1
|
Shimose A, Ishigaki S, Sato Y, Nogami J, Toriumi N, Uchiyama M, Tanaka K, Nagashima Y. Dearomative Construction of 2D/3D Frameworks from Quinolines via Nucleophilic Addition/Borate-Mediated Photocycloaddition. Angew Chem Int Ed Engl 2024; 63:e202403461. [PMID: 38803130 DOI: 10.1002/anie.202403461] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Revised: 05/24/2024] [Accepted: 05/27/2024] [Indexed: 05/29/2024]
Abstract
Dearomative construction of multiply-fused 2D/3D frameworks, composed of aromatic two-dimensional (2D) rings and saturated three-dimensional (3D) rings, from readily available quinolines has greatly contributed to drug discovery. However, dearomative cycloadditions of quinolines in the presence of photocatalysts usually afford 5,6,7,8-tetrahydroquinoline (THQ)-based polycycles, and dearomative access to 1,2,3,4-THQ-based structures remains limited. Herein, we present a chemo-, regio-, diastereo-, and enantioselective dearomative transformation of quinolines into 1,2,3,4-THQ-based 6-6-4-membered rings without any catalyst, through a combination of nucleophilic addition and borate-mediated [2+2] photocycloaddition. Detailed mechanistic studies revealed that the photoexcited borate complex, generated from quinoline, organolithium, and HB(pin), accelerates the cycloaddition and suppresses the rearomatization that usually occurs in conventional photocycloaddition. Based on our mechanistic analysis, we also developed further photoinduced cycloadditions affording other types of 2D/3D frameworks from isoquinoline and phenanthrene.
Collapse
Affiliation(s)
- Asuha Shimose
- Department of Chemical Science and Engineering, Tokyo Institute of Technology O-okayama, Meguro-ku, Tokyo, 152-8550, Japan
| | - Shiho Ishigaki
- Department of Chemical Science and Engineering, Tokyo Institute of Technology O-okayama, Meguro-ku, Tokyo, 152-8550, Japan
| | - Yu Sato
- Department of Chemical Science and Engineering, Tokyo Institute of Technology O-okayama, Meguro-ku, Tokyo, 152-8550, Japan
| | - Juntaro Nogami
- Department of Chemical Science and Engineering, Tokyo Institute of Technology O-okayama, Meguro-ku, Tokyo, 152-8550, Japan
| | - Naoyuki Toriumi
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-0033, Japan
| | - Masanobu Uchiyama
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-0033, Japan
| | - Ken Tanaka
- Department of Chemical Science and Engineering, Tokyo Institute of Technology O-okayama, Meguro-ku, Tokyo, 152-8550, Japan
| | - Yuki Nagashima
- Department of Chemical Science and Engineering, Tokyo Institute of Technology O-okayama, Meguro-ku, Tokyo, 152-8550, Japan
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-0033, Japan
| |
Collapse
|
2
|
Han X, Zhang N, Li Q, Zhang Y, Das S. The efficient synthesis of three-membered rings via photo- and electrochemical strategies. Chem Sci 2024:d4sc02512a. [PMID: 39156935 PMCID: PMC11325197 DOI: 10.1039/d4sc02512a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Accepted: 07/31/2024] [Indexed: 08/20/2024] Open
Abstract
Three-membered rings, such as epoxides, aziridines, oxaziridines, cyclopropenes, vinyloxaziridines, and azirines, are recognized as crucial pharmacophores and building blocks in organic chemistry and drug discovery. Despite the significant advances in the synthesis of these rings through photo/electrochemical methods over the past decade, there has currently been no focused discussion and updated overviews on this topic. Therefore, we presented this review article on the efficient synthesis of three-membered rings using photo- and electrochemical strategies, covering the literature since 2015. In this study, a conceptual overview and detailed discussions were provided to illustrate the advancement of this field. Moreover, a brief discussion outlines the current challenges and opportunities in synthesizing the three-membered rings using these strategies.
Collapse
Affiliation(s)
- Xinyu Han
- Shanghai Frontiers Science Center for Chinese Medicine Chemical Biology, Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine No. 1200, Cailun Road Shanghai 201203 China
| | - Na Zhang
- Department of Laboratory Medicine, Shanghai East Hospital, Tongji University School of Medicine Shanghai China
| | - Qiannan Li
- Shanghai Frontiers Science Center for Chinese Medicine Chemical Biology, Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine No. 1200, Cailun Road Shanghai 201203 China
| | - Yu Zhang
- Shanghai Frontiers Science Center for Chinese Medicine Chemical Biology, Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine No. 1200, Cailun Road Shanghai 201203 China
- School of Chemistry and Chemical Engineering, Henan Normal University Xinxiang Henan 453007 People's Republic of China
| | - Shoubhik Das
- Department of Chemistry, University of Bayreuth Bayreuth 95447 Germany
| |
Collapse
|
3
|
Zhang QB, Li F, Pan B, Yu L, Yue XG. Visible-Light-Mediated [2+2] Photocycloadditions of Alkynes. Chemistry 2024; 30:e202401501. [PMID: 38806409 DOI: 10.1002/chem.202401501] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Revised: 05/21/2024] [Accepted: 05/27/2024] [Indexed: 05/30/2024]
Abstract
Visible-light-mediated [2+2] photocycloaddition reaction can be considered an ideal solution due to its green and sustainable properties, and is one of the most efficient methods to synthesize four-membered ring motifs. Although research on the [2+2] photocycloaddition of alkynes is challenging because of the diminished reactivity of alkynes, and the more significant ring strain of the products, remarkable achievements have been made in this field. In this article, we highlight the recent advances in visible-light-mediated [2+2] photocycloaddition reactions of alkynes, with focus on the reaction mechanism and the late-stage synthetic applications. Advances in obtaining cyclobutenes, azetines, and oxetene active intermediates continue to be breakthroughs in this fascinating field of research.
Collapse
Affiliation(s)
- Qing-Bao Zhang
- Shandong Peninsula Engineering Research Center of Comprehensive Brine Utilization, Weifang University of Science and Technology, Shouguang, CN, 262700, People's Republic of China
| | - Feng Li
- Shandong Peninsula Engineering Research Center of Comprehensive Brine Utilization, Weifang University of Science and Technology, Shouguang, CN, 262700, People's Republic of China
| | - Bin Pan
- Shandong Peninsula Engineering Research Center of Comprehensive Brine Utilization, Weifang University of Science and Technology, Shouguang, CN, 262700, People's Republic of China
| | - Lei Yu
- Shandong Peninsula Engineering Research Center of Comprehensive Brine Utilization, Weifang University of Science and Technology, Shouguang, CN, 262700, People's Republic of China
| | - Xiang-Guo Yue
- Shandong Peninsula Engineering Research Center of Comprehensive Brine Utilization, Weifang University of Science and Technology, Shouguang, CN, 262700, People's Republic of China
| |
Collapse
|
4
|
Guo SY, Liu YP, Huang JS, He LB, He GC, Ji DW, Wan B, Chen QA. Visible light-induced chemoselective 1,2-diheteroarylation of alkenes. Nat Commun 2024; 15:6102. [PMID: 39030211 PMCID: PMC11271625 DOI: 10.1038/s41467-024-50460-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2024] [Accepted: 07/12/2024] [Indexed: 07/21/2024] Open
Abstract
Visible-light photocatalysis has evolved as a powerful technique to enable controllable radical reactions. Exploring unique photocatalytic mode for obtaining new chemoselectivity and product diversity is of great significance. Herein, we present a photo-induced chemoselective 1,2-diheteroarylation of unactivated alkenes utilizing halopyridines and quinolines. The ring-fused azaarenes serve as not only substrate, but also potential precursors for halogen-atom abstraction for pyridyl radical generation in this photocatalysis. As a complement to metal catalysis, this photo-induced radical process with mild and redox neutral conditions assembles two different heteroaryl groups into alkenes regioselectively and contribute to broad substrates scope. The obtained products containing aza-arene units permit various further diversifications, demonstrating the synthetic utility of this protocol. We anticipate that this protocol will trigger the further advancement of photo-induced alkyl/aryl halides activation.
Collapse
Affiliation(s)
- Shi-Yu Guo
- Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, China
| | - Yi-Peng Liu
- Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, China
| | - Jin-Song Huang
- Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, China
| | - Li-Bowen He
- Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Gu-Cheng He
- Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Ding-Wei Ji
- Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, China
| | - Boshun Wan
- Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, China
| | - Qing-An Chen
- Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, China.
- University of Chinese Academy of Sciences, Beijing, China.
| |
Collapse
|
5
|
Ji P, Duan K, Li M, Wang Z, Meng X, Zhang Y, Wang W. Photochemical dearomative skeletal modifications of heteroaromatics. Chem Soc Rev 2024; 53:6600-6624. [PMID: 38817197 PMCID: PMC11181993 DOI: 10.1039/d4cs00137k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2024] [Indexed: 06/01/2024]
Abstract
Dearomatization has emerged as a powerful tool for rapid construction of 3D molecular architectures from simple, abundant, and planar (hetero)arenes. The field has evolved beyond simple dearomatization driven by new synthetic technology development. With the renaissance of photocatalysis and expansion of the activation mode, the last few years have witnessed impressive developments in innovative photochemical dearomatization methodologies, enabling skeletal modifications of dearomatized structures. They offer truly efficient and useful tools for facile construction of highly complex structures, which are viable for natural product synthesis and drug discovery. In this review, we aim to provide a mechanistically insightful overview on these innovations based on the degree of skeletal alteration, categorized into dearomative functionalization and skeletal editing, and to highlight their synthetic utilities.
Collapse
Affiliation(s)
- Peng Ji
- Department of Pharmacology and Toxicology, R. Ken Coit College of Pharmacy, University of Arizona, USA.
- Department of Chemistry and Biochemistry, University of California, San Diego, 9500 Gilman Drive, La Jolla, California 92093, USA.
| | - Kuaikuai Duan
- Tri-institutional Center for Translational Research in Neuroimaging and Data Science (TReNDS), Georgia State University, Georgia Institute of Technology, Emory University, Atlanta, USA
| | - Menglong Li
- Tianjian Laboratory of Advanced Biomedical Sciences, Academy of Medical Science, School of Basic Medicinal Sciences, Zhengzhou University, Zhengzhou, Henan 450001, China.
| | - Zhiyuan Wang
- Henan Institute of Advanced Technology, Zhengzhou University, Zhengzhou 450001, China
| | - Xiang Meng
- Department of Pharmacology and Toxicology, R. Ken Coit College of Pharmacy, University of Arizona, USA.
| | - Yueteng Zhang
- Tianjian Laboratory of Advanced Biomedical Sciences, Academy of Medical Science, School of Basic Medicinal Sciences, Zhengzhou University, Zhengzhou, Henan 450001, China.
| | - Wei Wang
- Department of Pharmacology and Toxicology, R. Ken Coit College of Pharmacy, University of Arizona, USA.
| |
Collapse
|
6
|
Liu Z, Ji X, Duan L, Deng GJ, Huang H. Accessing pyrrolo[1,2- a]indole derivatives via visible-light-induced dearomatizative cyclization of indoles. Chem Commun (Camb) 2024; 60:4902-4905. [PMID: 38619574 DOI: 10.1039/d4cc01215a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/16/2024]
Abstract
Pyrrolo[1,2-a]indoles are structurally important scaffolds in many natural products and bioactive compounds. Herein, we report a novel synthetic method for pyrrolo[1,2-a]indole derivatives through visible-light-induced cascade dearomatizative cyclization of indoles with external nucleophiles. Moderate yields, good diastereoselectivities, and excellent regioselectivities were generally observed with the resultant indole-fused polycyclic compounds.
Collapse
Affiliation(s)
- Zhaosheng Liu
- College of Chemistry, Xiangtan University, Xiangtan 411105, China.
| | - Xiaochen Ji
- College of Chemistry, Xiangtan University, Xiangtan 411105, China.
| | - Lilan Duan
- College of Chemistry, Xiangtan University, Xiangtan 411105, China.
| | - Guo-Jun Deng
- College of Chemistry, Xiangtan University, Xiangtan 411105, China.
- School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, 453007, China
| | - Huawen Huang
- College of Chemistry, Xiangtan University, Xiangtan 411105, China.
| |
Collapse
|
7
|
Zhu M, Gao YJ, Huang XL, Li M, Zheng C, You SL. Photo-induced intramolecular dearomative [5 + 4] cycloaddition of arenes for the construction of highly strained medium-sized-rings. Nat Commun 2024; 15:2462. [PMID: 38503749 PMCID: PMC10951311 DOI: 10.1038/s41467-024-46647-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Accepted: 03/05/2024] [Indexed: 03/21/2024] Open
Abstract
Medium-sized-ring compounds have been recognized as challenging synthetic targets in organic chemistry. Especially, the difficulty of synthesis will be augmented if an E-olefin moiety is embedded. Recently, photo-induced dearomative cycloaddition reactions that proceed via energy transfer mechanism have witnessed significant developments and provided powerful methods for the organic transformations that are not easily realized under thermal conditions. Herein, we report an intramolecular dearomative [5 + 4] cycloaddition of naphthalene-derived vinylcyclopropanes under visible-light irradiation and a proper triplet photosensitizer. The reaction affords dearomatized polycyclic molecules possessing a nine-membered-ring with an E-olefin moiety in good yields (up to 86%) and stereoselectivity (up to 8.8/1 E/Z). Detailed computational studies reveal the origin behind the favorable formation of the thermodynamically less stable isomers. Diverse derivations of the dearomatized products have also been demonstrated.
Collapse
Affiliation(s)
- Min Zhu
- New Cornerstone Science Laboratory, State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Lu, Shanghai, China
- School of Physical Science and Technology, ShanghaiTech University, 100 Haike Road, Shanghai, China
| | - Yuan-Jun Gao
- New Cornerstone Science Laboratory, State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Lu, Shanghai, China
| | - Xu-Lun Huang
- New Cornerstone Science Laboratory, State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Lu, Shanghai, China
- School of Physical Science and Technology, ShanghaiTech University, 100 Haike Road, Shanghai, China
| | - Muzi Li
- New Cornerstone Science Laboratory, State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Lu, Shanghai, China
| | - Chao Zheng
- New Cornerstone Science Laboratory, State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Lu, Shanghai, China.
| | - Shu-Li You
- New Cornerstone Science Laboratory, State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Lu, Shanghai, China.
- School of Physical Science and Technology, ShanghaiTech University, 100 Haike Road, Shanghai, China.
| |
Collapse
|
8
|
Huang J, Zhou TP, Sun N, Yu H, Yu X, Liao RZ, Yao W, Dai Z, Wu G, Zhong F. Accessing ladder-shape azetidine-fused indoline pentacycles through intermolecular regiodivergent aza-Paternò-Büchi reactions. Nat Commun 2024; 15:1431. [PMID: 38365864 PMCID: PMC10873392 DOI: 10.1038/s41467-024-45687-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Accepted: 01/31/2024] [Indexed: 02/18/2024] Open
Abstract
Small molecules with conformationally rigid, three-dimensional geometry are highly desirable in drug development, toward which a direct, simple-to-complexity synthetic logic is still of considerable challenges. Here, we report intermolecular aza-[2 + 2] photocycloaddition (the aza-Paternò-Büchi reaction) of indole that facilely assembles planar building blocks into ladder-shape azetidine-fused indoline pentacycles with contiguous quaternary carbons, divergent head-to-head/head-to-tail regioselectivity, and absolute exo stereoselectivity. These products exhibit marked three-dimensionality, many of which possess 3D score values distributed in the highest 0.5% region with reference to structures from DrugBank database. Mechanistic studies elucidated the origin of the observed regio- and stereoselectivities, which arise from distortion-controlled C-N coupling scenarios. This study expands the synthetic repertoire of energy transfer catalysis for accessing structurally intriguing architectures with high molecular complexity and underexplored topological chemical space.
Collapse
Affiliation(s)
- Jianjian Huang
- Hubei Engineering Research Center for Biomaterials and Medical Protective Materials, Hubei Key Laboratory of Bioinorganic Chemistry & Materia Medica, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology (HUST), 1037 Luoyu Road, Wuhan, 430074, China
| | - Tai-Ping Zhou
- Hubei Engineering Research Center for Biomaterials and Medical Protective Materials, Hubei Key Laboratory of Bioinorganic Chemistry & Materia Medica, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology (HUST), 1037 Luoyu Road, Wuhan, 430074, China
| | - Ningning Sun
- Hubei Engineering Research Center for Biomaterials and Medical Protective Materials, Hubei Key Laboratory of Bioinorganic Chemistry & Materia Medica, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology (HUST), 1037 Luoyu Road, Wuhan, 430074, China
| | - Huaibin Yu
- Zhengzhou Research Institute, Harbin Institute of Technology, Zhengzhou, 450000, China
| | - Xixiang Yu
- Hubei Engineering Research Center for Biomaterials and Medical Protective Materials, Hubei Key Laboratory of Bioinorganic Chemistry & Materia Medica, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology (HUST), 1037 Luoyu Road, Wuhan, 430074, China
| | - Rong-Zhen Liao
- Hubei Engineering Research Center for Biomaterials and Medical Protective Materials, Hubei Key Laboratory of Bioinorganic Chemistry & Materia Medica, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology (HUST), 1037 Luoyu Road, Wuhan, 430074, China.
| | - Weijun Yao
- School of Chemistry and Chemical Engineering, Zhejiang Sci-Tech University, Hangzhou, 310018, China
| | - Zhifeng Dai
- School of Chemistry and Chemical Engineering, Zhejiang Sci-Tech University, Hangzhou, 310018, China
- Longgang Institute of Zhejiang Sci-Tech University, Wenzhou, 325802, China
| | - Guojiao Wu
- Hubei Engineering Research Center for Biomaterials and Medical Protective Materials, Hubei Key Laboratory of Bioinorganic Chemistry & Materia Medica, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology (HUST), 1037 Luoyu Road, Wuhan, 430074, China
| | - Fangrui Zhong
- Hubei Engineering Research Center for Biomaterials and Medical Protective Materials, Hubei Key Laboratory of Bioinorganic Chemistry & Materia Medica, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology (HUST), 1037 Luoyu Road, Wuhan, 430074, China.
| |
Collapse
|
9
|
Escolano M, Gaviña D, Alzuet-Piña G, Díaz-Oltra S, Sánchez-Roselló M, Pozo CD. Recent Strategies in the Nucleophilic Dearomatization of Pyridines, Quinolines, and Isoquinolines. Chem Rev 2024; 124:1122-1246. [PMID: 38166390 PMCID: PMC10902862 DOI: 10.1021/acs.chemrev.3c00625] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2024]
Abstract
Dearomatization reactions have become fundamental chemical transformations in organic synthesis since they allow for the generation of three-dimensional complexity from two-dimensional precursors, bridging arene feedstocks with alicyclic structures. When those processes are applied to pyridines, quinolines, and isoquinolines, partially or fully saturated nitrogen heterocycles are formed, which are among the most significant structural components of pharmaceuticals and natural products. The inherent challenge of those transformations lies in the low reactivity of heteroaromatic substrates, which makes the dearomatization process thermodynamically unfavorable. Usually, connecting the dearomatization event to the irreversible formation of a strong C-C, C-H, or C-heteroatom bond compensates the energy required to disrupt the aromaticity. This aromaticity breakup normally results in a 1,2- or 1,4-functionalization of the heterocycle. Moreover, the combination of these dearomatization processes with subsequent transformations in tandem or stepwise protocols allows for multiple heterocycle functionalizations, giving access to complex molecular skeletons. The aim of this review, which covers the period from 2016 to 2022, is to update the state of the art of nucleophilic dearomatizations of pyridines, quinolines, and isoquinolines, showing the extraordinary ability of the dearomative methodology in organic synthesis and indicating their limitations and future trends.
Collapse
Affiliation(s)
- Marcos Escolano
- Department of Organic Chemistry, Faculty of Pharmacy, University of Valencia, 46100 Burjassot, Valencia, Spain
| | - Daniel Gaviña
- Department of Organic Chemistry, Faculty of Pharmacy, University of Valencia, 46100 Burjassot, Valencia, Spain
| | - Gloria Alzuet-Piña
- Department of Inorganic Chemistry, Faculty of Pharmacy, University of Valencia, 46100 Burjassot, Valencia, Spain
| | - Santiago Díaz-Oltra
- Department of Organic Chemistry, Faculty of Pharmacy, University of Valencia, 46100 Burjassot, Valencia, Spain
| | - María Sánchez-Roselló
- Department of Organic Chemistry, Faculty of Pharmacy, University of Valencia, 46100 Burjassot, Valencia, Spain
| | - Carlos Del Pozo
- Department of Organic Chemistry, Faculty of Pharmacy, University of Valencia, 46100 Burjassot, Valencia, Spain
| |
Collapse
|
10
|
Dutta S, Erchinger JE, Strieth-Kalthoff F, Kleinmans R, Glorius F. Energy transfer photocatalysis: exciting modes of reactivity. Chem Soc Rev 2024; 53:1068-1089. [PMID: 38168974 DOI: 10.1039/d3cs00190c] [Citation(s) in RCA: 40] [Impact Index Per Article: 40.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2024]
Abstract
Excited (triplet) states offer a myriad of attractive synthetic pathways, including cycloadditions, selective homolytic bond cleavages and strain-release chemistry, isomerizations, deracemizations, or the fusion with metal catalysis. Recent years have seen enormous advantages in enabling these reactivity modes through visible-light-mediated triplet-triplet energy transfer catalysis (TTEnT). This tutorial review provides an overview of this emerging strategy for synthesizing sought-after organic motifs in a mild, selective, and sustainable manner. Building on the photophysical foundations of energy transfer, this review also discusses catalyst design, as well as the challenges and opportunities of energy transfer catalysis.
Collapse
Affiliation(s)
- Subhabrata Dutta
- University of Münster, Organisch-Chemisches Institut, Corrensstraße 36, 48149 Münster, Germany.
| | - Johannes E Erchinger
- University of Münster, Organisch-Chemisches Institut, Corrensstraße 36, 48149 Münster, Germany.
| | - Felix Strieth-Kalthoff
- University of Münster, Organisch-Chemisches Institut, Corrensstraße 36, 48149 Münster, Germany.
| | - Roman Kleinmans
- University of Münster, Organisch-Chemisches Institut, Corrensstraße 36, 48149 Münster, Germany.
| | - Frank Glorius
- University of Münster, Organisch-Chemisches Institut, Corrensstraße 36, 48149 Münster, Germany.
| |
Collapse
|
11
|
Dutta S, Lee D, Ozols K, Daniliuc CG, Shintani R, Glorius F. Photoredox-Enabled Dearomative [2π + 2σ] Cycloaddition of Phenols. J Am Chem Soc 2024; 146:2789-2797. [PMID: 38236061 DOI: 10.1021/jacs.3c12894] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2024]
Abstract
Dearomative photocycloaddition of monocyclic arenes is an appealing strategy for comprehending the concept of "escape from flatland". This brings the replacement of readily available planar aromatic hydrocarbon units with a 3D fused bicyclic core with sp3-enriched carbon units. Herein, we outline an intermolecular approach for the dearomative photocycloaddition of phenols. In order to circumvent the ground-state aromaticity and to construct conformationally restrained building blocks, bicyclo[1.1.0]butanes were chosen as coupling partners. This dearomative approach renders straightforward access to a bicyclo[2.1.1]hexane unit fused to a cyclic enone moiety, which further contributed as a synthetic linchpin for postmodifications. Mechanistic experiment advocates for a plausible onset from both the reactants, depending on the redox potential.
Collapse
Affiliation(s)
- Subhabrata Dutta
- Organisch-Chemisches Institut, Universität Münster, Corrensstraße 36, 48149 Münster, Germany
| | - Donghyeon Lee
- Organisch-Chemisches Institut, Universität Münster, Corrensstraße 36, 48149 Münster, Germany
- Division of Chemistry, Department of Materials Engineering Science, Graduate School of Engineering Science, Osaka University, Toyonaka, Osaka 560-8531, Japan
| | - Kristers Ozols
- Organisch-Chemisches Institut, Universität Münster, Corrensstraße 36, 48149 Münster, Germany
| | - Constantin G Daniliuc
- Organisch-Chemisches Institut, Universität Münster, Corrensstraße 36, 48149 Münster, Germany
| | - Ryo Shintani
- Division of Chemistry, Department of Materials Engineering Science, Graduate School of Engineering Science, Osaka University, Toyonaka, Osaka 560-8531, Japan
| | - Frank Glorius
- Organisch-Chemisches Institut, Universität Münster, Corrensstraße 36, 48149 Münster, Germany
| |
Collapse
|
12
|
Adak S, Braley SE, Brown MK. Photochemical Reduction of Quinolines with γ-Terpinene. Org Lett 2024; 26:401-405. [PMID: 38169485 PMCID: PMC11027786 DOI: 10.1021/acs.orglett.3c04096] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2024]
Abstract
The saturation of aromatic scaffolds is valuable for the synthesis of complex rings. Herein, we demonstrate a process for photochemical dearomative reduction of quinolines. The process involves capture of a quinoline excited state with γ-terpinene. Importantly, the reaction is chemoselective as other easily reduced functionalities such as halogens or alkenes do not undergo reduction. The mechanism of the reaction has also been investigated. Finally, the generality of the approach towards other substrates is demonstrated.
Collapse
Affiliation(s)
- Souvik Adak
- Department of Chemistry, Indiana University, 800 E. Kirkwood Avenue, Bloomington, Indiana 47405, United States
| | - Sarah E Braley
- Department of Chemistry, Indiana University, 800 E. Kirkwood Avenue, Bloomington, Indiana 47405, United States
| | - M Kevin Brown
- Department of Chemistry, Indiana University, 800 E. Kirkwood Avenue, Bloomington, Indiana 47405, United States
| |
Collapse
|
13
|
Sarkar S, Singh P, Edin S, Wendt OF, Almqvist F. Synthesis of Three-Dimensional Ring Fused Heterocycles by a Selective [4 + 2] Cycloaddition Between Bicyclic Thiazolo 2-Pyridones and Arynes. J Org Chem 2024; 89:731-739. [PMID: 38093677 PMCID: PMC10777404 DOI: 10.1021/acs.joc.3c01957] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Revised: 11/15/2023] [Accepted: 11/24/2023] [Indexed: 01/06/2024]
Abstract
A selective [4 + 2] cycloaddition reaction of thiazolo-2-pyridones with arynes has been demonstrated. The developed protocol allows rapid access to highly functionalized, structurally complex thiazolo-fused bridged isoquinolones in high yields, which are susceptible to further late-stage functionalization.
Collapse
Affiliation(s)
- Souvik Sarkar
- Department
of Chemistry, Umeå University, 901 87 Umeå, Sweden
| | - Pardeep Singh
- Department
of Chemistry, Umeå University, 901 87 Umeå, Sweden
| | - Simon Edin
- Centre
for Analysis and Synthesis, Lund University, SE-221 00 Lund, Sweden
| | - Ola F. Wendt
- Centre
for Analysis and Synthesis, Lund University, SE-221 00 Lund, Sweden
| | | |
Collapse
|
14
|
Zhang Y, Wang J, Guo Y, Liu S, Shen X. Carbonyl Olefin Metathesis and Dehydrogenative Cyclization of Aromatic Ketones and gem-Difluoroalkenes. Angew Chem Int Ed Engl 2023:e202315269. [PMID: 38065839 DOI: 10.1002/anie.202315269] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Indexed: 12/23/2023]
Abstract
The beauty of one-pot cascade reaction lies in the efficient disconnection and construction of several bonds in a single reaction flask, without the isolation of any intermediates. Herein, we report the first photoinduced thermally promoted cascade reactions of readily available aromatic ketones and aromatic gem-difluoroalkenes for the synthesis of phenanthrenes which possess potential utility in drug design and materials science. The reaction combines carbonyl-olefin metathesis (cascade photoinduced [2+2] cyclization and thermally controlled retro [2+2] cyclization) and dehydrogenative cyclization (cascade photoinduced conrotatory 6π electrocyclization and collidine-promoted dehydrogenative aromatization) together in one pot. The oxidant-free, acid-free and metal-free reaction shows broad substrate scope and wide functional group tolerance.
Collapse
Affiliation(s)
- Yunxiao Zhang
- The Institute for Advanced Studies, Engineering Research Center of Organosilicon Compounds & Materials, Ministry of Education, Wuhan University, 299 Bayi Road, Wuhan, Hubei, 430072, China
- Shenzhen Research Institute of Wuhan University, Shenzhen, 518057, China
| | - Jiaxin Wang
- The Institute for Advanced Studies, Engineering Research Center of Organosilicon Compounds & Materials, Ministry of Education, Wuhan University, 299 Bayi Road, Wuhan, Hubei, 430072, China
- Shenzhen Research Institute of Wuhan University, Shenzhen, 518057, China
| | - Youyuan Guo
- The Institute for Advanced Studies, Engineering Research Center of Organosilicon Compounds & Materials, Ministry of Education, Wuhan University, 299 Bayi Road, Wuhan, Hubei, 430072, China
- Shenzhen Research Institute of Wuhan University, Shenzhen, 518057, China
| | - Shanshan Liu
- The Institute for Advanced Studies, Engineering Research Center of Organosilicon Compounds & Materials, Ministry of Education, Wuhan University, 299 Bayi Road, Wuhan, Hubei, 430072, China
- Shenzhen Research Institute of Wuhan University, Shenzhen, 518057, China
| | - Xiao Shen
- The Institute for Advanced Studies, Engineering Research Center of Organosilicon Compounds & Materials, Ministry of Education, Wuhan University, 299 Bayi Road, Wuhan, Hubei, 430072, China
- Shenzhen Research Institute of Wuhan University, Shenzhen, 518057, China
| |
Collapse
|
15
|
Savateev O, Nolkemper K, Kühne TD, Shvalagin V, Markushyna Y, Antonietti M. Extent of carbon nitride photocharging controls energetics of hydrogen transfer in photochemical cascade processes. Nat Commun 2023; 14:7684. [PMID: 38001091 PMCID: PMC10674013 DOI: 10.1038/s41467-023-43328-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Accepted: 11/07/2023] [Indexed: 11/26/2023] Open
Abstract
Graphitic carbon nitride is widely studied in organic photoredox catalysis. Reductive quenching of carbon nitride excited state is postulated in many photocatalytic transformations. However, the reactivity of this species in the turn over step is less explored. In this work, we investigate electron and proton transfer from carbon nitride that is photocharged to a various extent, while the negative charge is compensated either by protons or ammonium cations. Strong stabilization of electrons by ammonium cations makes proton-coupled electron transfer uphill, and affords air-stable persistent carbon nitride radicals. In carbon nitrides, which are photocharged to a smaller extent, protons do not stabilize electrons, which results in spontaneous charge transfer to oxidants. Facile proton-coupled electron transfer is a key step in the photocatalytic oxidative-reductive cascade - tetramerization of benzylic amines. The feasibility of proton-coupled electron transfer is modulated by adjusting the extent of carbon nitride photocharging, type of counterion and temperature.
Collapse
Affiliation(s)
- Oleksandr Savateev
- Department of Colloid Chemistry, Max Planck Institute of Colloids and Interfaces, Am Mühlenberg 1, 14476, Potsdam, Germany.
- Department of Chemistry, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong, China.
| | - Karlo Nolkemper
- Department of Colloid Chemistry, Max Planck Institute of Colloids and Interfaces, Am Mühlenberg 1, 14476, Potsdam, Germany
- Dynamics of Condensed Matter and Center for Sustainable System Design, Chair of Theoretical Chemistry, University of Paderborn, Warburger Str. 100, D-33098, Paderborn, Germany
| | - Thomas D Kühne
- Dynamics of Condensed Matter and Center for Sustainable System Design, Chair of Theoretical Chemistry, University of Paderborn, Warburger Str. 100, D-33098, Paderborn, Germany
- Center for Advanced Systems Understanding (CASUS) and Helmholtz-Zentrum Dresden-Rossendorf, Untermarkt 20, D-02826, Görlitz, Germany
- Institute of Artificial Intelligence, Chair of Computational System Sciences, Technische Universität Dresden, 01187, Dresden, Germany
| | - Vitaliy Shvalagin
- Department of Colloid Chemistry, Max Planck Institute of Colloids and Interfaces, Am Mühlenberg 1, 14476, Potsdam, Germany
| | - Yevheniia Markushyna
- Department of Colloid Chemistry, Max Planck Institute of Colloids and Interfaces, Am Mühlenberg 1, 14476, Potsdam, Germany
| | - Markus Antonietti
- Department of Colloid Chemistry, Max Planck Institute of Colloids and Interfaces, Am Mühlenberg 1, 14476, Potsdam, Germany
| |
Collapse
|
16
|
Chang R, Pang Y, Ye J. Divergent Photosensitizer Controlled Reactions of 4-Hydroxycoumarins and Unactivated Olefins: Hydroarylation and Subsequent [2+2] Cycloaddition. Angew Chem Int Ed Engl 2023; 62:e202309897. [PMID: 37749064 DOI: 10.1002/anie.202309897] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Revised: 09/22/2023] [Accepted: 09/25/2023] [Indexed: 09/27/2023]
Abstract
Herein, we report a photoinduced approach for hydroarylation of unactivated olefins using 4-hydroxycoumarins as the arylating reagent. Key to the success of this reaction is the conversion of nucleophilic 4-hydroxycoumarins into electrophilic carbon radicals via photocatalytic arene oxidation, which not only circumvents the polarity-mismatch issue encountered under ionic conditions but also accommodates a broad substrate scope and inhibits side reactions that were previously observed. Moreover, divergent reactivity was achieved by changing the photocatalyst, enabling a subsequent [2+2] cycloaddition to deliver cyclobutane-fused pentacyclic products that are otherwise challenging to access in high yields and with high diastereoselectivity. Mechanistic studies have elucidated the mechanism of the reactions and the origin of the divergent reactivity.
Collapse
Affiliation(s)
- Rui Chang
- Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs, School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Yubing Pang
- Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs, School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Juntao Ye
- Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs, School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, Shanghai Jiao Tong University, Shanghai, 200240, China
| |
Collapse
|
17
|
Hong K, Zhou Y, Yuan H, Zhang Z, Huang J, Dong S, Hu W, Yu ZX, Xu X. Catalytic 4-exo-dig carbocyclization for the construction of furan-fused cyclobutanones and synthetic applications. Nat Commun 2023; 14:6378. [PMID: 37821471 PMCID: PMC10567718 DOI: 10.1038/s41467-023-42032-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Accepted: 09/25/2023] [Indexed: 10/13/2023] Open
Abstract
Cyclobutanone is a strained motif with broad applications, while direct assembly of the aromatic ring fused cyclobutanones beyond benzocyclobutenone (BCB) skeletons remains challenging. Herein, we report a Rh-catalyzed formal [3+2] annulation of diazo group tethered alkynes involving a 4-exo-dig carbocyclization process, providing a straightforward access to furan-fused cyclobutanones. DFT calculations disclose that, by comparison to the competitive 5-endo-dig process, 4-exo-dig carbocyclization is mainly due to lower angle strain of the key sp-hybridized vinyl cationic transition state in the cyclization step. Using less reactive catalysts Rh2(carboxylate)4 is critical for high selectivity, which is explained as catalyst-substrate hydrogen bonding interaction. This method is proved successful to direct access previously inaccessible and unknown furan-fused cyclobutanone scaffolds, which can participate in a variety of post-functionalization reactions as versatile synthetic blocks. In addition, preliminary antitumor activity study of these products indicates that some molecules exhibite significant anticancer potency against different human cancer cell lines.
Collapse
Affiliation(s)
- Kemiao Hong
- Guangdong Key Laboratory of Chiral Molecule and Drug Discovery, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, 510006, Guangdong, China
| | - Yi Zhou
- Beijing National Laboratory for Molecular Sciences (BNLMS), Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, College of Chemistry, Peking University, 100871, Beijing, China
| | - Haoxuan Yuan
- Guangdong Key Laboratory of Chiral Molecule and Drug Discovery, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, 510006, Guangdong, China
| | - Zhijing Zhang
- Guangdong Key Laboratory of Chiral Molecule and Drug Discovery, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, 510006, Guangdong, China
| | - Jingjing Huang
- Guangdong Key Laboratory of Chiral Molecule and Drug Discovery, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, 510006, Guangdong, China
| | - Shanliang Dong
- Guangdong Key Laboratory of Chiral Molecule and Drug Discovery, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, 510006, Guangdong, China
| | - Wenhao Hu
- Guangdong Key Laboratory of Chiral Molecule and Drug Discovery, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, 510006, Guangdong, China
| | - Zhi-Xiang Yu
- Beijing National Laboratory for Molecular Sciences (BNLMS), Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, College of Chemistry, Peking University, 100871, Beijing, China.
| | - Xinfang Xu
- Guangdong Key Laboratory of Chiral Molecule and Drug Discovery, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, 510006, Guangdong, China.
| |
Collapse
|
18
|
Abstract
The concept of strain in organic compounds is as old as modern organic chemistry and was initially introduced to justify the synthetic setbacks along the synthesis of small ring systems (pars construens of strain). In the last decades, chemists have developed an arsenal of strain-release reactions (pars destruens of strain) which can generate─with significant driving force─rigid aliphatic systems that can act as three-dimensional alternatives to (hetero)arenes. Photocatalysis added an additional dimension to strain-release processes by leveraging the energy of photons to create chemical complexity under mild conditions. This perspective presents the latest advancements in strain-release photocatalysis─with emphases on mechanisms, catalytic cycles, and current limitations─the unique chemical architectures that can be produced, and possible future directions.
Collapse
Affiliation(s)
- Peter Bellotti
- Organisch-Chemisches Institut, Westfälische Wilhelms-Universität Münster, 48149 Münster, Germany
- Department of Pharmacology, Weill Cornell Medicine, 1300 York Avenue, New York 10021, New York United States
| | - Frank Glorius
- Organisch-Chemisches Institut, Westfälische Wilhelms-Universität Münster, 48149 Münster, Germany
| |
Collapse
|
19
|
Lee W, Koo Y, Jung H, Chang S, Hong S. Energy-transfer-induced [3+2] cycloadditions of N-N pyridinium ylides. Nat Chem 2023:10.1038/s41557-023-01258-2. [PMID: 37365339 DOI: 10.1038/s41557-023-01258-2] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Accepted: 05/26/2023] [Indexed: 06/28/2023]
Abstract
Photocycloaddition is a powerful reaction to enable the conversion of alkenes into high-value synthetic materials that are normally difficult to obtain under thermal conditions. Lactams and pyridines, both prominent in pharmaceutical applications, currently lack effective synthetic strategies to combine them within a single molecular structure. Here we describe an efficient approach to diastereoselective pyridyl lactamization via a photoinduced [3+2] cycloaddition, based on the unique triplet-state reactivity of N-N pyridinium ylides in the presence of a photosensitizer. The corresponding triplet diradical intermediates allow the stepwise radical [3+2] cycloaddition with a broad range of activated and unactivated alkenes under mild conditions. This method exhibits excellent efficiency, diastereoselectivity and functional group tolerance, providing a useful synthon for ortho-pyridyl γ- and δ-lactam scaffolds with syn-configuration in a single step. Combined experimental and computational studies reveal that the energy transfer process leads to a triplet-state diradical of N-N pyridinium ylides, which promotes the stepwise cycloaddition.
Collapse
Affiliation(s)
- Wooseok Lee
- Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, Korea
- Center for Catalytic Hydrocarbon Functionalizations, Institute for Basic Science (IBS), Daejeon, Korea
| | - Yejin Koo
- Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, Korea
- Center for Catalytic Hydrocarbon Functionalizations, Institute for Basic Science (IBS), Daejeon, Korea
| | - Hoimin Jung
- Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, Korea
- Center for Catalytic Hydrocarbon Functionalizations, Institute for Basic Science (IBS), Daejeon, Korea
| | - Sukbok Chang
- Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, Korea
- Center for Catalytic Hydrocarbon Functionalizations, Institute for Basic Science (IBS), Daejeon, Korea
| | - Sungwoo Hong
- Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, Korea.
- Center for Catalytic Hydrocarbon Functionalizations, Institute for Basic Science (IBS), Daejeon, Korea.
| |
Collapse
|
20
|
Deng YH, Zhang CB, Sun JJ, Xu WL, Fu JY. A regioselective [3 + 2] cycloaddition reaction of 2-benzylidene-1-indenones with functional olefins to access indanone-fused 2D/3D skeletons. Org Biomol Chem 2023; 21:4388-4392. [PMID: 37161754 DOI: 10.1039/d3ob00559c] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
The regioselective [3 + 2] cycloaddition reaction of 2-benzylidene-1-indenones with functional olefins was established with DABCO as a base under mild conditions. Using this approach, a series of diversely substituted indanone-fused cyclopentane polycycles with highly crowded multiple substituents were synthesized in high yields.
Collapse
Affiliation(s)
- Yi-Hang Deng
- Henan Engineering Research Center of Functional Materials and Catalytic Reaction, College of Chemistry and Chemical Engineering, Henan University, Kaifeng 475004, China.
| | - Chuan-Bao Zhang
- Henan Engineering Research Center of Functional Materials and Catalytic Reaction, College of Chemistry and Chemical Engineering, Henan University, Kaifeng 475004, China.
- School of Pharmacy, Zhengzhou Railway Vocational & Technical College, Zhengzhou 450052, China
| | - Jun-Jie Sun
- Henan Engineering Research Center of Functional Materials and Catalytic Reaction, College of Chemistry and Chemical Engineering, Henan University, Kaifeng 475004, China.
| | - Wen-Li Xu
- Henan Engineering Research Center of Functional Materials and Catalytic Reaction, College of Chemistry and Chemical Engineering, Henan University, Kaifeng 475004, China.
| | - Ji-Ya Fu
- Henan Engineering Research Center of Functional Materials and Catalytic Reaction, College of Chemistry and Chemical Engineering, Henan University, Kaifeng 475004, China.
| |
Collapse
|
21
|
Bhakat M, Khatua B, Biswas P, Guin J. Brønsted Acid-Promoted Intermolecular Dearomative Photocycloaddition of Bicyclic Azaarenes with Olefins under Aerobic Conditions. Org Lett 2023; 25:3089-3093. [PMID: 37096800 DOI: 10.1021/acs.orglett.3c00917] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/26/2023]
Abstract
Herein, we present a simplified reaction protocol for the dearomatization of bicyclic azaarenes via photochemical cycloaddition with alkenes using an Ir(III) photosensitizer, trifluoroacetic acid (TFA), dichloroethane, and a blue light-emitting diode. An efficient protonation of azaarenes with TFA enhances the reactivity of triplet azaarene toward olefins, enabling the photocycloaddition under aerobic conditions. The protocol applies to a broad range of substrates. Control experiments indicate a strong correlation between the degree of protonation of azaarene and the product yield.
Collapse
Affiliation(s)
- Manotosh Bhakat
- School of Chemical Sciences, Indian Association for the Cultivation of Science, 2A & 2B Raja S. C. Mullick Road, Jadavpur, Kolkata 700032, India
| | - Bitasik Khatua
- School of Chemical Sciences, Indian Association for the Cultivation of Science, 2A & 2B Raja S. C. Mullick Road, Jadavpur, Kolkata 700032, India
| | - Promita Biswas
- School of Chemical Sciences, Indian Association for the Cultivation of Science, 2A & 2B Raja S. C. Mullick Road, Jadavpur, Kolkata 700032, India
| | - Joyram Guin
- School of Chemical Sciences, Indian Association for the Cultivation of Science, 2A & 2B Raja S. C. Mullick Road, Jadavpur, Kolkata 700032, India
| |
Collapse
|
22
|
Ikeda K, Kojima R, Kawai K, Murakami T, Kikuchi T, Kojima M, Yoshino T, Matsunaga S. Formation of Isolable Dearomatized [4 + 2] Cycloadducts from Benzenes, Naphthalenes, and N-Heterocycles Using 1,2-Dihydro-1,2,4,5-tetrazine-3,6-diones as Arenophiles under Visible Light Irradiation. J Am Chem Soc 2023; 145:9326-9333. [PMID: 37055373 DOI: 10.1021/jacs.3c02556] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/15/2023]
Abstract
We report that the dearomative [4 + 2] cycloaddition between 1,2-dihydro-1,2,4,5-tetrazine-3,6-diones (TETRADs) and benzenes, naphthalenes, or N-heteroaromatic compounds under visible light irradiation affords the corresponding isolable cycloadducts. Several synthetic transformations including transition-metal-catalyzed allylic substitution reactions using the isolated cycloadducts at room temperature or above were demonstrated. Computational studies revealed that the retro-cycloaddition of the benzene-TETRAD adduct proceeds via an asynchronous concerted mechanism, while that of the benzene-MTAD adduct (MTAD = 4-methyl-1,2,4-triazoline-3,5-dione) proceeds via a synchronous mechanism.
Collapse
Affiliation(s)
- Kazuki Ikeda
- Faculty of Pharmaceutical Sciences, Hokkaido University, Kita-12 Nishi-6, Kita-ku, Sapporo 060-0812, Japan
| | - Riku Kojima
- Faculty of Pharmaceutical Sciences, Hokkaido University, Kita-12 Nishi-6, Kita-ku, Sapporo 060-0812, Japan
| | - Kentaro Kawai
- Faculty of Pharmaceutical Sciences, Hokkaido University, Kita-12 Nishi-6, Kita-ku, Sapporo 060-0812, Japan
| | - Takayasu Murakami
- Faculty of Pharmaceutical Sciences, Hokkaido University, Kita-12 Nishi-6, Kita-ku, Sapporo 060-0812, Japan
| | - Takashi Kikuchi
- Rigaku Corporation, 3-9-12 Matsubara-cho, Akishima-shi, Tokyo 196-8666, Japan
| | - Masahiro Kojima
- Faculty of Pharmaceutical Sciences, Hokkaido University, Kita-12 Nishi-6, Kita-ku, Sapporo 060-0812, Japan
| | - Tatsuhiko Yoshino
- Faculty of Pharmaceutical Sciences, Hokkaido University, Kita-12 Nishi-6, Kita-ku, Sapporo 060-0812, Japan
- Global Station for Biosurfaces and Drug Discovery, Hokkaido University, Kita-12 Nishi-6, Kita-ku, Sapporo 060-0812, Japan
| | - Shigeki Matsunaga
- Faculty of Pharmaceutical Sciences, Hokkaido University, Kita-12 Nishi-6, Kita-ku, Sapporo 060-0812, Japan
- Global Station for Biosurfaces and Drug Discovery, Hokkaido University, Kita-12 Nishi-6, Kita-ku, Sapporo 060-0812, Japan
| |
Collapse
|
23
|
Zhen G, Zeng G, Jiang K, Wang F, Cao X, Yin B. Visible-Light-Induced Diradical-Mediated ipso-Cyclization towards Double Dearomative [2+2]-Cycloaddition or Smiles-Type Rearrangement. Chemistry 2023; 29:e202203217. [PMID: 36460618 DOI: 10.1002/chem.202203217] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2022] [Revised: 12/01/2022] [Accepted: 12/02/2022] [Indexed: 12/05/2022]
Abstract
When mono-radical ipso-cyclization of aryl sulfonamides tend to undergo Smiles-type rearrangement through aromatization-driven C-S bond cleavage, diradical-mediated cyclization must perform in a distinct reaction pathway. It is interesting meanwhile challenging to tune the rate of C-S bond cleavage to achieve a chemically divergent reaction of (hetero) aryl sulfonamides in a visible-light induced energy transfer (EnT) reaction pathway involving diradical species. Herein a chemically divergent reaction based on the designed indole-tethered (hetero)arylsulfonamides is reported which involves a diradical-mediated ipso-cyclization and a controllable cleavage of an inherent C-S bond. The combined experimental and computational results have revealed that the cleavage of the C-S bond in these substrates can be controlled by tuning the heteroaryl moieties: a) If the (hetero)aryl is thienyl, furyl, phenanthryl, etc., the radical coupling of double dearomative diradicals (DDDR) precedes over C-S bond cleavage to afford cyclobutene fused indolines by double dearomative [2+2]-cycloaddition; b) if the (hetero)aryl is phenyl, naphthyl, pyridyl, indolyl etc., the cleavage of C-S bond in DDDR is favored over radical coupling to afford biaryl products.
Collapse
Affiliation(s)
- Guangjin Zhen
- Key Laboratory of Functional Molecular Engineering of Guangdong Province, School of Chemistry and Chemical Engineering, South China University of Technology (SCUT), State Key Laboratory of Pulp and Paper Engineering, South China University of Technology, Guangzhou, 510640, P. R. China
| | - Guohui Zeng
- Key Laboratory of Functional Molecular Engineering of Guangdong Province, School of Chemistry and Chemical Engineering, South China University of Technology (SCUT), State Key Laboratory of Pulp and Paper Engineering, South China University of Technology, Guangzhou, 510640, P. R. China
| | - Kai Jiang
- Key Laboratory of Functional Molecular Engineering of Guangdong Province, School of Chemistry and Chemical Engineering, South China University of Technology (SCUT), State Key Laboratory of Pulp and Paper Engineering, South China University of Technology, Guangzhou, 510640, P. R. China
| | - Furong Wang
- Key Laboratory of Functional Molecular Engineering of Guangdong Province, School of Chemistry and Chemical Engineering, South China University of Technology (SCUT), State Key Laboratory of Pulp and Paper Engineering, South China University of Technology, Guangzhou, 510640, P. R. China
| | - Xiaohui Cao
- School of Pharmacy, Guangdong Pharmaceutical University, Pharmaceutical University, Guangzhou, 510006, P. R. China
| | - Biaolin Yin
- Key Laboratory of Functional Molecular Engineering of Guangdong Province, School of Chemistry and Chemical Engineering, South China University of Technology (SCUT), State Key Laboratory of Pulp and Paper Engineering, South China University of Technology, Guangzhou, 510640, P. R. China
| |
Collapse
|
24
|
Mondal S, Mondal S, Midya SP, Das S, Mondal S, Ghosh P. Merging Photocatalytic C-O Cross-Coupling for α-Oxycarbonyl-β-ketones: Esterification of Carboxylic Acids via a Decarboxylative Pathway. Org Lett 2023; 25:184-189. [PMID: 36562790 DOI: 10.1021/acs.orglett.2c04041] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Herein, the first merged photocatalytic pathway for the C-O cross-coupled esterification of carboxylic acids to α-oxycarbonyl-β-ketones has been demonstrated. Decarboxylation of α,β-unsaturated acids promotes the formation of the β-ketone fragment of the desired product. Water as the source of oxygen for the ketone segment and aerial oxygen as an oxidant make the present synthetic methodology green and sustainable. This new C═O and C-O bond-forming methodology takes place in a cascade manner under a dual Ir/Pd-catalytic pathway, with the liberation of H2O and CO2 as the only byproducts.
Collapse
Affiliation(s)
- Soumya Mondal
- School of Chemical Sciences, Indian Association for the Cultivation of Science, 2A & 2B Raja S. C. Mullick Road, Kolkata, West Bengal 700032, India
| | - Subal Mondal
- School of Chemical Sciences, Indian Association for the Cultivation of Science, 2A & 2B Raja S. C. Mullick Road, Kolkata, West Bengal 700032, India
| | - Siba P Midya
- School of Chemical Sciences, Indian Association for the Cultivation of Science, 2A & 2B Raja S. C. Mullick Road, Kolkata, West Bengal 700032, India
| | - Suman Das
- School of Chemical Sciences, Indian Association for the Cultivation of Science, 2A & 2B Raja S. C. Mullick Road, Kolkata, West Bengal 700032, India
| | - Sahidul Mondal
- School of Chemical Sciences, Indian Association for the Cultivation of Science, 2A & 2B Raja S. C. Mullick Road, Kolkata, West Bengal 700032, India
| | - Pradyut Ghosh
- School of Chemical Sciences, Indian Association for the Cultivation of Science, 2A & 2B Raja S. C. Mullick Road, Kolkata, West Bengal 700032, India
| |
Collapse
|
25
|
Hu C, Vo C, Merchant RR, Chen SJ, Hughes JME, Peters BK, Qin T. Uncanonical Semireduction of Quinolines and Isoquinolines via Regioselective HAT-Promoted Hydrosilylation. J Am Chem Soc 2023; 145:25-31. [PMID: 36548026 PMCID: PMC9930105 DOI: 10.1021/jacs.2c11664] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Heterocycles are the backbone of modern medical chemistry and drug development. The derivatization of "an olefin" inside aromatic rings represents an ideal approach to access functionalized saturated heterocycles from abundant aromatic building blocks. Here, we report an operationally simple, efficient, and practical method to selectively access hydrosilylated and reduced N-heterocycles from bicyclic aromatics via a key diradical intermediate. This approach is expected to facilitate complex heterocycle functionalizations that enable access to novel medicinally relevant scaffolds.
Collapse
Affiliation(s)
- Chao Hu
- Department of Biochemistry, The University of Texas Southwestern Medical Center, Dallas, Texas 75390, United States
| | - Cuong Vo
- Department of Biochemistry, The University of Texas Southwestern Medical Center, Dallas, Texas 75390, United States
| | - Rohan R. Merchant
- Department of Discovery Chemistry, Merck & Co., Inc., South San Francisco, California 94080, United States
| | - Si-Jie Chen
- Department of Discovery Chemistry, Merck & Co., Inc., South San Francisco, California 94080, United States
| | - Jonathan M. E. Hughes
- Department of Process Research and Development, Merck & Co., Inc., Rahway, New Jersey 07065, United States
| | - Byron K. Peters
- Department of Process Research and Development, Merck & Co., Inc., Rahway, New Jersey 07065, United States
| | - Tian Qin
- Department of Biochemistry, The University of Texas Southwestern Medical Center, Dallas, Texas 75390, United States
| |
Collapse
|
26
|
Koshikawa T, Nogami J, Nagashima Y, Tanaka K. Catalyst-Controlled Inter- and Intramolecular Cascade [4 + 2] Annulations via Benzopyrylium Intermediates. ACS Catal 2022. [DOI: 10.1021/acscatal.2c04740] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Takumi Koshikawa
- Department of Chemical Science and Engineering, Tokyo Institute of Technology, Ookayama, Meguro-ku, Tokyo 152-8550, Japan
| | - Juntaro Nogami
- Department of Chemical Science and Engineering, Tokyo Institute of Technology, Ookayama, Meguro-ku, Tokyo 152-8550, Japan
| | - Yuki Nagashima
- Department of Chemical Science and Engineering, Tokyo Institute of Technology, Ookayama, Meguro-ku, Tokyo 152-8550, Japan
| | - Ken Tanaka
- Department of Chemical Science and Engineering, Tokyo Institute of Technology, Ookayama, Meguro-ku, Tokyo 152-8550, Japan
| |
Collapse
|
27
|
Liang Y, Kleinmans R, Daniliuc CG, Glorius F. Synthesis of Polysubstituted 2-Oxabicyclo[2.1.1]hexanes via Visible-Light-Induced Energy Transfer. J Am Chem Soc 2022; 144:20207-20213. [DOI: 10.1021/jacs.2c09248] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Yujie Liang
- Westfälische Wilhelms-Universität Münster, Organisch-Chemisches Institut, Corrensstraße 40, 48149 Münster, Germany
| | - Roman Kleinmans
- Westfälische Wilhelms-Universität Münster, Organisch-Chemisches Institut, Corrensstraße 40, 48149 Münster, Germany
| | - Constantin G. Daniliuc
- Westfälische Wilhelms-Universität Münster, Organisch-Chemisches Institut, Corrensstraße 40, 48149 Münster, Germany
| | - Frank Glorius
- Westfälische Wilhelms-Universität Münster, Organisch-Chemisches Institut, Corrensstraße 40, 48149 Münster, Germany
| |
Collapse
|
28
|
Stegbauer S, Jandl C, Bach T. Chiral Lewis acid catalysis in a visible light-triggered cycloaddition/rearrangement cascade. Chem Sci 2022; 13:11856-11862. [PMID: 36320923 PMCID: PMC9580482 DOI: 10.1039/d2sc03159k] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2022] [Accepted: 09/18/2022] [Indexed: 07/10/2024] Open
Abstract
Cascade (domino) reactions facilitate the formation of complex molecules from simple starting materials in a single operation. It was found that 1-naphthaldehyde derivatives can be converted to enantioenriched (82-96% ee) polycyclic benzoisochromenes via a cascade of ortho photocycloaddition and ensuing acid-catalysed rearrangement reactions. The cascade was initiated by irradiation with visible light (λ = 457 nm) and catalysed by a chiral AlBr3-activated 1,3,2-oxazaborolidine (14 examples, 65-93% yield). The absolute configuration of the products was elucidated by single crystal X-ray crystallography. Mechanistic experiments suggest that the ortho photocycloaddition occurs on the triplet hypersurface and that the chiral catalyst induces in this step the observed enantioselectivity.
Collapse
Affiliation(s)
- Simone Stegbauer
- Technische Universität München, School of Natural Sciences, Department of Chemistry and Catalysis Research Center Lichtenbergstrasse 4 Garching 85747 Germany https://www.ch.nat.tum.de/en/oc1/home/ +49 (0)89 289 13315
| | - Christian Jandl
- Technische Universität München, School of Natural Sciences, Department of Chemistry and Catalysis Research Center Lichtenbergstrasse 4 Garching 85747 Germany https://www.ch.nat.tum.de/en/oc1/home/ +49 (0)89 289 13315
| | - Thorsten Bach
- Technische Universität München, School of Natural Sciences, Department of Chemistry and Catalysis Research Center Lichtenbergstrasse 4 Garching 85747 Germany https://www.ch.nat.tum.de/en/oc1/home/ +49 (0)89 289 13315
| |
Collapse
|
29
|
Guo R, Adak S, Bellotti P, Gao X, Smith WW, Le SN, Ma J, Houk KN, Glorius F, Chen S, Brown MK. Photochemical Dearomative Cycloadditions of Quinolines and Alkenes: Scope and Mechanism Studies. J Am Chem Soc 2022; 144:17680-17691. [PMID: 36106902 PMCID: PMC9840784 DOI: 10.1021/jacs.2c07726] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
Photochemical dearomative cycloaddition has emerged as a useful strategy to rapidly generate molecular complexity. Within this context, stereo- and regiocontrolled intermolecular para-cycloadditions are rare. Herein, a method to achieve photochemical cycloaddition of quinolines and alkenes is shown. Emphasis is placed on generating sterically congested products and reaction of highly substituted alkenes and allenes. In addition, the mechanistic details of the process are studied, which revealed a reversible radical addition and a selectivity-determining radical recombination. The regio- and stereochemical outcome of the reaction is also rationalized.
Collapse
Affiliation(s)
- Renyu Guo
- Department of Chemistry, Indiana University, 800 E. Kirkwood Avenue, Bloomington, Indiana47405, United States
| | - Souvik Adak
- Department of Chemistry, Indiana University, 800 E. Kirkwood Avenue, Bloomington, Indiana47405, United States
| | - Peter Bellotti
- Organisch-Chemisches Institut, Westfälische Wilhelms-Universität Münster, Corrensstrasse 36, 48149Münster, Germany
| | - Xinfeng Gao
- Department of Chemistry, Indiana University, 800 E. Kirkwood Avenue, Bloomington, Indiana47405, United States
| | - W Walker Smith
- Department of Chemistry, Indiana University, 800 E. Kirkwood Avenue, Bloomington, Indiana47405, United States
| | - Sam Ngan Le
- Department of Chemistry and Biochemistry, Oberlin College, 119 Woodland Street, Oberlin, Ohio44074, United States
| | - Jiajia Ma
- Organisch-Chemisches Institut, Westfälische Wilhelms-Universität Münster, Corrensstrasse 36, 48149Münster, Germany
| | - K N Houk
- Department of Chemistry and Biochemistry, University of California, Los Angeles, 607 Charles E. Young Drive East, Los Angeles, California90095, United States
| | - Frank Glorius
- Organisch-Chemisches Institut, Westfälische Wilhelms-Universität Münster, Corrensstrasse 36, 48149Münster, Germany
| | - Shuming Chen
- Department of Chemistry and Biochemistry, Oberlin College, 119 Woodland Street, Oberlin, Ohio44074, United States
| | - M Kevin Brown
- Department of Chemistry, Indiana University, 800 E. Kirkwood Avenue, Bloomington, Indiana47405, United States
| |
Collapse
|
30
|
Zhu M, Zhang X, Zheng C, You SL. Energy-Transfer-Enabled Dearomative Cycloaddition Reactions of Indoles/Pyrroles via Excited-State Aromatics. Acc Chem Res 2022; 55:2510-2525. [PMID: 35943728 DOI: 10.1021/acs.accounts.2c00412] [Citation(s) in RCA: 43] [Impact Index Per Article: 21.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Exploring the enormous chemical space through an expedient building-up of molecular diversity is an important goal of organic chemistry. The development of synthetic methods toward molecules with unprecedented structural motifs lays the foundation for wide applications ranging from pharmaceutical chemistry to materials science. In this regard, the dearomatization of arenes has been recognized as a unique strategy since it provides novel retrosynthetic disconnections for various spiro or fused polycyclic molecules with increased saturation and stereoisomerism. However, inherent thermodynamic challenges are associated with dearomatization processes. The disruption of the aromaticity of arene substrates usually requires large energy inputs, which makes harsh conditions necessary for many ground-state dearomatization reactions. Therefore, further expansion of the scope of dearomatization reactions remains a major problem not fully solved in organic chemistry.The past decade has witnessed tremendous progress on photocatalytic reactions under visible light. Particularly, reactions via an energy transfer mechanism have unlocked new opportunities for dearomatization reactions. Mediated by appropriately chosen photosensitizers, aromatic substrates can be excited. This kind of precise energy input might make feasible some dearomatization reactions that are otherwise unfavorable under thermal conditions because of the significant energy increases of the substrates. Nevertheless, the lifetimes of key intermediates in energy-transfer-enabled reactions, such as excited-state aromatics and downstream biradical species, are quite short. How to regulate the reactivities of these transient intermediates to achieve exclusive selectivity toward a certain reaction pathway among many possibilities is a crucial issue to be addressed.Since 2019, our group has reported a series of visible-light-induced dearomative cycloaddition reactions for indole and pyrrole derivatives. It was found that the aromatic units in substrates can be excited under the irradiation of visible light in the presence of a suitable photosensitizer. These excited aromatics readily undergo various [m + n] cycloaddition reactions with appropriately tethered unsaturated functionalities including alkenes, alkynes, N-alkoxy oximes, (hetero)arenes, and vinylcyclopropanes. The reactions yield polycyclic indolines and pyrrolines with highly strained small- and/or medium-sized rings embedded, some of which possess unique bridge- or cagelike topologies. Systematic mechanistic studies confirmed the involvement of an energy transfer process. Density functional theory (DFT) calculations revealed the correlation between the substrate structure and the excitation efficiency, which accelerated the optimization of the reaction parameters. Meanwhile, DFT calculations demonstrated the competition between kinetically and thermodynamically controlled pathways for the open-shell singlet biradical intermediates, which allowed the complete switches from [2 + 2] cycloaddition to 1,5-hydrogen atom transfer in reactions with N-alkoxy oximes and to [4 + 2] cycloaddition in reactions with naphthalene. Furthermore, ab initio molecular dynamics (AIMD) simulations uncovered post-spin crossing dynamic effects, which determine the regioselectivity for the open-shell singlet biradical recombination step in the reactions of pyrrole-derived vinylcyclopropanes.An increasing number of scientists have joined in the research on visible-light-induced dearomative cycloaddition reactions and contributed to more elegant examples in this area. The visible-light-induced dearomatization reaction via energy transfer mechanism, although still in its infancy, has exhibited great potential in the synthesis of molecules that can hardly be accessed by other methods. We believe that future development will further push the boundary of organic chemistry and find applications in the synthesis of functional molecules and related disciplines.
Collapse
Affiliation(s)
- Min Zhu
- State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Lu, Shanghai 200032, China.,School of Physical Science and Technology, ShanghaiTech University, 100 Haike Road, Shanghai 201210, China
| | - Xiao Zhang
- State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Lu, Shanghai 200032, China.,Fujian Key Laboratory of Polymer Materials, Fujian Provincial Key Laboratory of Advanced Materials Oriented Chemical Engineering, College of Chemistry and Materials Science, Fujian Normal University, 8 Shangsan Lu, Fuzhou 350007, China
| | - Chao Zheng
- State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Lu, Shanghai 200032, China
| | - Shu-Li You
- State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Lu, Shanghai 200032, China.,School of Physical Science and Technology, ShanghaiTech University, 100 Haike Road, Shanghai 201210, China
| |
Collapse
|
31
|
Liu J, Hao T, Qian L, Shi M, Wei Y. Construction of Benzocyclobutenes Enabled by Visible‐Light‐Induced Triplet Biradical Atom Transfer of Olefins. Angew Chem Int Ed Engl 2022; 61:e202204515. [DOI: 10.1002/anie.202204515] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2022] [Indexed: 11/12/2022]
Affiliation(s)
- Jiaxin Liu
- State Key Laboratory of Organometallic Chemistry University of Chinese Academy of Sciences Center for Excellence in Molecular Synthesis Shanghai Institute of Organic Chemistry Chinese Academy of Sciences 345 Lingling Road Shanghai 200032 China
- CAS Key Laboratory of Energy Regulation Materials Shanghai Institute of Organic Chemistry Chinese Academy of Sciences 345 Lingling Road Shanghai 200032 China
| | - Tonggang Hao
- State Key Laboratory of Organometallic Chemistry University of Chinese Academy of Sciences Center for Excellence in Molecular Synthesis Shanghai Institute of Organic Chemistry Chinese Academy of Sciences 345 Lingling Road Shanghai 200032 China
| | - Ling Qian
- Key Laboratory for Advanced Materials & Institute of Fine Chemicals Key Laboratory for Advanced Materials and Feringa Nobel Prize Scientist Joint Research Center School of Chemistry & Molecular Engineering East China University of Science and Technology 130 Meilong Road Shanghai 200237 China
| | - Min Shi
- State Key Laboratory of Organometallic Chemistry University of Chinese Academy of Sciences Center for Excellence in Molecular Synthesis Shanghai Institute of Organic Chemistry Chinese Academy of Sciences 345 Lingling Road Shanghai 200032 China
- Key Laboratory for Advanced Materials & Institute of Fine Chemicals Key Laboratory for Advanced Materials and Feringa Nobel Prize Scientist Joint Research Center School of Chemistry & Molecular Engineering East China University of Science and Technology 130 Meilong Road Shanghai 200237 China
| | - Yin Wei
- State Key Laboratory of Organometallic Chemistry University of Chinese Academy of Sciences Center for Excellence in Molecular Synthesis Shanghai Institute of Organic Chemistry Chinese Academy of Sciences 345 Lingling Road Shanghai 200032 China
| |
Collapse
|
32
|
Bellotti P, Rogge T, Paulus F, Laskar R, Rendel N, Ma J, Houk KN, Glorius F. Visible-Light Photocatalyzed peri-(3 + 2) Cycloadditions of Quinolines. J Am Chem Soc 2022; 144:15662-15671. [PMID: 35984989 DOI: 10.1021/jacs.2c05687] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Cycloaddition reactions─epitomized by the Diels-Alder reaction─offer an arguably unmatched springboard for achieving chemical complexity, often with excellent selectivity, in a modular single step. We report the synthesis of aza-acenaphthenes in a single step by an unprecedented formal peri-(3 + 2) cycloaddition of simple quinolines with alkynes. A commercially available iridium complex exerts a dual role of photosensitizer and photoredox catalyst, fostering a cyclization/rearomatization cascade. The initial energy-transfer phase leads to the acenaphthene skeleton, while the ensuing redox shuttling step leads to aromatization. We applied this technology to 8-substituted quinolines and phenanthrolines, which smoothly reacted with both terminal and internal alkynes with excellent levels of regio- and diastereoselectivity. Density functional theory calculations revealed the intertwined EnT/SET nature of the process and offered guiding design principles for the synthesis of new aza-acenaphthenes.
Collapse
Affiliation(s)
- Peter Bellotti
- Westfälische Wilhelms-Universität Münster, Organisch-Chemisches Institut, Corrensstraße 36, 48149 Münster, Germany
| | - Torben Rogge
- Department of Chemistry and Biochemistry, University of California, Los Angeles, California 90095-1569, United States
| | - Fritz Paulus
- Westfälische Wilhelms-Universität Münster, Organisch-Chemisches Institut, Corrensstraße 36, 48149 Münster, Germany
| | - Ranjini Laskar
- Westfälische Wilhelms-Universität Münster, Organisch-Chemisches Institut, Corrensstraße 36, 48149 Münster, Germany
| | - Nils Rendel
- Westfälische Wilhelms-Universität Münster, Organisch-Chemisches Institut, Corrensstraße 36, 48149 Münster, Germany
| | - Jiajia Ma
- Westfälische Wilhelms-Universität Münster, Organisch-Chemisches Institut, Corrensstraße 36, 48149 Münster, Germany
| | - K N Houk
- Department of Chemistry and Biochemistry, University of California, Los Angeles, California 90095-1569, United States
| | - Frank Glorius
- Westfälische Wilhelms-Universität Münster, Organisch-Chemisches Institut, Corrensstraße 36, 48149 Münster, Germany
| |
Collapse
|
33
|
Liu J, Hao T, Qian L, Shi M, Wei Y. Construction of Benzocyclobutenes Enabled by Visible‐Light‐Induced Triplet Biradical Atom Transfer of Olefins. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202204515] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Jiaxin Liu
- Shanghai Institute of Organic Chemistry State Key Laboratory of Organometallic Chemistry Shanghai CHINA
| | - Tonggang Hao
- Shanghai Institute of Organic Chemistry State Key Laboratory of Organometallic Chemistry Shanghai CHINA
| | - Ling Qian
- East China University of Science and Technology School of Chemistry & Molecular Engineering Shanghai CHINA
| | - Min Shi
- Shanghai Institute of Organic Chemistry State Key Laboratory of Organometallic Chemistry Shanghai CHINA
| | - Yin Wei
- Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences State Key Laboratory of Organometallic Chemistry 345 Lingling Road 200032 Shanghai CHINA
| |
Collapse
|