1
|
Muikham I, Thongsum O, Jaranathummakul S, Wathammawut A, Chotwiwatthanakun C, Jariyapong P, Weerachatyanukul W. Interior modification of Macrobrachium rosenbergii nodavirus-like particle enhances encapsulation of VP37-dsRNA against shrimp white spot syndrome infection. BMC Vet Res 2024; 20:91. [PMID: 38459500 PMCID: PMC10921773 DOI: 10.1186/s12917-024-03936-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Accepted: 02/14/2024] [Indexed: 03/10/2024] Open
Abstract
BACKGROUND Application of a virus-like particle (VLP) as a nanocontainer to encapsulate double stranded (ds)RNA to control viral infection in shrimp aquaculture has been extensively reported. In this study, we aimed at improving VLP's encapsulation efficiency which should lead to a superior fighting weapon with disastrous viruses. RESULTS We constructed 2 variants of chimeric Macrobrachium rosenbergii nodavirus (MrNV)-like particles (V1- and V2-MrN-VLPs) and tested their efficiency to encapsulate VP37 double stranded RNA as well as WSSV protection in P. vannamei. Two types of short peptides, RNA-binding domain (RBD) and deca-arginine (10R) were successfully engineered into the interior surface of VLP, the site where the contact with VP37-dsRNA occurs. TEM and dynamic light scattering (DLS) analyses revealed that the chimeric VLPs remained their assembling property to be an icosahedral symmetric particle with a diameter of about 30 nm, similar to the original MrN-VLP particle. The superior encapsulation efficiency of VP37-dsRNA into V2-MrN-VLP was achieved, which was slightly better than that of V1-MrN-VLP but far better (1.4-fold) than its parental V0-MrN-VLP which the mole ratio of 7.5-10.5 for all VLP variants. The protection effect against challenging WSSV (as gauged from the level of VP37 gene and the remaining viral copy number in shrimp) was significantly improved in both V1- and V2-MrN-VLP compared with an original V0-MrN-VLP template. CONCLUSION MrN-VLP (V0-) were re-engineered interiorly with RBD (V1-) and 10R (V2-) peptides which had an improved VP37-dsRNA encapsulation capability. The protection effect against WSSV infection through shrimp administration with dsRNA + V1-/V2-MrN VLPs was experimentally evident.
Collapse
Affiliation(s)
- Itsares Muikham
- Department of Anatomy, Faculty of Science, Mahidol University, Rama 6 Rd., Rachathewi, Bangkok, 10400, Thailand
| | - Orawan Thongsum
- Department of Anatomy, Faculty of Science, Mahidol University, Rama 6 Rd., Rachathewi, Bangkok, 10400, Thailand
| | - Somkid Jaranathummakul
- Department of Anatomy, Faculty of Science, Mahidol University, Rama 6 Rd., Rachathewi, Bangkok, 10400, Thailand
| | - Atthaboon Wathammawut
- Department of Anatomy, Faculty of Medicine, Srinakharinwirot University, Bangkok, Thailand
| | - Charoonroj Chotwiwatthanakun
- Faculty of Science, Mahidol University, Nakhonsawan Campus, Nakhonsawan, Thailand
- Center of Excellence for Shrimp Molecular Biology and Biotechnology (Centex Shrimp), Mahidol University, Bangkok, Thailand
| | - Pitchanee Jariyapong
- Department of Medical Science, School of Medicine, Walailak University, Thasala District, Nakhonsrithammarat, 80160, Thailand.
| | - Wattana Weerachatyanukul
- Department of Anatomy, Faculty of Science, Mahidol University, Rama 6 Rd., Rachathewi, Bangkok, 10400, Thailand.
| |
Collapse
|
2
|
Palyanov AY, Palyanova NV. On the space of SARS-CoV-2 genetic sequence variants. Vavilovskii Zhurnal Genet Selektsii 2023; 27:839-850. [PMID: 38213712 PMCID: PMC10777302 DOI: 10.18699/vjgb-23-97] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2023] [Revised: 09/14/2023] [Accepted: 09/18/2023] [Indexed: 01/13/2024] Open
Abstract
The coronavirus pandemic caused by the SARS-CoV-2 virus, which humanity resisted using the latest advances in science, left behind, among other things, extensive genetic data. Every day since the end of 2019, samples of the virus genomes have been collected around the world, which makes it possible to trace its evolution in detail from its emergence to the present. The accumulated statistics of testing results showed that the number of confirmed cases of SARS-CoV-2 infection was at least 767.5 million (9.5 % of the current world population, excluding asymptomatic people), and the number of sequenced virus genomes is more than 15.7 million (which is over 2 % of the total number of infected people). These new data potentially contain information about the mechanisms of the variability and spread of the virus, its interaction with the human immune system, the main parameters characterizing the mechanisms of the development of a pandemic, and much more. In this article, we analyze the space of possible variants of SARS-CoV-2 genetic sequences both from a mathematical point of view and taking into account the biological limitations inherent in this system, known both from general biological knowledge and from the consideration of the characteristics of this particular virus. We have developed software capable of loading and analyzing SARS-CoV-2 nucleotide sequences in FASTA format, determining the 5' and 3' UTR positions, the number and location of unidentified nucleotides ("N"), performing alignment with the reference sequence by calling the program designed for this, determining mutations, deletions and insertions, as well as calculating various characteristics of virus genomes with a given time step (days, weeks, months, etc.). The data obtained indicate that, despite the apparent mathematical diversity of possible options for changing the virus over time, the corridor of the evolutionary trajectory that the coronavirus has passed through seems to be quite narrow. Thus it can be assumed that it is determined to some extent, which allows us to hope for a possibility of modeling the evolution of the coronavirus.
Collapse
Affiliation(s)
- A Yu Palyanov
- A.P. Ershov Institute of Informatics Systems of the Siberian Branch of the Russian Academy of Sciences, Novosibirsk, Russia Research Institute of Virology, Federal Research Center of Fundamental and Translational Medicine of the Siberian Branch of the Russian Academy of Sciences, Novosibirsk, Russia Novosibirsk State University, Novosibirsk, Russia
| | - N V Palyanova
- Research Institute of Virology, Federal Research Center of Fundamental and Translational Medicine of the Siberian Branch of the Russian Academy of Sciences, Novosibirsk, Russia
| |
Collapse
|
3
|
Chen NC, Wang CH, Yoshimura M, Yeh YQ, Guan HH, Chuankhayan P, Lin CC, Lin PJ, Huang YC, Wakatsuki S, Ho MC, Chen CJ. Structures of honeybee-infecting Lake Sinai virus reveal domain functions and capsid assembly with dynamic motions. Nat Commun 2023; 14:545. [PMID: 36726015 PMCID: PMC9892032 DOI: 10.1038/s41467-023-36235-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Accepted: 01/18/2023] [Indexed: 02/03/2023] Open
Abstract
Understanding the structural diversity of honeybee-infecting viruses is critical to maintain pollinator health and manage the spread of diseases in ecology and agriculture. We determine cryo-EM structures of T = 4 and T = 3 capsids of virus-like particles (VLPs) of Lake Sinai virus (LSV) 2 and delta-N48 LSV1, belonging to tetraviruses, at resolutions of 2.3-2.6 Å in various pH environments. Structural analysis shows that the LSV2 capsid protein (CP) structural features, particularly the protruding domain and C-arm, differ from those of other tetraviruses. The anchor loop on the central β-barrel domain interacts with the neighboring subunit to stabilize homo-trimeric capsomeres during assembly. Delta-N48 LSV1 CP interacts with ssRNA via the rigid helix α1', α1'-α1 loop, β-barrel domain, and C-arm. Cryo-EM reconstructions, combined with X-ray crystallographic and small-angle scattering analyses, indicate that pH affects capsid conformations by regulating reversible dynamic particle motions and sizes of LSV2 VLPs. C-arms exist in all LSV2 and delta-N48 LSV1 VLPs across varied pH conditions, indicating that autoproteolysis cleavage is not required for LSV maturation. The observed linear domino-scaffold structures of various lengths, made up of trapezoid-shape capsomeres, provide a basis for icosahedral T = 4 and T = 3 architecture assemblies. These findings advance understanding of honeybee-infecting viruses that can cause Colony Collapse Disorder.
Collapse
Affiliation(s)
- Nai-Chi Chen
- Life Science Group, Scientific Research Division, National Synchrotron Radiation Research Center, Hsinchu, 30076, Taiwan, ROC
| | - Chun-Hsiung Wang
- Institute of Biological Chemistry, Academia Sinica, Taipei, 115, Taiwan, ROC
| | - Masato Yoshimura
- Life Science Group, Scientific Research Division, National Synchrotron Radiation Research Center, Hsinchu, 30076, Taiwan, ROC
| | - Yi-Qi Yeh
- Life Science Group, Scientific Research Division, National Synchrotron Radiation Research Center, Hsinchu, 30076, Taiwan, ROC
| | - Hong-Hsiang Guan
- Life Science Group, Scientific Research Division, National Synchrotron Radiation Research Center, Hsinchu, 30076, Taiwan, ROC
| | - Phimonphan Chuankhayan
- Life Science Group, Scientific Research Division, National Synchrotron Radiation Research Center, Hsinchu, 30076, Taiwan, ROC
| | - Chien-Chih Lin
- Life Science Group, Scientific Research Division, National Synchrotron Radiation Research Center, Hsinchu, 30076, Taiwan, ROC
| | - Pei-Ju Lin
- Life Science Group, Scientific Research Division, National Synchrotron Radiation Research Center, Hsinchu, 30076, Taiwan, ROC
- Institute of Bioinformatics and Structural Biology, National Tsing Hua University, Hsinchu, 30043, Taiwan, ROC
| | - Yen-Chieh Huang
- Life Science Group, Scientific Research Division, National Synchrotron Radiation Research Center, Hsinchu, 30076, Taiwan, ROC
| | - Soichi Wakatsuki
- Department of Structural Biology, Stanford University, Stanford, CA, 94305, USA
- SLAC National Accelerator Laboratory, Stanford Synchrotron Radiation Lightsource, Structural Molecular Biology, Menlo Park, CA, 94025, USA
| | - Meng-Chiao Ho
- Institute of Biological Chemistry, Academia Sinica, Taipei, 115, Taiwan, ROC.
| | - Chun-Jung Chen
- Life Science Group, Scientific Research Division, National Synchrotron Radiation Research Center, Hsinchu, 30076, Taiwan, ROC.
- Department of Physics, National Tsing Hua University, Hsinchu, 30043, Taiwan, ROC.
- Department of Biotechnology and Bioindustry Sciences, National Cheng Kung University, Tainan, 701, Taiwan, ROC.
- Department of Biological Science and Technology, National Yang Ming Chiao Tung University, Hsinchu, 30010, Taiwan, ROC.
| |
Collapse
|
4
|
Chimeric virus-like particles (VLPs) designed from shrimp nodavirus (MrNV) capsid protein specifically target EGFR-positive human colorectal cancer cells. Sci Rep 2021; 11:16579. [PMID: 34400669 PMCID: PMC8367941 DOI: 10.1038/s41598-021-95891-x] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2020] [Accepted: 07/30/2021] [Indexed: 12/24/2022] Open
Abstract
Recombinant MrNV capsid protein has been shown to effectively deliver plasmid DNA and dsRNA into Sf9 insect cells and shrimp tissues. To extend its application to cancer cell-targeting drug delivery, we created three different types of chimeric MrNV virus-like particles (VLPs) (R-MrNV, I-MrNV, and E-MrNV) that have specificity toward the epidermal growth factor receptor (EGFR), a cancer cell biomarker, by incorporating the EGFR-specific GE11 peptide at 3 different locations within the host cell recognition site of the capsid. All three chimeric MrNV-VLPs preserved the ability to form a mulberry-like VLP structure and to encapsulate EGFP DNA plasmid with an efficiency comparable to that previously reported for normal MrNV (N-MrNV). Compared to N-MrNV, the chimeric R-MrNV and E-MrNV carrying the exposed GE-11 peptide showed a significantly enhanced binding and internalization abilities that were specific towards EGFR expression in colorectal cancer cells (SW480). Specific targeting of chimeric MrNV to EGFR was proven by both EGFR silencing with siRNA vector and a competition with excess GE-11 peptide as well as the use of EGFR-negative colorectal cells (SW620) and breast cancer cells (MCF7). We demonstrated here that both chimeric R-MrNV and E-MrNV could be used to encapsulate cargo such as exogenous DNA and deliver it specifically to EGFR-positive cells. Our study presents the potential use of surface-modified VLPs of shrimp virus origin as nanocontainers for targeted cancer drug delivery.
Collapse
|
5
|
Huang Y, Ren Q. Innate immune responses against viral pathogens in Macrobrachium. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2021; 117:103966. [PMID: 33338519 DOI: 10.1016/j.dci.2020.103966] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/06/2020] [Revised: 10/27/2020] [Accepted: 12/09/2020] [Indexed: 06/12/2023]
Abstract
Some members of genus Macrobrachium are important economically prawns and valuable objects for studying the innate immune defense mechanism of crustaceans. Studies have focused on immune responses against bacterial and fungal infections and have expanded to include antiviral immunity over the past two decades. Similar to all living organisms, prawns are exposed to viruses, including white spot syndrome virus, Macrobrachium rosenbergii nodavirus, and Decapod iridescent virus 1 and develop effective defense mechanisms. Here, we review current understanding of the antiviral host defense in two species of Macrobrachium. The main antiviral defense of Macrobrachium is the activation of intracellular signaling cascades, leading to the activation of cellular responses (apoptosis) and humoral responses (immune-related signaling pathways, antimicrobial and antiviral peptides, lectins, and prophenoloxidase-activating system).
Collapse
Affiliation(s)
- Ying Huang
- College of Oceanography, Hohai University, 1 Xikang Road, Nanjing, Jiangsu, 210098, China
| | - Qian Ren
- College of Marine Science and Engineering, Nanjing Normal University, 1 Wenyuan Road, Nanjing, Jiangsu, 210023, China.
| |
Collapse
|
6
|
Cisneros-Martínez AM, Becerra A, Lazcano A. Ancient gene duplications in RNA viruses revealed by protein tertiary structure comparisons. Virus Evol 2021; 7:veab019. [PMID: 33758672 PMCID: PMC7967035 DOI: 10.1093/ve/veab019] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
To date only a handful of duplicated genes have been described in RNA viruses. This shortage can be attributed to different factors, including the RNA viruses with high mutation rate that would make a large genome more prone to acquire deleterious mutations. This may explain why sequence-based approaches have only found duplications in their most recent evolutionary history. To detect earlier duplications, we performed protein tertiary structure comparisons for every RNA virus family represented in the Protein Data Bank. We present a list of thirty pairs of possible paralogs with <30 per cent sequence identity. It is argued that these pairs are the outcome of six duplication events. These include the α and β subunits of the fungal toxin KP6 present in the dsRNA Ustilago maydis virus (family Totiviridae), the SARS-CoV (Coronaviridae) nsp3 domains SUD-N, SUD-M and X-domain, the Picornavirales (families Picornaviridae, Dicistroviridae, Iflaviridae and Secoviridae) capsid proteins VP1, VP2 and VP3, and the Enterovirus (family Picornaviridae) 3C and 2A cysteine-proteases. Protein tertiary structure comparisons may reveal more duplication events as more three-dimensional protein structures are determined and suggests that, although still rare, gene duplications may be more frequent in RNA viruses than previously thought. Keywords: gene duplications; RNA viruses.
Collapse
Affiliation(s)
| | - Arturo Becerra
- Facultad de Ciencias, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Antonio Lazcano
- Facultad de Ciencias, Universidad Nacional Autónoma de México, Mexico City, Mexico
- El Colegio Nacional, Donceles 104, Centro Histórico, Mexico City, Mexico
| |
Collapse
|
7
|
Ninyio NN, Ho KL, Ong HK, Yong CY, Chee HY, Hamid M, Tan WS. Immunological Analysis of the Hepatitis B Virus "a" Determinant Displayed on Chimeric Virus-Like Particles of Macrobrachium rosenbergii Nodavirus Capsid Protein Produced in Sf9 Cells. Vaccines (Basel) 2020; 8:vaccines8020275. [PMID: 32512923 PMCID: PMC7350026 DOI: 10.3390/vaccines8020275] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2020] [Revised: 04/19/2020] [Accepted: 04/21/2020] [Indexed: 12/21/2022] Open
Abstract
Chimeric virus-like particles (VLPs) have been widely exploited for various purposes including their use as vaccine candidates, particularly due to their ability to induce stronger immune responses than VLPs consisting of single viral proteins. In the present study, VLPs of the Macrobrachium rosenbergii nodavirus (MrNV) capsid protein (Nc) displaying the hepatitis B virus “a” determinant (aD) were produced in Spodoptera frugiperda (Sf9) insect cells. BALB/c mice immunised with the purified chimeric Nc-aD VLPs elicited a sustained titre of anti-aD antibody, which was significantly higher than that elicited by a commercially available hepatitis B vaccine and Escherichia coli-produced Nc-aD VLPs. Immunophenotyping showed that the Sf9-produced Nc-aD VLPs induced proliferation of cytotoxic T-lymphocytes and NK1.1 natural killer cells. Furthermore, enzyme-linked immunospot (ELISPOT)analysis showed the presence of antibody-secreting memory B cells in the mice splenocytes stimulated with the synthetic aD peptide. The significant humoral, natural killer cell and memory B cell immune responses induced by the Sf9-produced Nc-aD VLPs suggest that they present good prospects for use as a hepatitis B vaccine candidate.
Collapse
Affiliation(s)
- Nathaniel Nyakaat Ninyio
- Department of Microbiology, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, UPM Serdang 43400, Malaysia; (N.N.N.); (C.Y.Y.); (M.H.)
- Department of Microbiology, Faculty of Science, Kaduna State University, P.M.B. 2339, Tafawa Balewa Way, Kaduna 800241, Nigeria
| | - Kok Lian Ho
- Department of Pathology, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, UPM Serdang 43400, Malaysia; (K.L.H.); (H.K.O.)
| | - Hui Kian Ong
- Department of Pathology, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, UPM Serdang 43400, Malaysia; (K.L.H.); (H.K.O.)
| | - Chean Yeah Yong
- Department of Microbiology, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, UPM Serdang 43400, Malaysia; (N.N.N.); (C.Y.Y.); (M.H.)
| | - Hui Yee Chee
- Department of Medical Microbiology and Parasitology, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, UPM Serdang 43400, Malaysia;
| | - Muhajir Hamid
- Department of Microbiology, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, UPM Serdang 43400, Malaysia; (N.N.N.); (C.Y.Y.); (M.H.)
| | - Wen Siang Tan
- Department of Microbiology, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, UPM Serdang 43400, Malaysia; (N.N.N.); (C.Y.Y.); (M.H.)
- Institute of Bioscience, Universiti Putra Malaysia, UPM Serdang 43400, Malaysia
- Correspondence: ; Tel.: +603-9769-6715; Fax: +603-9769-7590
| |
Collapse
|
8
|
Astani E, Chen NC, Huang YC, Ersali S, Lin PJ, Guan HH, Lin CC, Chuankhayan P, Chen CJ. Characterization of Dimeric Interactions within Protrusion-Domain Interfaces of Parallel and X-Shaped Conformations of Macrobrachium rosenbergii Nodavirus: A Theoretical Study Using the DFT Method along with QTAIM and NBO Analyses. ACS OMEGA 2020; 5:3428-3443. [PMID: 32118157 PMCID: PMC7045543 DOI: 10.1021/acsomega.9b03697] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/01/2019] [Accepted: 01/29/2020] [Indexed: 06/10/2023]
Abstract
The protrusion domain (P-domain; MrNVPd) of Macrobrachium rosenbergii nodavirus (MrNV) exists in two conformations, parallel and X-shaped. We have performed a theoretical study to gain insight into the nature of the dimeric interactions involving the dimeric interfaces within parallel and X-shaped conformations of MrNVPd by applying the quantum theory of atoms in molecules (QTAIM) and natural bond orbital (NBO) analyses in the framework of the density functional theory (DFT) approach. The results reveal that the dimer-dimer interfaces of MrNVPd have hydrogen bonds of common types. Leu255-Lys287, Tyr257-Lys287, Lys287-Ser253, Met294-Cys328, Asp295-Lys327, Ser298-Ser324, Ile326-Asp295, and Cys328-Met294 are the key residue pairs of the dimer-dimer interfaces to maintain the dimer-dimer structures of MrNVPd through charge-charge, charge-dipole, dipole-dipole, hydrophobic, and hydrogen bonding interactions. The strengths of these intermolecular dimer-dimer interactions in the parallel conformation are much greater than those in the X-shaped conformation. The parallel trimeric interface is held basically by electrostatic and hydrophobic interactions. The electrostatic interactions accompanying a strong hydrogen bond of Oγ1-Hγ1···Oγ1 in the Thr276 A-Thr276 D pair maintain the intermolecular interface of two X-shaped MrNVPd dimers.
Collapse
Affiliation(s)
- Elahe
K. Astani
- Life
Science Group, Scientific Research Division, National Synchrotron Radiation Research Center, Hsinchu 30076, Taiwan
- Department
of Chemistry, Faculty of Science, Tarbiat
Modares University, Tehran 14115-175, Iran
| | - Nai-Chi Chen
- Life
Science Group, Scientific Research Division, National Synchrotron Radiation Research Center, Hsinchu 30076, Taiwan
| | - Yen-Chieh Huang
- Life
Science Group, Scientific Research Division, National Synchrotron Radiation Research Center, Hsinchu 30076, Taiwan
| | - Sara Ersali
- Faculty
of Chemistry and Chemical Engineering, Babeş-Bolyai
University, Cluj-Napoca 400028, Romania
| | - Pei-Ju Lin
- Life
Science Group, Scientific Research Division, National Synchrotron Radiation Research Center, Hsinchu 30076, Taiwan
- Institute
of Bioinformatics and Structural Biology, National Tsing Hua University, Hsinchu 30043, Taiwan
| | - Hong-Hsiang Guan
- Life
Science Group, Scientific Research Division, National Synchrotron Radiation Research Center, Hsinchu 30076, Taiwan
| | - Chien-Chih Lin
- Life
Science Group, Scientific Research Division, National Synchrotron Radiation Research Center, Hsinchu 30076, Taiwan
| | - Phimonphan Chuankhayan
- Life
Science Group, Scientific Research Division, National Synchrotron Radiation Research Center, Hsinchu 30076, Taiwan
| | - Chun-Jung Chen
- Life
Science Group, Scientific Research Division, National Synchrotron Radiation Research Center, Hsinchu 30076, Taiwan
- Department
of Biotechnology and Bioindustry Sciences, National Cheng Kung University, Tainan City 701, Taiwan
- Department
of Physics, National Tsing Hua University, Hsinchu 30043, Taiwan
| |
Collapse
|
9
|
Yoshimura M, Chen NC, Guan HH, Chuankhayan P, Lin CC, Nakagawa A, Chen CJ. Noncrystallographic symmetry-constrained map obtained by direct density optimization. Acta Crystallogr D Struct Biol 2020; 76:147-154. [PMID: 32038045 PMCID: PMC7008515 DOI: 10.1107/s2059798319017297] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2019] [Accepted: 12/27/2019] [Indexed: 11/11/2022] Open
Abstract
Noncrystallographic symmetry (NCS) averaging following molecular-replacement phasing is generally the major technique used to solve a structure with several molecules in one asymmetric unit, such as a spherical icosahedral viral particle. As an alternative method to NCS averaging, a new approach to optimize or to refine the electron density directly under NCS constraints is proposed. This method has the same effect as the conventional NCS-averaging method but does not include the process of Fourier synthesis to generate the electron density from amplitudes and the corresponding phases. It has great merit for the solution of structures with limited data that are either twinned or incomplete at low resolution. This method was applied to the case of the T = 1 shell-domain subviral particle of Penaeus vannamei nodavirus with data affected by twinning using the REFMAC5 refinement software.
Collapse
Affiliation(s)
- Masato Yoshimura
- Life Science Group, Scientific Research Division, National Synchrotron Radiation Research Center, 101 Hsin-Ann Road, Hsinchu 30076, Taiwan
| | - Nai-Chi Chen
- Life Science Group, Scientific Research Division, National Synchrotron Radiation Research Center, 101 Hsin-Ann Road, Hsinchu 30076, Taiwan
| | - Hong-Hsiang Guan
- Life Science Group, Scientific Research Division, National Synchrotron Radiation Research Center, 101 Hsin-Ann Road, Hsinchu 30076, Taiwan
| | - Phimonphan Chuankhayan
- Life Science Group, Scientific Research Division, National Synchrotron Radiation Research Center, 101 Hsin-Ann Road, Hsinchu 30076, Taiwan
| | - Chien-Chih Lin
- Life Science Group, Scientific Research Division, National Synchrotron Radiation Research Center, 101 Hsin-Ann Road, Hsinchu 30076, Taiwan
| | - Atsushi Nakagawa
- Institute for Protein Research, Osaka University, 3-2 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Chun-Jung Chen
- Life Science Group, Scientific Research Division, National Synchrotron Radiation Research Center, 101 Hsin-Ann Road, Hsinchu 30076, Taiwan
- Department of Biotechnology and Bioindustry Sciences, National Cheng Kung University, Tainan 701, Taiwan
- Department of Physics, National Tsing Hua University, Hsinchu 30043, Taiwan
| |
Collapse
|