1
|
Structural Studies of Bypass of Forespore Protein C from Bacillus Subtilis to Reveal Its Inhibitory Molecular Mechanism for SpoIVB. Catalysts 2022. [DOI: 10.3390/catal12121530] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
Activation of pro-σK processing requires a signaling protease SpoIVB that is secreted from the forespore into the space between the two cells during sporulation in Bacillus subtilis. Bypass of forespore protein C (BofC) is an inhibitor preventing the autoproteolysis of SpoIVB, ensuring the factor σK operates regularly at the correct time during the sporulation. However, the regulatory mechanisms of BofC on pro-σK processing are still unclear, especially in the aspect of the interaction between BofC and SpoIVB. Herein, the recombinant BofC (rBofC) was expressed in the periplasm by the E. coli expression system, and crystal growth conditions were obtained and optimized. Further, the crystal structure of rBofC was determined by X-ray crystallography, which is nearly identical to the structures determined by NMR and predicted by AlphaFold. In addition, the modeled structure of the BofC–SpoIVB complex provides insights into the molecular mechanism by which domain 1 of BofC occupies the active site of the SpoIVB serine protease domain, leading to the inhibition of the catalytical activity of SpoIVB and prevention of the substrate of SpoIVB (SpoIVFA) from binding to the active site.
Collapse
|
2
|
Krishnarjuna B, Ivanova MI, Ramamoorthy A. Aggregation and the Intrinsic Structural Disorder of Dipeptide Repeat Peptides of C9orf72-Related Amyotrophic Lateral Sclerosis and Frontotemporal Dementia Characterized by NMR. J Phys Chem B 2021; 125:12446-12456. [PMID: 34751579 DOI: 10.1021/acs.jpcb.1c08149] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Dipeptide repeats (DPRs) are known to play important roles in C9ORF72-related amyotrophic lateral sclerosis (ALS) and frontotemporal dementia (FTD). Studies on DPRs have reported on the kinetics of aggregation, toxicity, and low-resolution morphology of the aggregates of these peptides. While the dipeptide hexa-repeats of Gly-Pro [(GP)6] have been shown to be nonaggregating, Gly-Ala [(GA)6] and Gly-Arg [(GR)6] exhibited the formation of neurotoxic aggregates. However, structural studies of these DPRs have been elusive. In this study, we explored the feasibility of a high-resolution monitoring of a real-time aggregation of these peptides in a solution by using NMR experiments. Although (GP)6 is disordered and nonaggregating, the existence of cis and trans conformations was observed from NMR spectra. It was remarkable that the (GR)6 exhibited the formation of multiple conformations, whereas the hydrophobic and low-soluble (GA)6 aggregated fast in a temperature-dependent manner. These results demonstrate the feasibility of monitoring the minor conformational changes from highly disordered peptides, aggregation kinetics, and the formation of small molecular weight aggregates by solution NMR experiments. The ability to detect cis and trans local isomerizations in (GP)6 is noteworthy and could be valuable to study intrinsically disordered proteins/peptides by NMR. The early detection of minor conformational changes could be valuable in better understanding the mechanistic insights into the formation of toxic intermediates and the development of approaches to inhibit them and, potentially, aid in the development of compounds to treat the devastating C9ORF72-related ALS and FTD diseases.
Collapse
Affiliation(s)
| | - Magdalena I Ivanova
- Department of Neurology, University of Michigan, Ann Arbor, Michigan 48109 United States
| | | |
Collapse
|
3
|
Ozsvar J, Wang R, Tarakanova A, Buehler MJ, Weiss AS. Fuzzy binding model of molecular interactions between tropoelastin and integrin alphaVbeta3. Biophys J 2021; 120:3138-3151. [PMID: 34197806 DOI: 10.1016/j.bpj.2021.04.037] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Revised: 03/30/2021] [Accepted: 04/12/2021] [Indexed: 12/30/2022] Open
Abstract
Tropoelastin is the highly flexible monomer subunit of elastin, required for the resilience of the extracellular matrix in elastic tissues. To elicit biological signaling, multiple sites on tropoelastin bind to cell surface integrins in a poorly understood multifactorial process. We constructed a full atomistic molecular model of the interactions between tropoelastin and integrin αvβ3 using ensemble-based computational methodologies. Conformational changes of integrin αvβ3 associated with outside-in signaling were more frequently facilitated in an ensemble in which tropoelastin bound the integrin's α1 helix rather than the upstream canonical binding site. Our findings support a model of fuzzy binding, whereby many tropoelastin conformations and defined sites cooperatively interact with multiple αvβ3 regions. This model explains prior experimental binding to distinct tropoelastin regions, domains 17 and 36, and points to the cooperative participation of domain 20. Our study highlights the utility of ensemble-based approaches in helping to understand the interactive mechanisms of functionally significant flexible proteins.
Collapse
Affiliation(s)
- Jazmin Ozsvar
- Charles Perkins Centre, The University of Sydney, Sydney, Australia; School of Life and Environmental Sciences, The University of Sydney, Sydney, Australia
| | - Richard Wang
- Charles Perkins Centre, The University of Sydney, Sydney, Australia; School of Life and Environmental Sciences, The University of Sydney, Sydney, Australia
| | - Anna Tarakanova
- Department of Biomedical Engineering, University of Connecticut, Storrs, Connecticut; Department of Mechanical Engineering, University of Connecticut, Storrs, Connecticut
| | - Markus J Buehler
- Department of Civil and Environmental Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts
| | - Anthony S Weiss
- Charles Perkins Centre, The University of Sydney, Sydney, Australia; School of Life and Environmental Sciences, The University of Sydney, Sydney, Australia; Sydney Nano Institute, The University of Sydney, Sydney, Australia.
| |
Collapse
|
4
|
Cha S, Lee WS, Choi J, Jeong JG, Nam JR, Kim J, Kim HN, Lee JH, Yoo JS, Ryu KS. NMR mapping of the highly flexible regions of 13C/ 15N-labeled antibody TTAC-0001-Fab. JOURNAL OF BIOMOLECULAR NMR 2020; 74:311-319. [PMID: 32415582 DOI: 10.1007/s10858-020-00313-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/30/2019] [Accepted: 04/09/2020] [Indexed: 06/11/2023]
Abstract
Monoclonal antibody (mAb) drugs are clinically important for the treatment of various diseases. TTAC-0001 is under development as a new anti-cancer antibody drug targeting VEGFR-2. As the less severe toxicity of TTAC-0001 compared to Bevacizumab, likely due to the decreased in vivo half-life, seems to be related to its structural flexibility, it is important to map the exact flexible regions. Although the 13C/15N-labeled protein is required for NMR analyses, it is difficult to obtain antibody fragments (Fab and scFv) containing disulfide bonds through general cytosolic expression in Escherichia coli (E. coli). Here, we notably increased the periplasmic expression of the 13C/15N-labeled TTAC-0001-Fab (13C/15N-TTAC-Fab) through simple isopropyl β-D-1-thiogalactopyranoside (IPTG)-induction at an increased optical density (1.5 OD600nm). Through NMR triple resonance experiments, two loop insertions (LI-1 between the VH and CH1; LI-2 between the VL and CL) were confirmed to be highly flexible. The additional LIs could be another way to engineer the antibody by changing the pharmacokinetic properties.
Collapse
Affiliation(s)
- Soyoung Cha
- Protein Structure Research Team, Korea Basic Science Institute, 162 Yeongudanji-Ro, Ochang-Eup, Cheongju-Si, Chungcheongbuk-Do, 28119, South Korea
- Department of Bio-Analytical Science, University of Science and Technology, 217 Gajeong-ro, Yuseong-gu, Daejeon, 34113, South Korea
| | - Weon Sup Lee
- PharmAbcine, 2F, Research Building 2, 70, Yuseong-daero 1689 Beon-gil, Yuseong-gu, Daejeon, 34047, South Korea
- Department of Bio-Analytical Science, University of Science and Technology, 217 Gajeong-ro, Yuseong-gu, Daejeon, 34113, South Korea
| | - Joonhyeok Choi
- Protein Structure Research Team, Korea Basic Science Institute, 162 Yeongudanji-Ro, Ochang-Eup, Cheongju-Si, Chungcheongbuk-Do, 28119, South Korea
| | - Jong Geun Jeong
- PharmAbcine, 2F, Research Building 2, 70, Yuseong-daero 1689 Beon-gil, Yuseong-gu, Daejeon, 34047, South Korea
| | - Ju Ryoung Nam
- PharmAbcine, 2F, Research Building 2, 70, Yuseong-daero 1689 Beon-gil, Yuseong-gu, Daejeon, 34047, South Korea
| | - Jihong Kim
- New Drug Development Center, Osong Medical Innovation Foundation, 123 Osongsaengmyeong-Ro, Osong-Eup, Cheongju-Si, Chungcheongbuk-Do, 28160, South Korea
| | - Hak-Nam Kim
- Protein Structure Research Team, Korea Basic Science Institute, 162 Yeongudanji-Ro, Ochang-Eup, Cheongju-Si, Chungcheongbuk-Do, 28119, South Korea
| | - Joon-Hwa Lee
- Department of Chemistry and RINS, Gyeongsang National University, Jinju-si, Gyeongsangnam-Do, 52828, South Korea
| | - Jin-San Yoo
- PharmAbcine, 2F, Research Building 2, 70, Yuseong-daero 1689 Beon-gil, Yuseong-gu, Daejeon, 34047, South Korea.
| | - Kyoung-Seok Ryu
- Protein Structure Research Team, Korea Basic Science Institute, 162 Yeongudanji-Ro, Ochang-Eup, Cheongju-Si, Chungcheongbuk-Do, 28119, South Korea.
- Department of Bio-Analytical Science, University of Science and Technology, 217 Gajeong-ro, Yuseong-gu, Daejeon, 34113, South Korea.
| |
Collapse
|
6
|
Modulation of the aggregation of an amyloidogenic sequence by flanking-disordered region in the intrinsically disordered antigen merozoite surface protein 2. EUROPEAN BIOPHYSICS JOURNAL: EBJ 2018; 48:99-110. [PMID: 30443712 DOI: 10.1007/s00249-018-1337-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/28/2018] [Revised: 08/31/2018] [Accepted: 11/08/2018] [Indexed: 10/27/2022]
Abstract
The abundant Plasmodium falciparum merozoite surface protein MSP2, a potential malaria vaccine candidate, is an intrinsically disordered protein with some nascent secondary structure present in its conserved N-terminal region. This relatively ordered region has been implicated in both membrane interactions and amyloid-like aggregation of the protein, while the significance of the flanking-disordered region is unclear. In this study, we show that aggregation of the N-terminal conserved region of MSP2 is influenced in a length- and sequence-dependent fashion by the disordered central variable sequences. Intriguingly, MSP2 peptides containing the conserved region and the first five residues of the variable disordered regions aggregated more rapidly than a peptide corresponding to the conserved region alone. In contrast, MSP2 peptides extending 8 or 12 residues into the disordered region aggregated more slowly, consistent with the expected inhibitory effect of flanking-disordered sequences on the aggregation of amyloidogenic ordered sequences. Computational analyses indicated that the helical propensity of the ordered region of MSP2 was modulated by the adjacent disordered five residues in a sequence-dependent manner. Nuclear magnetic resonance and circular dichroism spectroscopic studies with synthetic peptides confirmed the computational predictions, emphasizing the correlation between aggregation propensity and conformation of the ordered region and the effects thereon of the adjacent disordered region. These results show that the effects of flanking-disordered sequences on a more ordered sequence may include enhancement of aggregation through modulation of the conformational properties of the more ordered sequence.
Collapse
|