1
|
Burdfield-Steel E, Burdfield C. How to fail in advertising: The potential of marketing theory to predict the community-level selection of defended prey. J Evol Biol 2023. [PMID: 36820741 DOI: 10.1111/jeb.14160] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2022] [Revised: 12/14/2022] [Accepted: 01/16/2023] [Indexed: 02/24/2023]
Abstract
Economics and ecology both present us with a key challenge: scaling up from individual behaviour to community-level effects. As a result, biologists have frequently utilized theories and frameworks from economics in their attempt to better understand animal behaviour. In the study of predator-prey interactions, we face a particularly difficult task-understanding how predator choices and strategies will impact the ecology and evolution not just of individual prey species, but whole communities. However, a similar challenge has been encountered, and largely solved, in Marketing, which has created frameworks that successfully predict human consumer behaviour at the community level. We argue that by applying these frameworks to non-human consumers, we can leverage this predictive power to understand the behaviour of these key ecological actors in shaping the communities they act upon. We here use predator-prey interactions, as a case study, to demonstrate and discuss the potential of marketing and human-consumer theory in helping us bridge the gap from laboratory experiments to complex community dynamics.
Collapse
Affiliation(s)
- Emily Burdfield-Steel
- Institute for Biodiversity and Ecosystem Dynamics, University of Amsterdam, Amsterdam, The Netherlands
| | - Claire Burdfield
- Sheffield University Management School, University of Sheffield, Sheffield, UK
| |
Collapse
|
2
|
Maisonneuve L, Smadi C, Llaurens V. Evolutionary origins of sexual dimorphism: Lessons from female-limited mimicry in butterflies. Evolution 2022; 76:2404-2423. [PMID: 36005294 DOI: 10.1111/evo.14599] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2021] [Accepted: 07/18/2022] [Indexed: 01/22/2023]
Abstract
The striking female-limited mimicry observed in some butterfly species is a text-book example of sexually dimorphic trait submitted to intense natural selection. Two main evolutionary hypotheses, based on natural and sexual selection respectively, have been proposed. Predation pressure favoring mimicry toward defended species could be higher in females because of their slower flight, and thus overcome developmental constraints favoring the ancestral trait that limits the evolution of mimicry in males but not in females. Alternatively, the evolution of mimicry in males could be limited by female preference for non-mimetic males. However, the evolutionary origin of female preference for non-mimetic males remains unclear. Here, we hypothesize that costly sexual interactions between individuals from distinct sympatric species might intensify because of mimicry, therefore promoting female preference for non-mimetic trait. Using a mathematical model, we compare the evolution of female-limited mimicry when assuming either alternative selective hypotheses. We show that the patterns of divergence of male and female trait from the ancestral traits can differ between these selection regimes. We specifically highlight that divergence in female trait is not a signature of the effect of natural selection. Our results also evidence why female-limited mimicry is more frequently observed in Batesian mimics.
Collapse
Affiliation(s)
- Ludovic Maisonneuve
- Institut de Systématique, Evolution, Biodiversité (ISYEB), Muséum national d'Histoire naturelle, CNRS, Sorbonne Université, EPHE, Université des Antilles, CP 50, 57 rue Cuvier, Paris, 75005, France
| | - Charline Smadi
- Univ. Grenoble Alpes, INRAE, LESSEM, France, Saint-Martin-d'Hères, 38402.,Univ. Grenoble Alpes, CNRS, Institut Fourier, Gières, 38610, France
| | - Violaine Llaurens
- Institut de Systématique, Evolution, Biodiversité (ISYEB), Muséum national d'Histoire naturelle, CNRS, Sorbonne Université, EPHE, Université des Antilles, CP 50, 57 rue Cuvier, Paris, 75005, France
| |
Collapse
|
3
|
Liao KL, Chang WC, Marcus JM, Wang JN. Mathematical modeling of the eyespots in butterfly wings. J Theor Biol 2021; 531:110898. [PMID: 34508757 DOI: 10.1016/j.jtbi.2021.110898] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2021] [Revised: 08/31/2021] [Accepted: 09/03/2021] [Indexed: 10/20/2022]
Abstract
Butterfly wing color patterns are a representative model system for studying biological pattern formation, due to their two-dimensional simple structural and high inter- and intra-specific variabilities. Moreover, butterfly color patterns have demonstrated roles in mate choice, thermoregulation, and predator avoidance via disruptive coloration, attack deflection, aposematism, mimicry, and masquerade. Because of the importance of color patterns to many aspects of butterfly biology and their apparent tractability for study, color patterns have been the subjects of many attempts to model their development. Early attempts focused on generalized mechanisms of pattern formation such as reaction-diffusion, diffusion gradient, lateral inhibition, and threshold responses, without reference to any specific gene products. As candidate genes with expression patterns that resembled incipient color patterns were identified, genetic regulatory networks were proposed for color pattern formation based on gene functions inferred from other insects with wings, such as Drosophila. Particularly detailed networks incorporating the gene products, Distal-less (Dll), Engrailed (En), Hedgehog (Hh), Cubitus interruptus (Ci), Transforming growth factor-β (TGF-β), and Wingless (Wg), have been proposed for butterfly border ocelli (eyespots) which helps the investigation of the formation of these patterns. Thus, in this work, we develop a mathematical model including the gene products En, Hh, Ci, TGF-β, and Wg to mimic and investigate the eyespot formation in butterflies. Our simulations show that the level of En has peaks in the inner and outer rings and the level of Ci has peaks in the inner and middle rings. The interactions among these peaks activate cells to produce white, black, and yellow pigments in the inner, middle, and outer rings, respectively, which captures the eyespot pattern of wild type Bicyclus anynana butterflies. Additionally, our simulations suggest that lack of En generates a single black spot and lack of Hh or Ci generates a single white spot, and a deficiency of TGF-β or Wg will cause the loss of the outer yellow ring. These deficient patterns are similar to those observed in the eyespots of Vanessa atalanta, Vanessa altissima, and Chlosyne nycteis. Thus, our model also provides a hypothesis to explain the mechanism of generating the deficient patterns in these species.
Collapse
Affiliation(s)
- Kang-Ling Liao
- Department of Mathematics, University of Manitoba, Manitoba R3T 2N2, Canada; Department of Biological Sciences, University of Manitoba, Manitoba R3T 2N2, Canada.
| | - Wei-Chen Chang
- Department of Mathematics, National Taiwan University, Taipei 10617, Taiwan, ROC
| | - Jeffrey M Marcus
- Department of Biological Sciences, University of Manitoba, Manitoba R3T 2N2, Canada
| | - Jenn-Nan Wang
- Institute of Applied Mathematical Sciences, National Taiwan University, Taipei 10617, Taiwan, ROC
| |
Collapse
|
4
|
Abstract
Some animals have evolved chemical weapons to deter predators. Bombardier beetles (Coleoptera: Carabidae: Brachininae: Brachinini) can eject toxic chemicals at temperatures of 100 °C from the tips of their abdomens, ‘bombing’ the attackers. Although some bombardier beetles can reportedly deter predators, few studies have tested whether bombing is essential for successful defence. Praying mantises (Mantodea) are ambush predators that attack various arthropods. However, it is unclear whether bombardier beetles deter mantises. To test the defensive function of bombing against praying mantises, I observed three mantis species, Tenodera sinensis, Tenodera angustipennis, and Hierodula patellifera (Mantidae), attacking the bombardier beetle Pheropsophus jessoensis (Carabidae: Brachininae: Brachinini) under laboratory conditions. All mantises easily caught the beetles using their raptorial forelegs, but released them immediately after being bombed. All of the counterattacked mantises were observed to groom the body parts sprayed with hot chemicals after releasing the beetles. When treated P. jessoensis that were unable to eject hot chemicals were provided, all mantises successfully caught and devoured the treated beetles. Therefore, bombing is essential for the successful defence of P. jessoensis against praying mantises. Consequently, P. jessoensis can always deter mantises.
Collapse
Affiliation(s)
- Shinji Sugiura
- Graduate School of Agricultural Science, Kobe University, Kobe City, Hyogo Prefecture, Japan
| |
Collapse
|
5
|
Mattila ALK, Jiggins CD, Opedal ØH, Montejo-Kovacevich G, Pinheiro de Castro ÉC, McMillan WO, Bacquet C, Saastamoinen M. Evolutionary and ecological processes influencing chemical defense variation in an aposematic and mimetic Heliconius butterfly. PeerJ 2021; 9:e11523. [PMID: 34178447 PMCID: PMC8216171 DOI: 10.7717/peerj.11523] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2021] [Accepted: 05/05/2021] [Indexed: 02/01/2023] Open
Abstract
Chemical defences against predators underlie the evolution of aposematic coloration and mimicry, which are classic examples of adaptive evolution. Surprisingly little is known about the roles of ecological and evolutionary processes maintaining defence variation, and how they may feedback to shape the evolutionary dynamics of species. Cyanogenic Heliconius butterflies exhibit diverse warning color patterns and mimicry, thus providing a useful framework for investigating these questions. We studied intraspecific variation in de novo biosynthesized cyanogenic toxicity and its potential ecological and evolutionary sources in wild populations of Heliconius erato along environmental gradients, in common-garden broods and with feeding treatments. Our results demonstrate substantial intraspecific variation, including detectable variation among broods reared in a common garden. The latter estimate suggests considerable evolutionary potential in this trait, although predicting the response to selection is likely complicated due to the observed skewed distribution of toxicity values and the signatures of maternal contributions to the inheritance of toxicity. Larval diet contributed little to toxicity variation. Furthermore, toxicity profiles were similar along steep rainfall and altitudinal gradients, providing little evidence for these factors explaining variation in biosynthesized toxicity in natural populations. In contrast, there were striking differences in the chemical profiles of H. erato from geographically distant populations, implying potential local adaptation in the acquisition mechanisms and levels of defensive compounds. The results highlight the extensive variation and potential for adaptive evolution in defense traits for aposematic and mimetic species, which may contribute to the high diversity often found in these systems.
Collapse
Affiliation(s)
- Anniina L K Mattila
- Research Centre for Ecological Change, Organismal and Evolutionary Biology Research Programme, University of Helsinki, Helsinki, Finland.,Helsinki Life Science Institute, University of Helsinki, Helsinki, Finland.,Current affiliation: Finnish Museum of Natural History (LUOMUS), University of Helsinki, Helsinki, Finland
| | - Chris D Jiggins
- Department of Zoology, University of Cambridge, Cambridge, United Kingdom
| | | | | | | | | | | | - Marjo Saastamoinen
- Research Centre for Ecological Change, Organismal and Evolutionary Biology Research Programme, University of Helsinki, Helsinki, Finland.,Helsinki Life Science Institute, University of Helsinki, Helsinki, Finland
| |
Collapse
|
6
|
Allf BC, Sparkman AM, Pfennig DW. Microevolutionary change in mimicry? Potential erosion of rattling behaviour among nonvenomous snakes on islands lacking rattlesnakes. ETHOL ECOL EVOL 2021. [DOI: 10.1080/03949370.2020.1837962] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Affiliation(s)
- Bradley C. Allf
- Department of Forestry and Environmental Resources, North Carolina State University, Raleigh, NC, USA
| | | | - David W. Pfennig
- Department of Biology, University of North Carolina, Chapel Hill, NC, USA
| |
Collapse
|
7
|
Sculfort O, de Castro ECP, Kozak KM, Bak S, Elias M, Nay B, Llaurens V. Variation of chemical compounds in wild Heliconiini reveals ecological factors involved in the evolution of chemical defenses in mimetic butterflies. Ecol Evol 2020; 10:2677-2694. [PMID: 32185010 PMCID: PMC7069300 DOI: 10.1002/ece3.6044] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2019] [Revised: 01/06/2020] [Accepted: 01/07/2020] [Indexed: 01/08/2023] Open
Abstract
Evolutionary convergence of color pattern in mimetic species is tightly linked with the evolution of chemical defenses. Yet, the evolutionary forces involved in natural variations of chemical defenses in aposematic species are still understudied. Herein, we focus on the evolution of chemical defenses in the butterfly tribe Heliconiini. These neotropical butterflies contain large concentrations of cyanogenic glucosides, cyanide-releasing compounds acting as predator deterrent. These compounds are either de novo synthesized or sequestered from their Passiflora host plant, so that their concentrations may depend on host plant specialization and host plant availability. We sampled 375 wild Heliconiini butterflies across Central and South America, covering 43% species of this clade, and quantify individual variations in the different CGs using liquid chromatography coupled with tandem mass spectrometry. We detected new compounds and important variations in chemical defenses both within and among species. Based on the most recent and well-studied phylogeny of Heliconiini, we show that ecological factors such as mimetic interactions and host plant specialization have a significant association with chemical profiles, but these effects are largely explained by phylogenetic relationships. Our results therefore suggest that shared ancestries largely contribute to chemical defense variation, pointing out at the interaction between historical and ecological factors in the evolution of Müllerian mimicry.
Collapse
Affiliation(s)
- Ombeline Sculfort
- Institut de Systématique, Evolution, Biodiversité (ISYEB)Muséum National d'Histoire NaturelleCNRSSorbonne‐UniversitéEPHEUniversité des AntillesParisFrance
- Unité Molécules de Communication et Adaptations des Micro‐organismes (MCAM)Muséum National d'Histoire NaturelleCNRSParisFrance
| | | | | | - Søren Bak
- Department of Plant and Environmental SciencesUniversity of CopenhagenFrederiksbergDenmark
| | - Marianne Elias
- Institut de Systématique, Evolution, Biodiversité (ISYEB)Muséum National d'Histoire NaturelleCNRSSorbonne‐UniversitéEPHEUniversité des AntillesParisFrance
| | - Bastien Nay
- Unité Molécules de Communication et Adaptations des Micro‐organismes (MCAM)Muséum National d'Histoire NaturelleCNRSParisFrance
- Laboratoire de Synthèse OrganiqueEcole PolytechniqueCNRSENSTAInstitut Polytechnique de ParisPalaiseau CedexFrance
| | - Violaine Llaurens
- Institut de Systématique, Evolution, Biodiversité (ISYEB)Muséum National d'Histoire NaturelleCNRSSorbonne‐UniversitéEPHEUniversité des AntillesParisFrance
| |
Collapse
|