao
- Centre for Clean Environment and EnergyGold Coast CampusGriffith UniversityQueensland4222Australia
| | - Guozhong Wang
- Key Laboratory of Materials Physics, Centre for Environmental and Energy NanomaterialsInstitute of Solid State Phycis, HFIPS, Chinese Academy of Sciences350 Shushanhu roadHefei230031China
- Science Island BranchGraduate School of USTCHefei230026China
| |
Collapse
|
8
|
Wang C, Zheng M, Hu M, Cai W, Chu Y, Wang Q, Xu J, Deng F. Unraveling Spatially Dependent Hydrophilicity and Reactivity of Confined Carbocation Intermediates during Methanol Conversion over ZSM-5 Zeolite. J Am Chem Soc 2024; 146:8688-8696. [PMID: 38482699 DOI: 10.1021/jacs.4c01155] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/28/2024]
Abstract
Carbocations play a pivotal role as reactive intermediates in zeolite-catalyzed methanol-to-hydrocarbon (MTH) transformations. However, the interaction between carbocations and water vapor and its subsequent effects on catalytic performance remain poorly understood. Using micro-magnetic resonance imaging (μMRI) and solid-state NMR techniques, this work investigates the hydrophilic behavior of cyclopentenyl cations within ZSM-5 pores under vapor conditions. We show that the polar cationic center of cyclopentenyl cations readily initiates water nucleus formation through water molecule capture. This leads to an inhomogeneous water adsorption gradient along the axial positions of zeolite, correlating with the spatial distribution of carbocation concentrations. The adsorbed water promotes deprotonation and aromatization of cyclopentenyl cations, significantly enhancing the aromatic product selectivity in MTH catalysis. These results reveal the important influence of adsorbed water in modulating the carbocation reactivity within confined zeolite pores.
Collapse
Affiliation(s)
- Chao Wang
- National Center for Magnetic Resonance in Wuhan, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences, Wuhan 430071, P. R. China
- University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Mingji Zheng
- National Center for Magnetic Resonance in Wuhan, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences, Wuhan 430071, P. R. China
- University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Min Hu
- National Center for Magnetic Resonance in Wuhan, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences, Wuhan 430071, P. R. China
- University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Wenjin Cai
- National Center for Magnetic Resonance in Wuhan, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences, Wuhan 430071, P. R. China
- University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Yueying Chu
- National Center for Magnetic Resonance in Wuhan, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences, Wuhan 430071, P. R. China
- University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Qiang Wang
- National Center for Magnetic Resonance in Wuhan, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences, Wuhan 430071, P. R. China
- University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Jun Xu
- National Center for Magnetic Resonance in Wuhan, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences, Wuhan 430071, P. R. China
- University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Feng Deng
- National Center for Magnetic Resonance in Wuhan, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences, Wuhan 430071, P. R. China
- University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| |
Collapse
|
9
|
Liu Q, van Bokhoven JA. Water structures on acidic zeolites and their roles in catalysis. Chem Soc Rev 2024; 53:3065-3095. [PMID: 38369933 DOI: 10.1039/d3cs00404j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/20/2024]
Abstract
The local reaction environment of catalytic active sites can be manipulated to modify the kinetics and thermodynamic properties of heterogeneous catalysis. Because of the unique physical-chemical nature of water, heterogeneously catalyzed reactions involving specific interactions between water molecules and active sites on catalysts exhibit distinct outcomes that are different from those performed in the absence of water. Zeolitic materials are being applied with the presence of water for heterogeneous catalytic reactions in the chemical industry and our transition to sustainable energy. Mechanistic investigation and in-depth understanding about the behaviors and the roles of water are essentially required for zeolite chemistry and catalysis. In this review, we focus on the discussions of the nature and structures of water adsorbed/stabilized on Brønsted and Lewis acidic zeolites based on experimental observations as well as theoretical calculation results. The unveiled functions of water structures in determining the catalytic efficacy of zeolite-catalyzed reactions have been overviewed and the strategies frequently developed for enhancing the stabilization of zeolite catalysts are highlighted. Recent advancement will contribute to the development of innovative catalytic reactions and the rationalization of catalytic performances in terms of activity, selectivity and stability with the presence of water vapor or in condensed aqueous phase.
Collapse
Affiliation(s)
- Qiang Liu
- Institute for Chemical and Bioengineering, ETH Zurich, Vladimir Prelog Weg 1, 8093 Zurich, Switzerland.
| | - Jeroen A van Bokhoven
- Institute for Chemical and Bioengineering, ETH Zurich, Vladimir Prelog Weg 1, 8093 Zurich, Switzerland.
- Laboratory for Catalysis and Sustainable Chemistry, Paul Scherrer Institut, 5232 Villigen PSI, Switzerland
| |
Collapse
|
10
|
Firuznia R, Jahanbakhsh A, Nazifi S, Ghasemi H. Hydrogen Solubility in Confined Water. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2024; 40:4702-4708. [PMID: 38377595 DOI: 10.1021/acs.langmuir.3c03333] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/22/2024]
Abstract
Confined water has demonstrated distinct structural and dynamic properties compared to bulk water. Although many studies have explored the water structure within simple geometries using materials such as carbon and silica, studies on gas solubility in confined water and the underlying physics of water structure-solubility remain limited. Recent research has illuminated the concept of "oversolubility", wherein gases display increased solubility within liquids confined in small pores compared to their bulk form. This study focuses on zeolites, naturally abundant materials with versatile applications, to study the hydrogen solubility within confined water through careful experimentation. Our findings underscore the relationship between the pore dimension and gas solubility enhancement within confined water. Hydrogen solubility is closely associated with the rearrangement of water molecules within the porous framework of the zeolite. Our research shows that a 2 nm pore size results in the greatest increase in hydrogen solubility in the water trapped inside the zeolite framework. The double donor-double acceptor (DDAA) bonds play a critical role in hydrogen solubility. Our research provides fundamental insight into the role of the molecular bonding type on hydrogen solubility in water, paving the way for potential applications in hydrogen storage and utilization.
Collapse
Affiliation(s)
- Rojan Firuznia
- Department of Mechanical Engineering, University of Houston, 4226 Martin Luther King Boulevard, Houston, Texas 77204, United States
| | - Amirmohammad Jahanbakhsh
- Department of Mechanical Engineering, University of Houston, 4226 Martin Luther King Boulevard, Houston, Texas 77204, United States
| | - Sina Nazifi
- Department of Mechanical Engineering, University of Houston, 4226 Martin Luther King Boulevard, Houston, Texas 77204, United States
| | - Hadi Ghasemi
- Department of Mechanical Engineering, University of Houston, 4226 Martin Luther King Boulevard, Houston, Texas 77204, United States
- Department of Chemical and Biomolecular Engineering, University of Houston, 4226 Martin Luther King Boulevard Houston, Texas 77204, United States
| |
Collapse
|
11
|
Liu L, Pan CY, He Y, Zhong LJ, Beckett MA. Co (II)-doped hybrid Zn (II) tetraborate complexes, [Zn xCo (1-x)(1,3-dap)B 4O 7] (1,3-dap = 1,3-diaminopropane): BET analysis and N 2/H 2O/D 2O adsorption studies. Dalton Trans 2024; 53:4637-4642. [PMID: 38354056 DOI: 10.1039/d4dt00117f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/06/2024]
Abstract
A series of mono/bimetallic isostructural hybrid tetraborates of the general formula [ZnxCo(1-x)(1,3-dap)B4O7] has been prepared using a solvothermal method. Their adsorption/desorption curves for H2O and D2O demonstrate that these materials have a stronger affinity for H2O than for D2O and enrich the D2O content of D2O/H2O mixtures.
Collapse
Affiliation(s)
- Lei Liu
- School of Light Industry and Chemical Engineering, Guangdong University of Technology, Guangzhou 510006, P.R. China.
| | - Chun-Yang Pan
- School of Light Industry and Chemical Engineering, Guangdong University of Technology, Guangzhou 510006, P.R. China.
| | - Yong He
- School of Light Industry and Chemical Engineering, Guangdong University of Technology, Guangzhou 510006, P.R. China.
| | - Li-Juan Zhong
- School of Light Industry and Chemical Engineering, Guangdong University of Technology, Guangzhou 510006, P.R. China.
| | - Michael A Beckett
- School of Natural Sciences, Bangor University, Gwynedd, LL57 2UW, UK
| |
Collapse
|
12
|
Wang C, Chu Y, Xiong D, Wang H, Hu M, Wang Q, Xu J, Deng F. Water-Induced Micro-Hydrophobic Effect Regulates Benzene Methylation in Zeolite. Angew Chem Int Ed Engl 2024; 63:e202313974. [PMID: 37934010 DOI: 10.1002/anie.202313974] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Revised: 11/06/2023] [Accepted: 11/07/2023] [Indexed: 11/08/2023]
Abstract
Water is a ubiquitous component in heterogeneous catalysis over zeolites and can significantly influence the catalyst performance. However, the detailed mechanism insights into zeolite-catalyzed reactions under microscale aqueous environment remain elusive. Here, using multiple dimensional solid-state NMR experiments coupled with ultrahigh magic angle spinning technique and theoretical simulations, we establish a fundamental understanding of the role of water in benzene methylation over ZSM-5 zeolite under water vapor conditions. We show that water competes with benzene for the active sites of zeolite and facilitates the bimolecular reaction mechanism. The growth of water clusters induces a micro-hydrophobic effect in zeolite pores, which reorients benzene molecules and drives their interactions with surface methoxy species (SMS) on zeolite. We identify the formation and evolution of active SMS-Benzene complexes in a microscale aqueous environment and demonstrate that their accumulation in zeolite pores boosts benzene conversion and methylation.
Collapse
Affiliation(s)
- Chao Wang
- National Center for Magnetic Resonance in Wuhan, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences, 430071, Wuhan, China
- University of Chinese Academy of Sciences, 100049, Beijing, China
| | - Yueying Chu
- National Center for Magnetic Resonance in Wuhan, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences, 430071, Wuhan, China
- University of Chinese Academy of Sciences, 100049, Beijing, China
| | - Danfeng Xiong
- Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, Feringa Nobel Prize Scientist Joint Research Center, Research Institute of Industrial Catalysis and Centre for Computational Chemistry, School of Chemistry and Molecular Engineering, East China University of Science and Technology, 200237, Shanghai, China) + These authors contributed equally to this work
| | - Haifeng Wang
- Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, Feringa Nobel Prize Scientist Joint Research Center, Research Institute of Industrial Catalysis and Centre for Computational Chemistry, School of Chemistry and Molecular Engineering, East China University of Science and Technology, 200237, Shanghai, China) + These authors contributed equally to this work
| | - Min Hu
- National Center for Magnetic Resonance in Wuhan, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences, 430071, Wuhan, China
- University of Chinese Academy of Sciences, 100049, Beijing, China
| | - Qiang Wang
- National Center for Magnetic Resonance in Wuhan, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences, 430071, Wuhan, China
- University of Chinese Academy of Sciences, 100049, Beijing, China
| | - Jun Xu
- National Center for Magnetic Resonance in Wuhan, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences, 430071, Wuhan, China
- University of Chinese Academy of Sciences, 100049, Beijing, China
| | - Feng Deng
- National Center for Magnetic Resonance in Wuhan, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences, 430071, Wuhan, China
- University of Chinese Academy of Sciences, 100049, Beijing, China
| |
Collapse
|
13
|
Lee H, Xie D, Zones SI, Katz A. CO 2 Desorbs Water from K-MER Zeolite under Equilibrium Control. J Am Chem Soc 2024; 146:68-72. [PMID: 38127860 DOI: 10.1021/jacs.3c10834] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2023]
Abstract
Competitive adsorption by water in zeolites is so strongly prevalent that established gravimetric techniques for quantification have assumed that humid CO2 has no effect on preadsorbed water at the same relative humidity. Here, we demonstrate sites in small-pore zeolite K-MER, in which CO2 adsorption causes 20% of preabsorbed water to desorb under equilibrium control at 30 °C and 5% relative humidity. Diffuse reflectance IR spectroscopic data demonstrate that dimeric water species that are coordinated to cationic sites in K-MER zeolite are selectively displaced by CO2 under these humid conditions. Though Cs-RHO contains more weakly bound water than K-MER, we observe a lack of dimeric water species and no evidence of CO2 outcompeting water in Cs-RHO. We conclude that the desorption of water by CO2 in K-MER is driven by a highly desired site for CO2 adsorption as opposed to an intrinsically weak binding of water to the zeolite. Our demonstration that CO2 can outcompete water in a zeolite under wet conditions introduces new opportunities for the design of selective sites for humid CO2 adsorption and stresses the importance of independently characterizing adsorbed water and CO2 in these systems.
Collapse
Affiliation(s)
- Hwangho Lee
- Department of Chemical and Biomolecular Engineering, University of California, Berkeley, California 94720, United States
| | - Dan Xie
- Chevron Technology Center, Richmond, California 94801, United States
| | - Stacey I Zones
- Chevron Technology Center, Richmond, California 94801, United States
| | - Alexander Katz
- Department of Chemical and Biomolecular Engineering, University of California, Berkeley, California 94720, United States
| |
Collapse
|
14
|
Zhang Q, Gao B, Zhang L, Liu X, Cui J, Cao Y, Zeng H, Xu Q, Cui X, Jiang L. Anomalous water molecular gating from atomic-scale graphene capillaries for precise and ultrafast molecular sieving. Nat Commun 2023; 14:6615. [PMID: 37857626 PMCID: PMC10587158 DOI: 10.1038/s41467-023-42401-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Accepted: 10/10/2023] [Indexed: 10/21/2023] Open
Abstract
The pressing crisis of clean water shortage requires membranes to possess effective ion sieving as well as fast water flux. However, effective ion sieving demands reduction of pore size, which inevitably hinders water flux in hydrophilic membranes, posing a major challenge for efficient water/ion separation. Herein, we introduce anomalous water molecular gating based on nanofiltration membranes full of graphene capillaries at 6 Å, which were fabricated from spontaneous π-π restacking of island-on-nanosheet graphitic microstructures. We found that the membrane can provide effective ion sieving by suppressing osmosis-driven ion diffusion to negligible levels (~10-4 mol m-2 h-1); unexpectedly, ultrafast bulk flow of water (45.4 L m-2 h-1) was still functional with ease, as gated on/off by adjusting hydrostatic pressures within only 10-2 bar. We attribute this seemingly incompatible observation to graphene nanoconfinement effect, where crystal-like water confined within the capillaries hinders diffusion under osmosis but facilitates high-speed, diffusion-free water transport in the way analogous to Newton's cradle-like Grotthus conduction. This strategy establishes a type of liquid-solid-liquid, phase-changing molecular transport for precise and ultrafast molecular sieving.
Collapse
Affiliation(s)
- Qian Zhang
- Henan Institute of Advanced Technology, Zhengzhou University, Zhengzhou, 450003, PR China
| | - Bo Gao
- College of Materials Science and Engineering, Zhengzhou University, Zhengzhou, 450001, PR China
| | - Ling Zhang
- School of Chemical Engineering, Zhengzhou University, Zhengzhou, 450001, PR China
| | - Xiaopeng Liu
- College of Materials Science and Engineering, Zhengzhou University, Zhengzhou, 450001, PR China
| | - Jixiang Cui
- College of Materials Science and Engineering, Zhengzhou University, Zhengzhou, 450001, PR China
| | - Yijun Cao
- School of Chemical Engineering, Zhengzhou University, Zhengzhou, 450001, PR China
| | - Hongbo Zeng
- Department of Chemical and Materials Engineering, University of Alberta, Edmonton, AB, T6G 1H9, Canada.
| | - Qun Xu
- Henan Institute of Advanced Technology, Zhengzhou University, Zhengzhou, 450003, PR China.
- College of Materials Science and Engineering, Zhengzhou University, Zhengzhou, 450001, PR China.
| | - Xinwei Cui
- Henan Institute of Advanced Technology, Zhengzhou University, Zhengzhou, 450003, PR China.
| | - Lei Jiang
- Key Laboratory of Bio-inspired Materials and Interfacial Science, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, 100190, PR China
| |
Collapse
|
15
|
He Z, Lei Q, Dai W, Zhang H. Solvent Tunes the Selectivity of Alkenes Epoxidation over Ti-Beta Zeolite: A Systematic Kinetic Assessment on Elementary Steps, Kinetically Relevant and Reaction Barriers. J Catal 2023. [DOI: 10.1016/j.jcat.2023.03.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/13/2023]
|
16
|
Liu Q, Pfriem N, Cheng G, Baráth E, Liu Y, Lercher JA. Maximum Impact of Ionic Strength on Acid-Catalyzed Reaction Rates Induced by a Zeolite Microporous Environment. Angew Chem Int Ed Engl 2023; 62:e202208693. [PMID: 36317985 PMCID: PMC10107796 DOI: 10.1002/anie.202208693] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Revised: 10/14/2022] [Accepted: 10/28/2022] [Indexed: 11/07/2022]
Abstract
The intracrystalline ionic environment in microporous zeolite can remarkably modify the excess chemical potential of adsorbed reactants and transition states, thereby influencing the catalytic turnover rates. However, a limit of the rate enhancement for aqueous-phase dehydration of alcohols appears to exist for zeolites with high ionic strength. The origin of such limitation has been hypothesized to be caused by the spatial constraints in the pores via, e.g., size exclusion effects. It is demonstrated here that the increase in turnover rate as well as the formation of a maximum and the rate drop are intrinsic consequences of the increasingly dense ionic environment in zeolite. The molecularly sized confines of zeolite create a unique ionic environment that monotonically favors the formation of alcohol-hydronium ion complexes in the micropores. The zeolite microporous environment determines the kinetics of catalytic steps and tailors the impact of ionic strength on catalytic rates.
Collapse
Affiliation(s)
- Qiang Liu
- Department of Chemistry and Catalysis Research CenterTechnical University of MunichLichtenbergstrasse 485747GarchingGermany
| | - Niklas Pfriem
- Department of Chemistry and Catalysis Research CenterTechnical University of MunichLichtenbergstrasse 485747GarchingGermany
| | - Guanhua Cheng
- Department of Chemistry and Catalysis Research CenterTechnical University of MunichLichtenbergstrasse 485747GarchingGermany
| | - Eszter Baráth
- Department of Chemistry and Catalysis Research CenterTechnical University of MunichLichtenbergstrasse 485747GarchingGermany
| | - Yue Liu
- Department of Chemistry and Catalysis Research CenterTechnical University of MunichLichtenbergstrasse 485747GarchingGermany
- Shanghai Key Laboratory of Green Chemistry and Chemical ProcessesSchool of Chemistry and Molecular EngineeringEast China Normal University200062ShanghaiP. R. China
| | - Johannes A. Lercher
- Department of Chemistry and Catalysis Research CenterTechnical University of MunichLichtenbergstrasse 485747GarchingGermany
- Institute for Integrated CatalysisPacific Northwest National LaboratoryP.O. Box 999RichlandWA 99352USA
| |
Collapse
|
17
|
Deng C, Wang K, Qian X, Yao J, Xue N, Peng L, Guo X, Zhu Y, Ding W. Mild Oxidation of Toluene to Benzaldehyde by Air. Ind Eng Chem Res 2022. [DOI: 10.1021/acs.iecr.2c03967] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Affiliation(s)
- Changshun Deng
- Key Lab of Mesoscopic Chemistry, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, Jiangsu 210023, China
| | - Kai Wang
- Key Lab of Mesoscopic Chemistry, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, Jiangsu 210023, China
| | - Xiaofeng Qian
- Key Lab of Mesoscopic Chemistry, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, Jiangsu 210023, China
| | - Jun Yao
- Key Lab of Mesoscopic Chemistry, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, Jiangsu 210023, China
| | - Nianhua Xue
- Key Lab of Mesoscopic Chemistry, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, Jiangsu 210023, China
| | - Luming Peng
- Key Lab of Mesoscopic Chemistry, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, Jiangsu 210023, China
| | - Xuefeng Guo
- Key Lab of Mesoscopic Chemistry, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, Jiangsu 210023, China
| | - Yan Zhu
- Key Lab of Mesoscopic Chemistry, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, Jiangsu 210023, China
| | - Weiping Ding
- Key Lab of Mesoscopic Chemistry, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, Jiangsu 210023, China
| |
Collapse
|
18
|
Hu Q, Zhao H, Ouyang S, Liang Y, Yang H, Zhu X. The water structure around chloride ion investigated from D2O ↔ H2O substitution effect. J Mol Liq 2022. [DOI: 10.1016/j.molliq.2022.120702] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
19
|
Li G, Marinkovic N, Wang B, Komarneni MR, Resasco DE. Manipulating the Microenvironment of Surfactant-Encapsulated Pt Nanoparticles to Promote Activity and Selectivity. ACS Catal 2022. [DOI: 10.1021/acscatal.2c03780] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Gengnan Li
- School of Chemical, Biological and Materials Engineering, University of Oklahoma, Norman, Oklahoma73019, United States
| | - Nebojsa Marinkovic
- Synchrotron Catalysis Consortium and Department of Chemical Engineering, Columbia University, New York, New York10027, United States
| | - Bin Wang
- School of Chemical, Biological and Materials Engineering, University of Oklahoma, Norman, Oklahoma73019, United States
| | - Mallikharjuna Rao Komarneni
- School of Chemical, Biological and Materials Engineering, University of Oklahoma, Norman, Oklahoma73019, United States
| | - Daniel E. Resasco
- School of Chemical, Biological and Materials Engineering, University of Oklahoma, Norman, Oklahoma73019, United States
| |
Collapse
|
20
|
Potts DS, Jeyaraj VS, Kwon O, Ghosh R, Mironenko AV, Flaherty DW. Effect of Interactions between Alkyl Chains and Solvent Structures on Lewis Acid Catalyzed Epoxidations. ACS Catal 2022. [DOI: 10.1021/acscatal.2c03493] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- David S. Potts
- Department of Chemical and Biomolecular Engineering, University of Illinois Urbana−Champaign, Urbana, Illinois 61801, United States
| | - Vijaya Sundar Jeyaraj
- Department of Chemical and Biomolecular Engineering, University of Illinois Urbana−Champaign, Urbana, Illinois 61801, United States
| | - Ohsung Kwon
- Department of Chemical and Biomolecular Engineering, University of Illinois Urbana−Champaign, Urbana, Illinois 61801, United States
| | - Richa Ghosh
- Department of Chemical and Biomolecular Engineering, University of Illinois Urbana−Champaign, Urbana, Illinois 61801, United States
| | - Alexander V. Mironenko
- Department of Chemical and Biomolecular Engineering, University of Illinois Urbana−Champaign, Urbana, Illinois 61801, United States
| | - David W. Flaherty
- Department of Chemical and Biomolecular Engineering, University of Illinois Urbana−Champaign, Urbana, Illinois 61801, United States
| |
Collapse
|
21
|
Han S, Linares N, Terlier T, Hoke JB, García Martínez J, Li Y, Rimer JD. Cooperative Surface Passivation and Hierarchical Structuring of Zeolite Beta Catalysts. Angew Chem Int Ed Engl 2022; 61:e202210434. [DOI: 10.1002/anie.202210434] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2022] [Indexed: 11/06/2022]
Affiliation(s)
- Sungmin Han
- Department of Chemical and Biolmolecular Engineering University of Houston Houston TX 77204 USA
| | - Noemi Linares
- Molecular Nanotechnology Lab Department of Inorganic Chemistry University of Alicante 03690 Alicante Spain
| | - Tanguy Terlier
- Shared Equipment Authority SIMS laboratory Rice University Houston TX 77005 USA
| | | | - Javier García Martínez
- Molecular Nanotechnology Lab Department of Inorganic Chemistry University of Alicante 03690 Alicante Spain
| | - Yuejin Li
- BASF Corporation Iselin NJ 08830 USA
| | - Jeffrey D. Rimer
- Department of Chemical and Biolmolecular Engineering University of Houston Houston TX 77204 USA
| |
Collapse
|
22
|
Shen J, Cai Y, Zhang C, Wei W, Chen C, Liu L, Yang K, Ma Y, Wang Y, Tseng CC, Fu JH, Dong X, Li J, Zhang XX, Li LJ, Jiang J, Pinnau I, Tung V, Han Y. Fast water transport and molecular sieving through ultrathin ordered conjugated-polymer-framework membranes. NATURE MATERIALS 2022; 21:1183-1190. [PMID: 35941363 DOI: 10.1038/s41563-022-01325-y] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Accepted: 06/29/2022] [Indexed: 06/15/2023]
Abstract
The development of membranes that block solutes while allowing rapid water transport is of great importance. The microstructure of the membrane needs to be rationally designed at the molecular level to achieve precise molecular sieving and high water flux simultaneously. We report the design and fabrication of ultrathin, ordered conjugated-polymer-framework (CPF) films with thicknesses down to 1 nm via chemical vapour deposition and their performance as separation membranes. Our CPF membranes inherently have regular rhombic sub-nanometre (10.3 × 3.7 Å) channels, unlike membranes made of carbon nanotubes or graphene, whose separation performance depends on the alignment or stacking of materials. The optimized membrane exhibited a high water/NaCl selectivity of ∼6,900 and water permeance of ∼112 mol m-2 h-1 bar-1, and salt rejection >99.5% in high-salinity mixed-ion separations driven by osmotic pressure. Molecular dynamics simulations revealed that water molecules quickly and collectively pass through the membrane by forming a continuous three-dimensional network within the hydrophobic channels. The advent of ordered CPF provides a route towards developing carbon-based membranes for precise molecular separation.
Collapse
Affiliation(s)
- Jie Shen
- King Abdullah University of Science and Technology (KAUST), Physical Sciences and Engineering Division (PSE), Advanced Membranes and Porous Materials (AMPM) Center, Thuwal, Saudi Arabia
| | - Yichen Cai
- King Abdullah University of Science and Technology (KAUST), Physical Sciences and Engineering Division (PSE), Thuwal, Saudi Arabia
| | - Chenhui Zhang
- King Abdullah University of Science and Technology (KAUST), Physical Sciences and Engineering Division (PSE), Thuwal, Saudi Arabia
| | - Wan Wei
- Department of Chemical and Biomolecular Engineering, National University of Singapore, Singapore, Singapore
| | - Cailing Chen
- King Abdullah University of Science and Technology (KAUST), Physical Sciences and Engineering Division (PSE), Advanced Membranes and Porous Materials (AMPM) Center, Thuwal, Saudi Arabia
| | - Lingmei Liu
- Multi-scale Porous Materials Center, Institute of Advanced Inter-disciplinary Studies & School of Chemistry and Chemical Engineering, Chongqing University, Chongqing, P. R. China
| | - Kuiwei Yang
- Department of Chemical and Biomolecular Engineering, National University of Singapore, Singapore, Singapore
| | - Yinchang Ma
- King Abdullah University of Science and Technology (KAUST), Physical Sciences and Engineering Division (PSE), Thuwal, Saudi Arabia
| | - Yingge Wang
- King Abdullah University of Science and Technology (KAUST), Physical Sciences and Engineering Division (PSE), Advanced Membranes and Porous Materials (AMPM) Center, Thuwal, Saudi Arabia
| | - Chien-Chih Tseng
- King Abdullah University of Science and Technology (KAUST), Physical Sciences and Engineering Division (PSE), Thuwal, Saudi Arabia
- Department of Chemical System Engineering, School of Engineering, The University of Tokyo, Tokyo, Japan
| | - Jui-Han Fu
- King Abdullah University of Science and Technology (KAUST), Physical Sciences and Engineering Division (PSE), Thuwal, Saudi Arabia
- Department of Chemical System Engineering, School of Engineering, The University of Tokyo, Tokyo, Japan
| | - Xinglong Dong
- King Abdullah University of Science and Technology (KAUST), Physical Sciences and Engineering Division (PSE), Advanced Membranes and Porous Materials (AMPM) Center, Thuwal, Saudi Arabia
| | - Jiaqiang Li
- King Abdullah University of Science and Technology (KAUST), Physical Sciences and Engineering Division (PSE), Advanced Membranes and Porous Materials (AMPM) Center, Thuwal, Saudi Arabia
| | - Xi-Xiang Zhang
- King Abdullah University of Science and Technology (KAUST), Physical Sciences and Engineering Division (PSE), Thuwal, Saudi Arabia
| | - Lain-Jong Li
- Department of Mechanical Engineering, University of Hong Kong, Hong Kong, P. R. China
| | - Jianwen Jiang
- Department of Chemical and Biomolecular Engineering, National University of Singapore, Singapore, Singapore.
| | - Ingo Pinnau
- King Abdullah University of Science and Technology (KAUST), Physical Sciences and Engineering Division (PSE), Advanced Membranes and Porous Materials (AMPM) Center, Thuwal, Saudi Arabia.
| | - Vincent Tung
- King Abdullah University of Science and Technology (KAUST), Physical Sciences and Engineering Division (PSE), Thuwal, Saudi Arabia.
- Department of Chemical System Engineering, School of Engineering, The University of Tokyo, Tokyo, Japan.
| | - Yu Han
- King Abdullah University of Science and Technology (KAUST), Physical Sciences and Engineering Division (PSE), Advanced Membranes and Porous Materials (AMPM) Center, Thuwal, Saudi Arabia.
| |
Collapse
|
23
|
Hoffman AJ, Asokan C, Gadinas N, Schroeder E, Zakem G, Nystrom SV, Getsoian A“B, Christopher P, Hibbitts D. Experimental and Theoretical Characterization of Rh Single Atoms Supported on γ-Al 2O 3 with Varying Hydroxyl Contents during NO Reduction by CO. ACS Catal 2022. [DOI: 10.1021/acscatal.2c02813] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Alexander J. Hoffman
- Department of Chemical Engineering, University of Florida, Gainesville, Florida 32611, United States
| | - Chithra Asokan
- Department of Chemical Engineering, University of California Santa Barbara, Santa Barbara, California 93106, United States
| | - Nicholas Gadinas
- Department of Chemical Engineering, University of California Santa Barbara, Santa Barbara, California 93106, United States
| | - Emily Schroeder
- Department of Chemical Engineering, University of California Santa Barbara, Santa Barbara, California 93106, United States
| | - Gregory Zakem
- Department of Chemical Engineering, University of California Santa Barbara, Santa Barbara, California 93106, United States
| | - Steven V. Nystrom
- Department of Chemical Engineering, University of Florida, Gainesville, Florida 32611, United States
| | - Andrew “Bean” Getsoian
- Research and Advanced Engineering, Ford Motor Company, Dearborn, Michigan 48124, United States
| | - Phillip Christopher
- Department of Chemical Engineering, University of California Santa Barbara, Santa Barbara, California 93106, United States
| | - David Hibbitts
- Department of Chemical Engineering, University of Florida, Gainesville, Florida 32611, United States
| |
Collapse
|
24
|
Huang P, Yan Y, Banerjee A, Lefferts L, Wang B, Faria Albanese JA. Proton shuttling flattens the energy landscape of nitrite catalytic reduction. J Catal 2022. [DOI: 10.1016/j.jcat.2022.06.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
25
|
Han S, Linares N, Terlier T, Hoke JB, Martínez JG, Li Y, Rimer JD. Cooperative Surface Passivation and Hierarchical Structuring of Zeolite Beta Catalysts. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202210434] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Affiliation(s)
- Sungmin Han
- University of Houston Chemical and Biomolecular Engineering UNITED STATES
| | - Noemi Linares
- University of Alicante: Universitat d'Alacant Chemistry UNITED STATES
| | - Tanguy Terlier
- Rice University Shared Equipment Authority UNITED STATES
| | | | | | - Yuejin Li
- BASF Corp Research and Development UNITED STATES
| | - Jeffrey D. Rimer
- University of Houston Chemical and Biomolecular Engineering 4726 Calhoun RoadS222 Engineering Building 1 77204 Houston UNITED STATES
| |
Collapse
|
26
|
A critical assessment of the roles of water molecules and solvated ions in acid-base-catalyzed reactions at solid-water interfaces. CHINESE JOURNAL OF CATALYSIS 2022. [DOI: 10.1016/s1872-2067(21)64032-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
27
|
Dai J, Zhang H. Evidence of undissociated CO2 involved in the process of C-H bond activation in dry reforming of CH4. J Catal 2022. [DOI: 10.1016/j.jcat.2022.04.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
28
|
On the integration of molecular dynamics, data science, and experiments for studying solvent effects on catalysis. Curr Opin Chem Eng 2022. [DOI: 10.1016/j.coche.2022.100796] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
29
|
Boronat M, Climent MJ, Concepción P, Díaz U, García H, Iborra S, Leyva-Pérez A, Liu L, Martínez A, Martínez C, Moliner M, Pérez-Pariente J, Rey F, Sastre E, Serna P, Valencia S. A Career in Catalysis: Avelino Corma. ACS Catal 2022. [DOI: 10.1021/acscatal.2c01043] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Mercedes Boronat
- Instituto de Tecnología Química, Universitat Politècnica de València-Consejo Superior de Investigaciones Científicas (UPV-CSIC), Av. de los Naranjos s/n, Valencia 46022, Spain
| | - Maria J. Climent
- Instituto de Tecnología Química, Universitat Politècnica de València-Consejo Superior de Investigaciones Científicas (UPV-CSIC), Av. de los Naranjos s/n, Valencia 46022, Spain
| | - Patricia Concepción
- Instituto de Tecnología Química, Universitat Politècnica de València-Consejo Superior de Investigaciones Científicas (UPV-CSIC), Av. de los Naranjos s/n, Valencia 46022, Spain
| | - Urbano Díaz
- Instituto de Tecnología Química, Universitat Politècnica de València-Consejo Superior de Investigaciones Científicas (UPV-CSIC), Av. de los Naranjos s/n, Valencia 46022, Spain
| | - Hermenegildo García
- Instituto de Tecnología Química, Universitat Politècnica de València-Consejo Superior de Investigaciones Científicas (UPV-CSIC), Av. de los Naranjos s/n, Valencia 46022, Spain
| | - Sara Iborra
- Instituto de Tecnología Química, Universitat Politècnica de València-Consejo Superior de Investigaciones Científicas (UPV-CSIC), Av. de los Naranjos s/n, Valencia 46022, Spain
| | - Antonio Leyva-Pérez
- Instituto de Tecnología Química, Universitat Politècnica de València-Consejo Superior de Investigaciones Científicas (UPV-CSIC), Av. de los Naranjos s/n, Valencia 46022, Spain
| | - Lichen Liu
- Department of Chemistry, Tsinghua University, Beijing 100084, China
| | - Agustin Martínez
- Instituto de Tecnología Química, Universitat Politècnica de València-Consejo Superior de Investigaciones Científicas (UPV-CSIC), Av. de los Naranjos s/n, Valencia 46022, Spain
| | - Cristina Martínez
- Instituto de Tecnología Química, Universitat Politècnica de València-Consejo Superior de Investigaciones Científicas (UPV-CSIC), Av. de los Naranjos s/n, Valencia 46022, Spain
| | - Manuel Moliner
- Instituto de Tecnología Química, Universitat Politècnica de València-Consejo Superior de Investigaciones Científicas (UPV-CSIC), Av. de los Naranjos s/n, Valencia 46022, Spain
| | - Joaquín Pérez-Pariente
- Instituto de Catálisis y Petroleoquímica, Consejo Superior de Investigaciones Científicas, Marie Curie 2, Madrid 28049, Spain
| | - Fernando Rey
- Instituto de Tecnología Química, Universitat Politècnica de València-Consejo Superior de Investigaciones Científicas (UPV-CSIC), Av. de los Naranjos s/n, Valencia 46022, Spain
| | - Enrique Sastre
- Instituto de Catálisis y Petroleoquímica, Consejo Superior de Investigaciones Científicas, Marie Curie 2, Madrid 28049, Spain
| | - Pedro Serna
- ExxonMobil Technology and Engineering Company, Catalysis Fundamentals, Annandale, New Jersey 08801, United States
| | - Susana Valencia
- Instituto de Tecnología Química, Universitat Politècnica de València-Consejo Superior de Investigaciones Científicas (UPV-CSIC), Av. de los Naranjos s/n, Valencia 46022, Spain
| |
Collapse
|
30
|
Zeynep Ayla E, Patel D, Harris A, Flaherty DW. Identity of the Metal Oxide Support Controls Outer Sphere Interactions that Change Rates and Barriers for Alkene Epoxidations at Isolated Ti Atoms. J Catal 2022. [DOI: 10.1016/j.jcat.2022.05.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
31
|
Hu ZP, Han J, Wei Y, Liu Z. Dynamic Evolution of Zeolite Framework and Metal-Zeolite Interface. ACS Catal 2022. [DOI: 10.1021/acscatal.2c01233] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Affiliation(s)
- Zhong-Pan Hu
- National Engineering Laboratory for Methanol to Olefins, Dalian National Laboratory for Clean Energy, iChEM (Collaborative Innovation Center of Chemistry for Energy Materials), Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, People’s Republic of China
| | - Jingfeng Han
- National Engineering Laboratory for Methanol to Olefins, Dalian National Laboratory for Clean Energy, iChEM (Collaborative Innovation Center of Chemistry for Energy Materials), Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, People’s Republic of China
| | - Yingxu Wei
- National Engineering Laboratory for Methanol to Olefins, Dalian National Laboratory for Clean Energy, iChEM (Collaborative Innovation Center of Chemistry for Energy Materials), Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, People’s Republic of China
| | - Zhongmin Liu
- National Engineering Laboratory for Methanol to Olefins, Dalian National Laboratory for Clean Energy, iChEM (Collaborative Innovation Center of Chemistry for Energy Materials), Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, People’s Republic of China
- State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, People’s Republic of China
- University of Chinese Academy of Sciences, Beijing 100049, People’s Republic of China
| |
Collapse
|
32
|
Volavšek J, Pliekhov O, Pliekhova O, Mali G, Zabukovec Logar N. Study of Water Adsorption on EDTA-Modified LTA Zeolites. NANOMATERIALS 2022; 12:nano12081352. [PMID: 35458059 PMCID: PMC9027755 DOI: 10.3390/nano12081352] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Revised: 04/10/2022] [Accepted: 04/12/2022] [Indexed: 12/02/2022]
Abstract
The present work deals with the study of water adsorption on acid-modified zeolites A. Commercial zeolites 4A (Na form) and 5A (Ca form) were subjected to EDTA dealumination, and their structure, textural properties and stability were checked by XRD, EDX, NMR and N2 physisorption analyses. The water adsorption isotherms of the parent zeolites and their modified forms were measured at a temperature of 25 °C and up to a relative pressure of 0.9. The results show that the treatment with EDTA drastically changes the structural properties of the zeolites and increases the water adsorption capacity by up to 10%. The changes depend on the type of extra-framework cations (Na+ and Ca2+) and the EDTA concentration.
Collapse
Affiliation(s)
- Janez Volavšek
- National Institute of Chemistry, Hajdrihova 19, 1000 Ljubljana, Slovenia; (J.V.); (O.P.); (G.M.)
- Faculty of Mathematics and Physics, University of Ljubljana, Jadranska 19, 1000 Ljubljana, Slovenia
| | - Oleksii Pliekhov
- National Institute of Chemistry, Hajdrihova 19, 1000 Ljubljana, Slovenia; (J.V.); (O.P.); (G.M.)
| | - Olena Pliekhova
- School of Science, University of Nova Gorica, Vipavska 13, 5000 Nova Gorica, Slovenia;
| | - Gregor Mali
- National Institute of Chemistry, Hajdrihova 19, 1000 Ljubljana, Slovenia; (J.V.); (O.P.); (G.M.)
- Faculty of Mathematics and Physics, University of Ljubljana, Jadranska 19, 1000 Ljubljana, Slovenia
- School of Science, University of Nova Gorica, Vipavska 13, 5000 Nova Gorica, Slovenia;
| | - Nataša Zabukovec Logar
- National Institute of Chemistry, Hajdrihova 19, 1000 Ljubljana, Slovenia; (J.V.); (O.P.); (G.M.)
- School of Science, University of Nova Gorica, Vipavska 13, 5000 Nova Gorica, Slovenia;
- Correspondence: ; Tel.: +386-1-4760-371
| |
Collapse
|
33
|
Huda MM, Saha C, Jahan N, Wilson WN, Rai N. Insights into Sorption and Molecular Transport of Aqueous Glucose into Zeolite Nanopores. J Phys Chem B 2022; 126:1352-1364. [PMID: 35119855 DOI: 10.1021/acs.jpcb.1c10572] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Liquid-phase heterogeneous catalysis using zeolites is important for biomass conversion to fuels and chemicals. There is a substantial body of work on gas-phase sorption in zeolites with different topologies; however, studies investigating the diffusion of complex molecules in liquid medium into zeolitic nanopores are scarce. Here, we present a molecular dynamics study to understand the sorption and diffusion of aqueous β-d-glucose into β-zeolite silicate at T = 395 K and P = 1 bar. Through 2-μs-long molecular dynamics trajectories, we reveal the role of the solvent, the kinetics of the pore filling, and the effect of the water model on these properties. We find that the glucose and water loading is a function of the initial glucose concentration. Although the glucose concentration increases monotonically with the initial glucose concentration, the water loading exhibits a nonmonotonic behavior. At the highest initial concentration (∼20 wt %), we find that the equilibrium loading of glucose is approximately five molecules per unit cell and displays a weak dependence on the water model. Glucose molecules follow a single-file diffusion in the nanopores due to confinement. The dynamics of glucose and water molecules slows significantly at the interface. The average residence time for glucose molecules is an order of magnitude larger than that in the bulk solution, while it is about twice as large for the water molecules. Our simulations reveal critical molecular details of the glucose molecule's local environment inside the zeolite pore relevant to catalytic conversion of biomass to valuable chemicals.
Collapse
Affiliation(s)
- Md Masrul Huda
- Dave C. Swalm School of Chemical Engineering and Center for Advanced Vehicular Systems, Mississippi State University, Mississippi State, Mississippi 39762, United States
| | - Chinmoy Saha
- Dave C. Swalm School of Chemical Engineering and Center for Advanced Vehicular Systems, Mississippi State University, Mississippi State, Mississippi 39762, United States
| | - Nusrat Jahan
- Dave C. Swalm School of Chemical Engineering and Center for Advanced Vehicular Systems, Mississippi State University, Mississippi State, Mississippi 39762, United States
| | - Woodrow N Wilson
- Dave C. Swalm School of Chemical Engineering and Center for Advanced Vehicular Systems, Mississippi State University, Mississippi State, Mississippi 39762, United States
| | - Neeraj Rai
- Dave C. Swalm School of Chemical Engineering and Center for Advanced Vehicular Systems, Mississippi State University, Mississippi State, Mississippi 39762, United States
| |
Collapse
|
34
|
Tan JZ, Bregante DT, Torres C, Flaherty DW. Transition state stabilization depends on solvent identity, pore size, and hydrophilicity for epoxidations in zeolites. J Catal 2022. [DOI: 10.1016/j.jcat.2021.11.029] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
|
35
|
Yun D, Zhang Z, Flaherty DW. Catalyst and reactor design considerations for selective production of acids by oxidative cleavage of alkenes and unsaturated fatty acids with H 2O 2. REACT CHEM ENG 2022. [DOI: 10.1039/d2re00160h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Mechanistic insight and measurements of apparent kinetics for productive and non-productive reaction pathways guide the development of semi-batch reactors and conditions for stable production of carboxylic acids and diacids over supported tungstate catalysts.
Collapse
Affiliation(s)
- Danim Yun
- Department of Chemical and Biomolecular Engineering, University of Illinois Urbana-Champaign, Urbana, IL-61801, USA
| | - Zhongyao Zhang
- Department of Chemical and Biomolecular Engineering, University of Illinois Urbana-Champaign, Urbana, IL-61801, USA
| | - David W. Flaherty
- Department of Chemical and Biomolecular Engineering, University of Illinois Urbana-Champaign, Urbana, IL-61801, USA
| |
Collapse
|
36
|
Potts DS, Bregante DT, Adams JS, Torres C, Flaherty DW. Influence of solvent structure and hydrogen bonding on catalysis at solid-liquid interfaces. Chem Soc Rev 2021; 50:12308-12337. [PMID: 34569580 DOI: 10.1039/d1cs00539a] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Solvent molecules interact with reactive species and alter the rates and selectivities of catalytic reactions by orders of magnitude. Specifically, solvent molecules can modify the free energies of liquid phase and surface species via solvation, participating directly as a reactant or co-catalyst, or competitively binding to active sites. These effects carry consequences for reactions relevant for the conversion of renewable or recyclable feedstocks, the development of distributed chemical manufacturing, and the utilization of renewable energy to drive chemical reactions. First, we describe the quantitative impact of these effects on steady-state catalytic turnover rates through a rate expression derived for a generic catalytic reaction (A → B), which illustrates the functional dependence of rates on each category of solvent interaction. Second, we connect these concepts to recent investigations of the effects of solvents on catalysis to show how interactions between solvent and reactant molecules at solid-liquid interfaces influence catalytic reactions. This discussion demonstrates that the design of effective liquid phase catalytic processes benefits from a clear understanding of these intermolecular interactions and their implications for rates and selectivities.
Collapse
Affiliation(s)
- David S Potts
- Department of Chemical and Biomolecular Engineering, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA.
| | - Daniel T Bregante
- Department of Chemical and Biomolecular Engineering, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA.
| | - Jason S Adams
- Department of Chemical and Biomolecular Engineering, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA.
| | - Chris Torres
- Department of Chemical and Biomolecular Engineering, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA.
| | - David W Flaherty
- Department of Chemical and Biomolecular Engineering, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA.
| |
Collapse
|